The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

8761-8780hit(20498hit)

  • Imposing Constraints from the Source Tree on ITG Constraints for SMT

    Hirofumi YAMAMOTO  Hideo OKUMA  Eiichiro SUMITA  

     
    PAPER-Natural Language Processing

      Vol:
    E92-D No:9
      Page(s):
    1762-1770

    In the current statistical machine translation (SMT), erroneous word reordering is one of the most serious problems. To resolve this problem, many word-reordering constraint techniques have been proposed. Inversion transduction grammar (ITG) is one of these constraints. In ITG constraints, target-side word order is obtained by rotating nodes of the source-side binary tree. In these node rotations, the source binary tree instance is not considered. Therefore, stronger constraints for word reordering can be obtained by imposing further constraints derived from the source tree on the ITG constraints. For example, for the source word sequence { a b c d }, ITG constraints allow a total of twenty-two target word orderings. However, when the source binary tree instance ((a b) (c d)) is given, our proposed "imposing source tree on ITG" (IST-ITG) constraints allow only eight word orderings. The reduction in the number of word-order permutations by our proposed stronger constraints efficiently suppresses erroneous word orderings. In our experiments with IST-ITG using the NIST MT08 English-to-Chinese translation track's data, the proposed method resulted in a 1.8-points improvement in character BLEU-4 (35.2 to 37.0) and a 6.2% lower CER (74.1 to 67.9%) compared with our baseline condition.

  • Analysis of Path Delay Fault Testability for Two-Rail Logic Circuits

    Kazuteru NAMBA  Hideo ITO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:9
      Page(s):
    2295-2303

    The importance of redundant technologies for improving dependability and delay fault testability are growing. This paper presents properties of a class of redundant technologies, namely two-rail logic, and analyzes testability of path delay faults occurring on two-rail logic circuits. The paper reveals the following characteristics of two-rail logic circuits: While the number of paths in two-rail logic circuits is twice that in ordinary single-rail logic circuits, the number of robust testable path delay faults in two-rail logic circuits is twice or more that in the single-rail logic circuits. This suggests two-rail logic circuits are more testable than ordinary single-rail logic circuits. On two-rail logic circuits, there may be some robust testable path delay faults that are functional un-sensitizable for any input vectors consisting of codewords of two-rail codes, i.e. for any input vectors that can occur during fault-free operation. Even if such faults occur, the circuits are still strongly fault secure for unidirectional stuck-at faults as well as they work correctly.

  • Threshold Selection Based on Interval-Valued Fuzzy Sets

    Chang Sik SON  Suk Tae SEO  In Keun LEE  Hye Cheun JEONG  Soon Hak KWON  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1807-1810

    We propose a thresholding method based on interval-valued fuzzy sets which are used to define the grade of a gray level belonging to one of the two classes, an object and the background of an image. The effectiveness of the proposed method is demonstrated by comparing our classification results on eight test images to results from the conventional methods.

  • An Improved Ant Colony Algorithm for the Shortest Path Problem in Time-Dependent Networks

    Qing CHANG  Yongqiang LIU  Huagang XIONG  

     
    LETTER-Integrated Systems for Communications

      Vol:
    E92-B No:9
      Page(s):
    2996-2999

    Research of the shortest path problem in time-dependent networks has important practical value. An improved pheromone update strategy suitable for time-dependent networks was proposed. Under this strategy, the residual pheromone of each road can accurately reflect the change of weighted value of each road. An improved selection strategy between adjacent cities was used to compute the cities' transfer probabilities, as a result, the amount of calculation is greatly reduced. To avoid the algorithm converging to the local optimal solution, the ant colony algorithm was combined with genetic algorithm. In this way, the solutions after each traversal were used as the initial species to carry out single-point crossover. An improved ant colony algorithm for the shortest path problem in time-dependent networks based on these improved strategies was presented. The simulation results show that the improved algorithm has greater probability to get the global optimal solution, and the convergence rate of algorithm is better than traditional ant colony algorithm.

  • A New Approach to Rotation Invariant Texture Analysis Based on Radon Transform

    Mehdi CHEHEL AMIRANI  Ali A. BEHESHTI SHIRAZI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1736-1744

    In this paper, we propose a new approach to rotation invariant texture analysis. This method uses the Radon transform with some considerations in direction estimation of textural images. Furthermore, it utilizes the information obtained from the number of peaks in the variance array of the Radon transform as a realty feature. The textural features are then generated after rotation of texture along principle direction. Also, to eliminating the introduced error due to rotation of texture, a simple technique is presented. Experimental results on a set of images from the Brodatz album show a good performance achieved by the proposed method in comparison with some recent texture analysis methods.

  • Local Image Descriptors Using Supervised Kernel ICA

    Masaki YAMAZAKI  Sidney FELS  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1745-1751

    PCA-SIFT is an extension to SIFT which aims to reduce SIFT's high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discriminative method called Supervised Kernel ICA (SKICA) that uses a non-linear kernel approach combined with Supervised ICA-based local image descriptors. Our approach blends the advantages of supervised learning with nonlinear properties of kernels. Using five different test data sets we show that the SKICA descriptors produce better object recognition performance than other related approaches with the same dimensionality. The SKICA-based representation has local sensitivity, non-linear independence and high class separability providing an effective method for local image descriptors.

  • Mobile Location Using Improved Covariance Shaping Least-Squares Estimation in Cellular Systems

    Ann-Chen CHANG  Yu-Hong LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:9
      Page(s):
    2366-2368

    This Letter deals with the problem of non-line-of-sight (NLOS) in cellular systems devoted to location purposes. In conjugation with a variable loading technique, we present an efficient technique to make covariance shaping least squares estimator has robust capabilities against the NLOS effects. Compared with other methods, the proposed improved estimator has high accuracy under white Gaussian measurement noises and NLOS effects.

  • SIW-Like Guided Wave Structures and Applications Open Access

    Wei HONG  Ke WU  Hongjun TANG  Jixin CHEN  Peng CHEN  Yujian CHENG  Junfeng XU  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1111-1123

    In this paper, the research advances in SIW-like (Substrate Integrated Waveguide-like) guided wave structures and their applications in the State Key Laboratory of Millimeter Waves of China is reviewed. Our work is concerned with the investigations on the propagation characteristics of SIW, half-mode SIW (HMSIW) and the folded HMSIW (FHMSIW) as well as their applications in microwave and millimeter wave filters, diplexers, directional couplers, power dividers, antennas, power combiners, phase shifters and mixers etc. Selected results are presented to show the interesting features and advantages of those new techniques.

  • Power Efficient Uplink Resource Allocation Schemes in IEEE 802.16 OFDMA Systems

    Woo-Jae KIM  Jong-Pil YOON  Joo-Young BAEK  Young-Joo SUH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:9
      Page(s):
    2891-2902

    In this paper, we focus on resource allocation schemes for minimizing the energy consumption of subscriber stations (SSs) in uplink flows of the IEEE 802.16 OFDMA systems. The resource allocation schemes assign subcarriers, powers, and data rates to each SS based on the measured signal to noise ratio (SNR) of the uplink channel and predefined modulation and coding scheme as system parameters. Previous research efforts to optimize resource allocation focus on the rate and throughput maximizations, and develop suboptimal heuristic algorithms. However, this paper intends to reduce the energy consumption of SSs by considering the relationship between energy efficiency and resource allocation. In order to clearly formulate the relationship, we use the Multiple Choice Knapsack (MCK) problem, which is proved to be an NP-hard problem. We propose two heuristic schemes to solve the NP-hard problem, which adaptively use the modulation and coding scheme, defined in the IEEE 802.16 OFDMA systems to minimize the required transmission power of each SS. Our simulation results show that the proposed schemes can reduce the energy consumption by up to 53% compared to the channel state information (CSI) scheme, which determines the modulation and coding level only considering the channel state information.

  • Symmetric/Asymmetrical SIRs Dual-Band BPF Design for WLAN Applications

    Min-Hua HO  Hao-Hung HO  Mingchih CHEN  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1137-1143

    This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2 GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.

  • Content-Based Retrieval of Motion Capture Data Using Short-Term Feature Extraction

    Jianfeng XU  Haruhisa KATO  Akio YONEYAMA  

     
    PAPER-Contents Technology and Web Information Systems

      Vol:
    E92-D No:9
      Page(s):
    1657-1667

    This paper presents a content-based retrieval algorithm for motion capture data, which is required to re-use a large-scale database that has many variations in the same category of motions. The most challenging problem is that logically similar motions may not be numerically similar due to the motion variations in a category. Our algorithm can effectively retrieve logically similar motions to a query, where a distance metric between our novel short-term features is defined properly as a fundamental component in our system. We extract the features based on short-term analysis of joint velocities after dividing an entire motion capture sequence into many small overlapped clips. In each clip, we select not only the magnitude but also the dynamic pattern of the joint velocities as our features, which can discard the motion variations while keeping the significant motion information in a category. Simultaneously, the amount of data is reduced, alleviating the computational cost. Using the extracted features, we define a novel distance metric between two motion clips. By dynamic time warping, a motion dissimilarity measure is calculated between two motion capture sequences. Then, given a query, we rank all the motions in our dataset according to their motion dissimilarity measures. Our experiments, which are performed on a test dataset consisting of more than 190 motions, demonstrate that our algorithm greatly improves the performance compared to two conventional methods according to a popular evaluation measure P(NR).

  • Dynamic Call Admission Control Scheme Based on Predictive User Mobility Behavior for Cellular Networks

    Silada INTARASOTHONCHUN  Sakchai THIPCHAKSURAT  Ruttikorn VARAKULSIRIPUNTH  Yoshikuni ONOZATO  

     
    PAPER-Broadband Wireless Access System

      Vol:
    E92-A No:9
      Page(s):
    2200-2208

    In this paper, we propose a modified scheme of MSODB and PMS, called Predictive User Mobility Behavior (PUMB) to improve performance of resource reservation and call admission control for cellular networks. This algorithm is proposed in which bandwidth is allocated more efficiently to neighboring cells by key mobility parameters in order to provide QoS guarantees for transferring traffic. The probability is used to form a cluster of cells and the shadow cluster, where a mobile unit is likely to visit. When a mobile unit may change the direction and migrate to the cell that does not belong to its shadow cluster, we can support it by making efficient use of predicted nonconforming call. Concomitantly, to ensure continuity of on-going calls with better utilization of resources, bandwidth is borrowed from predicted nonconforming calls and existing adaptive calls without affecting the minimum QoS guarantees. The performance of the PUMB is demonstrated by simulation results in terms of new call blocking probability, handoff call dropping probability, bandwidth utilization, call successful probability, and overhead message transmission when arrival rate and speed of mobile units are varied. Our results show that PUMB provides the better performances comparing with those of MSODB and PMS under different traffic conditions.

  • Overall Resource Efficiency Measure of Digital Modulation Methods

    Jinzhu LIU  Lianfeng SHEN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:9
      Page(s):
    2948-2950

    A coordinate plane representation of the resource requirements of digital modulation methods is presented, and an overall resource efficiency measure is proposed. This measure can be used for the comparison of digital modulation methods and the evaluation of an emerging modulation technique. Several typical digital modulation methods are compared based on this measure to show its validity.

  • Robust Relative Transfer Function Estimation for Dual Microphone-Based Generalized Sidelobe Canceller

    Kihyeon KIM  Hanseok KO  

     
    LETTER-Speech and Hearing

      Vol:
    E92-D No:9
      Page(s):
    1794-1797

    In this Letter, a robust system identification method is proposed for the generalized sidelobe canceller using dual microphones. The conventional transfer-function generalized sidelobe canceller employs the non-stationarity characteristics of the speech signal to estimate the relative transfer function and thus is difficult to apply when the noise is also non-stationary. Under the assumption of W-disjoint orthogonality between the speech and the non-stationary noise, the proposed algorithm finds the speech-dominant time-frequency bins of the input signal by inspecting the system output and the inter-microphone time delay. Only these bins are used to estimate the relative transfer function, so reliable estimates can be obtained under non-stationary noise conditions. The experimental results show that the proposed algorithm significantly improves the performance of the transfer-function generalized sidelobe canceller, while only sustaining a modest estimation error in adverse non-stationary noise environments.

  • Characterization of Minimum Route MTM in One-Dimensional Multi-Hop Wireless Networks

    Kazuyuki MIYAKITA  Keisuke NAKANO  Masakazu SENGOKU  Shoji SHINODA  

     
    PAPER-Multi-hop Wireless Network

      Vol:
    E92-A No:9
      Page(s):
    2227-2235

    In multi-hop wireless networks, since source and destination nodes usually have some candidate paths between them, communication quality depends on the selection of a path from these candidates. For network design, characterizing the best path is important. To do this, in [1], [2] we used expected transmission count (ETX) as a metric of communication quality and showed that the best path for ETX is modeled by a path that consists of links whose lengths are close to each other in static one-dimensional multi-hop networks with a condition that the ETX function of a link is a convex monotonically increasing function. By using the results of this characterization, a minimum route ETX can be approximately computed in a one-dimensional random network. However, other metrics fail to satisfy the above condition, like medium time metric (MTM). In this paper, we use MTM as a metric of communication quality and show that we cannot directly apply the results of to the characterization of the best path for MTM and the computation of minimum route MTM. In this paper, we characterize the path that minimizes route MTM in a different manner from [1] [2] and propose a new approximate method suitable for the computation of minimum route MTM.

  • Pipeline-Based Partition Exploration for Heterogeneous Multiprocessor Synthesis

    Kang ZHAO  Jinian BIAN  Sheqin DONG  Yang SONG  Satoshi GOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:9
      Page(s):
    2283-2294

    To achieve an automated implementation for the application-specific heterogeneous multiprocessor systems-on-chip (MPSoC), partitioning and mapping the sequential programs onto multiple parallel processors is one of the most difficult challenges. However, the existing traditional parallelizing techniques cannot solve the MPSoC-related problems effectively, so designers are still required to manually extract the concurrency potentials in the program. To solve this bottleneck, an automated application partition technique is needed. However, completely automatic parallelism is ineffective, so it is promising to explore concurrency for certain practical special structures. To settle those issues, this paper proposes a template-based algorithm to automatically partition a special load-compute-store (LCS) loop structure. Since specific-instruction customization for the application specific instruction-set processors (ASIPs) has interactions with task partitioning, the proposed algorithm integrates the dynamic pipelining and ASIP techniques using an iterative improvement strategy: first, an initial pipelining scheme is generated to obtain the maximum parallelism; second, under the primary partition results specific instructions are customized respectively for each subprogram; third, the program is repartitioned via pipelining under the specific instruction configurations. The proposed method has been implemented in the context of a commercial extensible multiprocessor design flow, using the Xtensa-based XTMP platform from Tensilica Inc. Based on a case study of Fast Fourier Transform (FFT), the experimental results indicate that the partitioned programs by the proposed method demonstrate an average speedup of 10 compared to the original sequential programs which have not been partitioned and run on the uniprocessor system.

  • An L-Band 4-Bit RL/RC-Switched Active Phase Shifter Using Differential Switches

    Kenji NAKAMURA  Yasushi ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1170-1175

    An L-band 4-bit RL/RC-switched active phase shifter using differential switches is developed. It employs RL/RC circuits in the design of series feedback loops of the quadrature differential amplifier and achieves 90, 45, and 22.5of phase shift by switching on and off the RL/RC circuits alternatively. On the other hand, a 180phase shift is achieved with the use of a phase difference between the differential outputs. By cascading all four bits, an insertion gain of 16 to 23 dB, a phase error of less than 8.5, and an RMS phase error of 4.6have been achieved at 1 GHz.

  • A New Signaling Architecture THREP with Autonomous Radio-Link Control for Wireless Communications Systems

    Masahiko HIRONO  Toshio NOJIMA  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1163-1169

    This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.

  • Signal Subspace Interpolation from Discrete Measurement Samples in Constructing a Database for Location Fingerprint Technique

    Panarat CHERNTANOMWONG  Jun-ichi TAKADA  Hiroyuki TSUJI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:9
      Page(s):
    2922-2930

    In this paper, a method of the signal subspace interpolation to constructing a continuous fingerprint database for radio localization is proposed. When using the fingerprint technique, enhancing the accuracy of location estimation requires very fine spatial resolution of the database, which entails much time in collecting the data to build up the database. Interpolated signal subspace is presented to achieve a fine spatial resolution of the fingerprint database. The angle of arrival (AOA) and the measured signal subspace at known locations are needed to obtain the interpolated signal subspaces. The effectiveness of this method is verified by an outdoor experiment and the estimated location using this method was compared with those using the geometrically calculated fingerprint and the measured signal subspace fingerprint techniques.

  • Unified Dual-Radix Architecture for Scalable Montgomery Multiplications in GF(P) and GF(2n)

    Kazuyuki TANIMURA  Ryuta NARA  Shunitsu KOHARA  Youhua SHI  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:9
      Page(s):
    2304-2317

    Modular multiplication is the most dominant arithmetic operation in elliptic curve cryptography (ECC), that is a type of public-key cryptography. Montgomery multiplier is commonly used to compute the modular multiplications and requires scalability because the bit length of operands varies depending on its security level. In addition, ECC is performed in GF(P) or GF(2n), and unified architecture for multipliers in GF(P) and GF(2n) is required. However, in previous works, changing frequency is necessary to deal with delay-time difference between GF(P) and GF(2n) multipliers because the critical path of the GF(P) multiplier is longer. This paper proposes unified dual-radix architecture for scalable Montgomery multiplications in GF(P) and GF(2n). This proposed architecture unifies four parallel radix-216 multipliers in GF(P) and a radix-264 multiplier in GF(2n) into a single unit. Applying lower radix to GF(P) multiplier shortens its critical path and makes it possible to compute the operands in the two fields using the same multiplier at the same frequency so that clock dividers to deal with the delay-time difference are not required. Moreover, parallel architecture in GF(P) reduces the clock cycles increased by dual-radix approach. Consequently, the proposed architecture achieves to compute a GF(P) 256-bit Montgomery multiplication in 0.28 µs. The implementation result shows that the area of the proposal is almost the same as that of previous works: 39 kgates.

8761-8780hit(20498hit)