The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

8961-8980hit(20498hit)

  • Routability Driven Via Assignment Method for 2-Layer Ball Grid Array Packages

    Yoichi TOMIOKA  Atsushi TAKAHASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:6
      Page(s):
    1433-1441

    Ball Grid Array packages in which I/O pins are arranged in a grid array pattern realize a number of connections between chips and a printed circuit board, but it takes much time in manual routing. We propose a fast routing method for 2-layer Ball Grid Array packages that iteratively modifies via assignment. In experiments, in most cases, via assignment and global routing on both of layers in which all nets are realized and the violation of wire congestion on layer 1 is small are speedily obtained.

  • A Scalable Tracking System Using Ultrasonic Communication

    Toshio ITO  Tetsuya SATO  Kan TULATHIMUTTE  Masanori SUGIMOTO  Hiromichi HASHIZUME  

     
    PAPER-Ultrasonics

      Vol:
    E92-A No:6
      Page(s):
    1408-1416

    We have introduced a new ultrasonic-based localization method that requires only one ultrasonic receiver to locate transmitters. In our previous reports [1],[2], we conducted several fundamental experiments, and proved the feasibility and accuracy of our system. However the performance in a more realistic environment has not yet been evaluated. In this paper, we have extended our localization system into a robot tracking system, and conducted experiments where the system tracked a moving robot. Localization was executed both by our proposed method and by the conventional TOA method. The experiment was repeated with different density of receivers. Thus we were able to compare the accuracy and the scalability between our proposed method and the conventional method. As a result 90-percentile of the position error was from 6.2 cm to 14.6 cm for the proposed method, from 4.0 cm to 6.1 cm for the conventional method. However our proposed method succeeded in calculating the position of the transmitter in 95% out of total attempts of localization with sparse receivers (4 receivers in about 5 m 5 m area), whereas the success rate was only 31% for the conventional method. From the result we concluded that although the proposed method is less accurate it can cover a wider area with sparse receivers than the conventional method. In addition to the dynamic tracking experiments, we also conducted some localization experiments where the robot stood still. This was because we wanted to investigate the reason why the localization accuracy degraded in the dynamic tracking. According to the result, the degradation of accuracy might be due to the systematic error in localization which is dependent on the geometric relationship between the transmitter and the receiver.

  • 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    Yohei KOJIMA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2065-2071

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  • Finding a Basis Conversion Matrix via Prime Gauss Period Normal Basis

    Yasuyuki NOGAMI  Ryo NAMBA  Yoshitaka MORIKAWA  

     
    PAPER-Information Theory

      Vol:
    E92-A No:6
      Page(s):
    1500-1507

    This paper proposes a method to construct a basis conversion matrix between two given bases in Fpm. In the proposed method, Gauss period normal basis (GNB) works as a bridge between the two bases. The proposed method exploits this property and construct a basis conversion matrix mostly faster than EDF-based algorithm on average in polynomial time. Finally, simulation results are reported in which the proposed method compute a basis conversion matrix within 30 msec on average with Celeron (2.00 GHz) when mlog p≈160.

  • A Class of Array Codes Correcting a Cluster of Unidirectional Errors for Two-Dimensional Matrix Symbols

    Haruhiko KANEKO  Eiji FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:6
      Page(s):
    1508-1519

    Two-dimensional (2D) matrix symbols have higher storage capacity than conventional bar-codes, and hence have been used in various applications, including parts management in factories and Internet site addressing in camera-equipped mobile phones. These symbols generally utilize strong error control codes to protect data from errors caused by blots and scratches, and therefore require a large number of check bits. Because 2D matrix symbols are expressed in black and white dot patterns, blots and scratches often induce clusters of unidirectional errors (i.e., errors that affect black but not white dots, or vice versa). This paper proposes a new class of unidirectional lm ln-clustered error correcting codes capable of correcting unidirectional errors confined to a rectangle with lm rows and ln columns. The proposed code employs 2D interleaved parity-checks, as well as vertical and horizontal arithmetic residue checks. Clustered error pattern is derived using the 2D interleaved parity-checks, while vertical and horizontal positions of the error are calculated using the vertical and horizontal arithmetic residue checks. This paper also derives an upper bound on the number of codewords based on Hamming bound. Evaluation shows that the proposed code provides high code rate close to the bound. For example, for correcting a cluster of unidirectional 40 40 errors in 150 150 codeword, the code rate of the proposed code is 0.9272, while the upper bound is 0.9284.

  • Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems

    Bong Joo KIM  Gang Uk HWANG  

     
    PAPER-Network

      Vol:
    E92-B No:6
      Page(s):
    2000-2007

    In this paper, we analyze the extended real-time Polling Service (ertPS) algorithm in IEEE 802.16e systems, which is designed to support Voice-over-Internet-Protocol (VoIP) services with data packets of various sizes and silence suppression. The analysis uses a two-dimensional Markov Chain, where the grant size and the voice packet state are considered, and an approximation formula for the total throughput in the ertPS algorithm is derived. Next, to improve the performance of the ertPS algorithm, we propose an enhanced uplink resource allocation algorithm, called the e 2rtPS algorithm, for VoIP services in IEEE 802.16e systems. The e 2rtPS algorithm considers the queue status information and tries to alleviate the queue congestion as soon as possible by using remaining network resources. Numerical results are provided to show the accuracy of the approximation analysis for the ertPS algorithm and to verify the effectiveness of the e 2rtPS algorithm.

  • Fast Packet Classification Using Multi-Dimensional Encoding

    Chi Jia HUANG  Chien CHEN  

     
    PAPER-Internet

      Vol:
    E92-B No:6
      Page(s):
    2044-2053

    Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is θ (LNlog N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.

  • Scheduling Algorithm to Provide QoS over a Shared Wireless Link

    Augusto FORONDA  Chikara OHTA  Hisashi TAMAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2160-2167

    Several scheduling algorithms have been proposed for the downlink of a Code Division Multiple Access (CDMA) system with High Data Rate (HDR). Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm selects a user according to the user current channel condition, user head-of-line packet delay and user Quality of Service (QoS) requirement. Proportional Fair (PF) scheduling algorithm has also been proposed for CDMA/HDR system and it selects a user according to the ratio of the user current channel rate and the user average channel rate, which provides good performance in terms of fairness. However, when variable bit rate (VBR) traffic is considered under different channel conditions for each user, both schedulers' performance decrease. M-LWDF scheduler can not guarantee the QoS requirement to be achieved and PF scheduler can not achieve a good fairness among the users. In this work, we propose a new scheduling algorithm to enhance M-LWDF and PF schedulers performance. Proposed scheduler selects a user according to the user input traffic characteristic, user current channel condition and user QoS requirement, which consists of a delay value with a maximum violation probability. We consider the well-known effective bandwidth expression, which takes into account the user QoS requirement and the user input traffic characteristics, to select a user to be scheduled. Properties of the proposed scheduling algorithm are investigated through simulations with constant bit rate (CBR) and VBR flows and performance comparisons with M-LWDF and PF schedulers. The results show a better performance of the proposed scheduler compared with M-LWDF and PF schedulers.

  • Applicability of Large Effective Area PCF to DRA Transmission

    Chisato FUKAI  Kazuhide NAKAJIMA  Takashi MATSUI  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E92-B No:6
      Page(s):
    2251-2253

    We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.

  • CFAR Detector Based on Goodness-of-Fit Tests

    Xiaobo DENG  Yiming PI  Zhenglin CAO  

     
    PAPER-Sensing

      Vol:
    E92-B No:6
      Page(s):
    2209-2217

    This paper develops a complete architecture for constant false alarm rate (CFAR) detection based on a goodness-of-fit (GOF) test. This architecture begins with a logarithmic amplifier, which transforms the background distribution, whether Weibull or lognormal into a location-scale (LS) one, some relevant properties of which are exploited to ensure CFAR. A GOF test is adopted at last to decide whether the samples under test belong to the background or are abnormal given the background and so should be declared to be a target of interest. The performance of this new CFAR scheme is investigated both in homogeneous and multiple interfering targets environment.

  • An Improved Encoder for Joint Source-Channel Decoder Using Conditional Entropy Constraint

    Moonseo PARK  Seong-Lyun KIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:6
      Page(s):
    2222-2225

    When the joint source-channel (JSC) decoder is used for source coding over noisy channels, the JSC decoder may invent errors even though the received data is not corrupted by the channel noise, if the JSC decoder assumes the channel was noisy. A novel encoder algorithm has been recently proposed to improve the performance of the communications system under this situation. In this letter, we propose another algorithm based on conditional entropy-constrained vector quantizer to further improve the encoder. The algorithm proposed in this letter significantly improves the performance of the communications system when the hypothesized channel bit error rate is high.

  • A 100 Mbps, 4.1 pJ/bit Threshold Detection-Based Impulse Radio UWB Transceiver in 90 nm CMOS

    Lechang LIU  Yoshio MIYAMOTO  Zhiwei ZHOU  Kosuke SAKAIDA  Jisun RYU  Koichi ISHIDA  Makoto TAKAMIYA  Takayasu SAKURAI  

     
    PAPER

      Vol:
    E92-C No:6
      Page(s):
    769-776

    A novel DC-to-960 MHz impulse radio ultra-wideband (IR-UWB) transceiver based on threshold detection technique is developed. It features a digital pulse-shaping transmitter, a DC power-free pulse discriminator and an error-recovery phase-frequency detector. The developed transceiver in 90 nm CMOS achieves the lowest energy consumption of 2.2 pJ/bit transmitter and 1.9 pJ/bit receiver at 100 Mbps in the UWB transceivers.

  • A Scenario-Based Protocol Checker for Public-Key Authentication Scheme

    Takamichi SAITO  

     
    PAPER-Application Information Security

      Vol:
    E92-D No:6
      Page(s):
    1268-1279

    Security protocol provides communication security for the internet. One of the important features of it is authentication with key exchange. Its correctness is a requirement of the whole of the communication security. In this paper, we introduce three attack models realized as their attack scenarios, and provide an authentication-protocol checker for applying three attack-scenarios based on the models. We also utilize it to check two popular security protocols: Secure SHell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

  • ICCD Observation on Discharge Characteristics in AC Plasma Display Panel Prepared by Vacuum Sealing Process

    Choon-Sang PARK  Heung-Sik TAE  

     
    LETTER-Electronic Displays

      Vol:
    E92-C No:6
      Page(s):
    898-901

    The vacuum sealing process with a base vacuum of 10-5 Torr is adopted to minimize the residual impurity gas. The address and sustain discharges in the 42-in PDP prepared by the vacuum-sealing process are observed by using the ICCD. As a result, the ICCD observation illustrates that thanks to the reduction of the impurity level by the vacuum-sealing process, the surface and plate-gap discharges are initiated and extinguished very fast and the corresponding IR emissions are also intensified.

  • Frequency Domain Nulling Filter and Turbo Equalizer in Suppression of Interference for One-Cell Reused Single-Carrier TDMA Systems Open Access

    Chantima SRITIAPETCH  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2085-2094

    This paper proposes a frequency domain nulling filter and Turbo equalizer to suppress interference in the uplink of one-cell reuse single-carrier time division multiple access (TDMA) systems. In the proposed system, the desired signal in a reference cell is interfered by interference signals including adjacent-channel interference (ACI), co-channel interference (CCI), and intersymbol interference (ISI). At the transmitter, after a certain amount of spectrum is nulled considering the expected CCI, the suppressed power due to nulling is reallocated to the remaining spectrum components so as to keep the total transmit power constant. In this process, when mitigation of ACI is necessary, after a certain amount of spectrum at both edges is nulled using an edge-removal filter, the aforementioned process is conducted. At the receiver, frequency domain SC/MMSE Turbo equalizer (FDTE) is employed to suppress ISI due to spectrum nulling process in the transmitter as well as the multipath fading. Computer simulations confirm that the proposed scheme is effective in suppression of CCI, ACI and ISI in one-cell reuse single-carrier TDMA systems.

  • A Distributed Variational Bayesian Algorithm for Density Estimation in Sensor Networks

    Behrooz SAFARINEJADIAN  Mohammad B. MENHAJ  Mehdi KARRARI  

     
    PAPER-Computation and Computational Models

      Vol:
    E92-D No:5
      Page(s):
    1037-1048

    In this paper, the problem of density estimation and clustering in sensor networks is considered. It is assumed that measurements of the sensors can be statistically modeled by a common Gaussian mixture model. This paper develops a distributed variational Bayesian algorithm (DVBA) to estimate the parameters of this model. This algorithm produces an estimate of the density of the sensor data without requiring the data to be transmitted to and processed at a central location. Alternatively, DVBA can be viewed as a distributed processing approach for clustering the sensor data into components corresponding to predominant environmental features sensed by the network. The convergence of the proposed DVBA is then investigated. Finally, to verify the performance of DVBA, we perform several simulations of sensor networks. Simulation results are very promising.

  • MAP Receiver with Spatial Filters for Suppressing Cochannel Interference in MIMO-OFDM Mobile Communications

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1841-1851

    This paper proposes joint maximum a posteriori (MAP) detection and spatial filtering for MIMO-OFDM mobile communications; it offers excellent receiver performance even over interference-limited channels. The proposed joint processor consists of a log likelihood generator and a MAP equalizer. The log likelihood generator suppresses cochannel interference by spatially filtering received signals and provides branch metrics of transmitted signal candidates. Using the branch metrics, the MAP equalizer generates log likelihood ratios of coded bits and performs channel decoding based on the MAP criterion. In the first stage, the log likelihood generator performs spatio-temporal filtering (STF) of the received signals prior to the fast Fourier transform (FFT) and is referred to as preFFT-type STF. Estimation of parameters including tap coefficients of the spatio-temporal filters and equivalent channel impulse responses of desired signals is based on the eigenvalue decomposition of an autocorrelation matrix of both the received and transmitted signals. For further improvement, in the second stage, the generator performs spatial filtering (SF) of the FFT output and is referred to as postFFT-type SF. Estimation of both tap coefficients of the spatial filters and channel impulse responses employs the recursive least squares (RLS) with smoothing. The reason for switching from preFFT-type STF into postFFT-type SF is that preFFT-type STF outperforms postFFT-type SF with a limited number of preamble symbols while postFFT-type SF outperforms preFFT-type STF when data symbols can be reliably detected and used for the parameter estimation. Note that there are two major differences between the proposed and conventional schemes: one is that the proposed scheme performs the two-stage processing of preFFT-type STF and postFFT-type SF, while the other is that the smoothing algorithm is applied to the parameter estimation of the proposed scheme. Computer simulations demonstrate that the proposed scheme can achieve excellent PER performance under interference-limited channel conditions and that it can outperform the conventional joint processing of preFFT-type STF and the MAP equalizer.

  • Improved Successive Detector for OFDM in Time-Variant Multipath Channels

    Feng LI  Shihua ZHU  Mei RONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1892-1896

    Time variations of wireless multipath channels can lead to severe intercarrier interference (ICI) in orthogonal frequency division multiplex (OFDM) systems, whereas large Doppler frequency spread can provide us with time diversity gain. In order to take advantage of the time diversity and to suppress the interference and noise enhancement at the same time, the receiver normally detects the data successively. In this letter, we propose an improved detection ordering based on the log-likelihood ratio (LLR) rather than the signal-to-noise ratio (SNR) for the successive detector. Using both theoretical analysis and computer simulation, it is shown that this scheme outperforms the traditional successive detection methods.

  • Fingerprinting Codes for Internet-Based Live Pay-TV System Using Balanced Incomplete Block Designs

    Shuhui HOU  Tetsutaro UEHARA  Takashi SATOH  Yoshitaka MORIMURA  Michihiko MINOH  

     
    PAPER-Contents Protection

      Vol:
    E92-D No:5
      Page(s):
    876-887

    In recent years, with the rapid growth of the Internet as well as the increasing demand for broadband services, live pay-television broadcasting via the Internet has become a promising business. To get this implemented, it is necessary to protect distributed contents from illegal copying and redistributing after they are accessed. Fingerprinting system is a useful tool for it. This paper shows that the anti-collusion code has advantages over other existing fingerprinting codes in terms of efficiency and effectivity for live pay-television broadcasting. Next, this paper presents how to achieve efficient and effective anti-collusion codes based on unital and affine plane, which are two known examples of balanced incomplete block design (BIBD). Meanwhile, performance evaluations of anti-collusion codes generated from unital and affine plane are conducted. Their practical explicit constructions are given last.

  • An Efficient Encryption and Key Management Scheme for Layered Access Control of H.264/Scalable Video Coding

    Su-Wan PARK  Sang Uk SHIN  

     
    PAPER-Contents Protection

      Vol:
    E92-D No:5
      Page(s):
    851-858

    This paper proposes a new selective encryption scheme and a key management scheme for layered access control of H.264/SVC. This scheme encrypts three domains in hierarchical layers using different keys: intra prediction modes, motion vector difference values and sign bits of texture data. The proposed scheme offers low computational complexity, low bit-overhead, and format compliance by utilizing the H.264/SVC structure. It provides a high encryption efficiency by encrypting domains selectively, according to each layer type in the enhancement-layer. It also provides confidentiality and implicit authentication using keys derived in the proposed key management scheme for encryption. Simulation results show the effectiveness of the proposed scheme.

8961-8980hit(20498hit)