The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

9561-9580hit(20498hit)

  • A 12-bit 3.7-Msample/s Pipelined A/D Converter Based on the Novel Capacitor Mismatch Calibration Technique

    Shuaiqi WANG  Fule LI  Yasuaki INOUE  

     
    PAPER-Electronic Circuits and Systems

      Vol:
    E91-A No:9
      Page(s):
    2465-2474

    This paper proposes a 12-bit 3.7-MS/s pipelined A/D Converter based on the novel capacitor mismatch calibration technique. The conventional stage is improved to an algorithmic circuit involving charge summing, capacitors' exchange and charge redistribution, simply through introducing some extra switches into the analog circuit. This proposed ADC obtains the linearity beyond the accuracy of the capacitor match and verifies the validity of reducing the nonlinear error from the capacitor mismatch to the second order without additional power dissipation through the novel capacitor mismatch calibration technique. It is processed in 0.5 µm CMOS technology. The transistor-level simulation results show that 72.6 dB SNDR, 78.5 dB SFDR are obtained for a 2 V Vpp 159.144 kHz sine input sampled at 3.7 MS/s. The whole power dissipation of this ADC is 33.4 mW at the power supply of 5 V.

  • Matrix Order Reduction by Nodal Analysis Formulation and Relaxation-Based Fast Simulation for Power/Ground Plane

    Tadatoshi SEKINE  Yuichi TANJI  Hideki ASAI  

     
    PAPER-Analysis, Modelng and Simulation

      Vol:
    E91-A No:9
      Page(s):
    2450-2455

    This paper describes the matrix order reduction method by the nodal analysis formulation and the application of relaxation-based simulation technique to interconnect and plane networks. First, the characteristics of the power/ground plane networks are considered. Next, the formulation of the plane network by nodal analysis (NA) method is suggested. Furthermore, application and estimation results of the relaxation-based numerical analyses are shown. Finally, it is confirmed that the relaxation-based methods improved by the suggested formulation are much more efficient than the conventional direct-based methods.

  • A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    Sangback MA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E91-A No:9
      Page(s):
    2578-2587

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wavefronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i.e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering and ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  • Transient Stability Enhancement of Power Systems by Lyapunov- Based Recurrent Neural Networks UPFC Controllers

    Chia-Chi CHU  Hung-Chi TSAI  Wei-Neng CHANG  

     
    PAPER-Control and Optimization

      Vol:
    E91-A No:9
      Page(s):
    2497-2506

    A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.

  • Integration Architecture of Content Addressable Memory and Massive-Parallel Memory-Embedded SIMD Matrix for Versatile Multimedia Processor

    Takeshi KUMAKI  Masakatsu ISHIZAKI  Tetsushi KOIDE  Hans Jurgen MATTAUSCH  Yasuto KURODA  Takayuki GYOHTEN  Hideyuki NODA  Katsumi DOSAKA  Kazutami ARIMOTO  Kazunori SAITO  

     
    PAPER

      Vol:
    E91-C No:9
      Page(s):
    1409-1418

    This paper presents an integration architecture of content addressable memory (CAM) and a massive-parallel memory-embedded SIMD matrix for constructing a versatile multimedia processor. The massive-parallel memory-embedded SIMD matrix has 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. The SIMD matrix architecture is verified to be a better way for processing the repeated arithmetic operation types in multimedia applications. The proposed architecture, reported in this paper, exploits in addition CAM technology and enables therefore fast pipelined table-lookup coding operations. Since both arithmetic and table-lookup operations execute extremely fast, the proposed novel architecture can realize consequently efficient and versatile multimedia data processing. Evaluation results of the proposed CAM-enhanced massive-parallel SIMD matrix processor for the example of the frequently used JPEG image-compression application show that the necessary clock cycle number can be reduced by 86% in comparison to a conventional mobile DSP architecture. The determined performances in Mpixel/mm2 are factors 3.3 and 4.4 better than with a CAM-less massive-parallel memory-embedded SIMD matrix processor and a conventional mobile DSP, respectively.

  • Introduction to Blueweb: A Decentralized Scatternet Formation Algorithm for Bluetooth Ad Hoc Networks

    Chih-Min YU  Chia-Chi HUANG  

     
    LETTER

      Vol:
    E91-B No:9
      Page(s):
    2873-2875

    In this letter, a decentralized scatternet formation algorithm called Bluelayer is proposed. First, Bluelayer uses a designated root to construct a tree-shaped subnet and propagates an integer variable k1 called counter limit as well as a constant k in its downstream direction to determine new roots. Then each new root asks its upstream master to start a return connection procedure to convert the tree-shaped subnet into a web-shaped subnet for its immediate upstream root. At the same time, each new root repeats the same procedure as the root to build its own subnet until the whole scatternet is formed. Simulation results show that Bluelayer achieves good network scalability and generates an efficient scatternet configuration for various sizes of Bluetooth ad hoc network.

  • New Sequences with Low Correlation and Large Family Size

    Fanxin ZENG  

     
    PAPER-Information Theory

      Vol:
    E91-A No:9
      Page(s):
    2615-2625

    In direct-sequence code-division multiple-access (DS-CDMA) communication systems and direct-sequence ultra wideband (DS-UWB) radios, sequences with low correlation and large family size are important for reducing multiple access interference (MAI) and accepting more active users, respectively. In this paper, a new collection of families of sequences of length pn-1, which includes three constructions, is proposed. The maximum number of cyclically distinct families without GMW sequences in each construction is , where p is a prime number, n is an even number, and n=2m, and these sequences can be binary or polyphase depending upon choice of the parameter p. In Construction I, there are pn distinct sequences within each family and the new sequences have at most d+2 nontrivial periodic correlation {-pm-1,-1,pm-1,2pm-1,,dpm-1}. In Construction II, the new sequences have large family size p2n and possibly take the nontrivial correlation values in {-pm-1,-1,pm-1,2pm-1,,(3d-4)pm-1}. In Construction III, the new sequences possess the largest family size p(d-1)n and have at most 2d correlation levels {-pm-1,-1,pm-1,2pm-1,,(2d-2)pm-1}. Three constructions are near-optimal with respect to the Welch bound because the values of their Welch-Ratios are moderate, WR d, WR 3d-4 and WR 2d-2, respectively. Each family in Constructions I, II and III contains a GMW sequence. In addition, Helleseth sequences and Niho sequences are special cases in Constructions I and III, and their restriction conditions to the integers m and n, pm≠ 2(mod 3) and n≡ 0 (mod 4), respectively, are removed in our sequences. Our sequences in Construction III include the sequences with Niho type decimation 32m-2, too. Finally, some open questions are pointed out and an example that illustrates the performance of these sequences is given.

  • Autonomous Community Construction Technology to Achieve Service Assurance in ADCS

    Khalid MAHMOOD  Xiaodong LU  Kinji MORI  

     
    PAPER

      Vol:
    E91-D No:9
      Page(s):
    2259-2266

    Autonomous Decentralized Community System (ADCS) makes its basis on offering customized and dynamic services to group of end-users having common preferences at specified time and location. Owing to extreme dynamism in the system caused by rapidly varying user's demands, and severe mobility of users, it is quite difficult to assure timely service provision to all community members. This paper presents autonomous decentralized community system construction by autonomous division and integration technologies to procure service assurance under dynamic situations, without involving significant communication overhead. By adopting the concept of size threshold, the proposed technique continuously maintains the appropriate size of community in constantly and rapidly changing operating environment, to deliver optimal quality of service in terms of response time. The effectiveness of proposed technology has been shown through simulation, which reveals remarkable improvement (up to 29%) in response time.

  • On Equalization for Direct Sequence-Ultra Wideband System Using Received Response Code Sequence

    Keat Beng TOH  Shin'ichi TACHIKAWA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E91-A No:9
      Page(s):
    2637-2645

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and Matched Filter-Equalizer-RAKE (MF-EQZ-RAKE) combining scheme receiver system for Direct Sequence-Ultra Wideband (DS-UWB) multipath channel model. When binary code sequence such as M sequence is used, there is a possibility of generating extra Inter-Symbol Interference (ISI) in the UWB system. Therefore, it is quite a challenging task to collect the energy efficiently although RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of Inter-Symbol Interference (ISI) during high speed transmission of ultra short pulses in a multipath channel. The proposed system improves the system performance by improving the RAKE reception performance using RR sequence and suppressing the ISI effect with the equalizer. Simulation results verify that significant improvement can be obtained by the proposed system especially in UWB multipath channel models such as channel CM4 that suffered severe ISI effect.

  • Remote Control for ROADMs in IP-over-CWDM Networks

    Osanori KOYAMA  Michio HASHIMOTO  Akira UENO  Yutaka KATSUYAMA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:9
      Page(s):
    2991-2993

    Remote control scheme for the ROADMs (Reconfigurable Optical Add/Drop Multilplexers) were designed, and 3 sets of the ROADM were manufactured for use in IP-over-CWDM networks. The control performance was examined, and lightpaths could be reconfigured successfully by the control.

  • On Backward-Style Anonymity Verification

    Yoshinobu KAWABE  Ken MANO  Hideki SAKURADA  Yasuyuki TSUKADA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:9
      Page(s):
    2597-2606

    Many Internet services and protocols should guarantee anonymity; for example, an electronic voting system should guarantee to prevent the disclosure of who voted for which candidate. To prove trace anonymity, which is an extension of the formulation of anonymity by Schneider and Sidiropoulos, this paper presents an inductive method based on backward anonymous simulations. We show that the existence of an image-finite backward anonymous simulation implies trace anonymity. We also demonstrate the anonymity verification of an e-voting protocol (the FOO protocol) with our backward anonymous simulation technique. When proving the trace anonymity, this paper employs a computer-assisted verification tool based on a theorem prover.

  • Highly-Permissible Alignment Tolerance of Back-Illuminated Photo-Diode Array Attached with a Self-Aligned Micro Ball Lens

    Kazuhiro NISHIDE  Kenji IKEDA  Xueliang SONG  Shurong WANG  Yoshiaki NAKANO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E91-C No:9
      Page(s):
    1472-1479

    Simulation and fabrication results on back-illuminated 4-channel photodiode (PD) array with a self-aligned micro ball lens are described. The channel pitch and diameter of each photosensitive area are 250 µm and 40 µm, respectively. Measured photocurrent is 1.92 times larger than that without a lens. Alignment tolerance between the single mode fiber (SMF) optical axis and the photodiode is improved from 21.2 µm to 42.7 µm. Moreover, the separation tolerance between the fiber and the lens is 210.5 µm. These large tolerances agree with simulation results, demonstrating that the device configuration is suitable for receivers for multi-channel inter-connection. Frequency response and inter-channel cross talk are also discussed.

  • Deterministic Polynomial Time Equivalence between Factoring and Key-Recovery Attack on Takagi's RSA

    Noboru KUNIHIRO  Kaoru KUROSAWA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2356-2364

    For RSA, May showed a deterministic polynomial time equivalence of computing d to factoring N(=pq). On the other hand, Takagi showed a variant of RSA such that the decryption algorithm is faster than the standard RSA, where N=prq while ed=1 mod(p-1)(q-1). In this paper, we show that a deterministic polynomial time equivalence also holds in this variant. The coefficient matrix T to which LLL algorithm is applied is no longer lower triangular, and hence we develop a new technique to overcome this problem.

  • Compression Function Design Principles Supporting Variable Output Lengths from a Single Small Function

    Donghoon CHANG  Mridul NANDI  Jesang LEE  Jaechul SUNG  Seokhie HONG  Jongin LIM  Haeryong PARK  Kilsoo CHUN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:9
      Page(s):
    2607-2614

    In this paper, we introduce new compression function design principles supporting variable output lengths (multiples of size n). They are based on a function or block cipher with an n-bit output size. In the case of the compression function with a(t+1)n-bit output size, in the random oracle and ideal cipher models, their maximum advantages from the perspective of collision resistance are . In the case of t=1, the advantage is near-optimal. In the case of t>1, the advantage is optimal.

  • A Compact Encoding of Rectangular Drawings with Efficient Query Supports

    Katsuhisa YAMANAKA  Shin-ichi NAKANO  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2284-2291

    A rectangular drawing is a plane drawing in which every face is a rectangle. In this paper we give a simple encoding scheme for rectangular drawings. Given a rectangular drawing R with maximum degree 3, our scheme encodes R with m + o(n) bits where n is the number of vertices of R and m is the number of edges of R. Also we give an algorithm to supports a rich set of queries, including adjacency and degree queries on the faces, in constant time.

  • An Optimal Parallel Algorithm for Constructing a Spanning Forest on Trapezoid Graphs

    Hirotoshi HONMA  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2296-2300

    Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. An optimal parallel algorithm for finding a spanning tree on the trapezoid graph is given by Bera et al., it takes O(log n) time with O(n/log n) processors on the EREW (Exclusive-Read Exclusive-Write) PRAM. Bera et al.'s algorithm is very simple and elegant. Moreover, it can correctly construct a spanning tree when the graph is connected. However, their algorithm can not accept a disconnected graph as an input. Applying their algorithm to a disconnected graph, Concurrent-Write occurs once for each connected component, thus this can not be achieved on EREW PRAM. In this paper we present an O(log n) time parallel algorithm with O(n/log n) processors for constructing a spanning forest on trapezoid graph G on EREW PRAM even if G is a disconnected graph.

  • On a Fast (k,n)-Threshold Secret Sharing Scheme

    Jun KURIHARA  Shinsaku KIYOMOTO  Kazuhide FUKUSHIMA  Toshiaki TANAKA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2365-2378

    In Shamir's (k,n)-threshold secret sharing scheme (threshold scheme)[1], a heavy computational cost is required to make n shares and recover the secret from k shares. As a solution to this problem, several fast threshold schemes have been proposed. However, there is no fast ideal (k,n)-threshold scheme, where k and n are arbitrary. This paper proposes a new fast (k,n)-threshold scheme which uses just EXCLUSIVE-OR(XOR) operations to make n shares and recover the secret from k shares. We prove that every combination of k or more participants can recover the secret, but every group of less than k participants cannot obtain any information about the secret in the proposed scheme. Moreover, the proposed scheme is an ideal secret sharing scheme similar to Shamir's scheme, in which every bit-size of shares equals that of the secret. We also evaluate the efficiency of the scheme, and show that our scheme realizes operations that are much faster than Shamir's.

  • Exploring Partitions Based on Search Space Smoothing for Heterogeneous Multiprocessor System

    Kang ZHAO  Jinian BIAN  Sheqin DONG  Yang SONG  Satoshi GOTO  

     
    PAPER-Electronic Circuits and Systems

      Vol:
    E91-A No:9
      Page(s):
    2456-2464

    Programming the multiprocessor system-on-chip (MPSoC) requires partitioning the sequential reference programs onto multiple processors running in parallel. However, designers still need to partition the code manually due to the lack of automated partition techniques. To settle this issue, this paper proposes a partition exploration algorithm based on the search space smoothing techniques, and implements the proposed method using a commercial extensible processor (Xtensa LX2 processor from Tensilica Inc.). We have verified the feasibility of the algorithm by implementing the MPEG2 benchmark on the Xtensa-based two-processor system. The final experimental results indicate a performance improvement of at least 1.6 compared to the single-processor system.

  • Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn

    Peng CHENG  Shigeru MASUYAMA  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2314-2321

    Let Ni be the number of connected spanning subgraphs with i(n-1 i m) edges in an n-vertex m-edge undirected graph G=(V,E). Although Nn-1 is computed in polynomial time by the Matrix-tree theorem, whether Nn is efficiently computed for a graph G is an open problem (see e.g., [2]). On the other hand, whether Nn2≥ Nn-1Nn+1 for a graph G is also open as a part of log concave conjecture (see e.g., [6],[12]). In this paper, for a complete graph Kn, we give the formulas for Nn, Nn+1, by which Nn, Nn+1 are respectively computed in polynomial time on n, and, in particular, prove Nn2> Nn-1Nn+1 as well.

  • Bandwidth Reallocation Strategy for Video Communications on NGN

    Bin SONG  Hao QIN  Chunfang GUO  Linhua MA  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:9
      Page(s):
    3037-3040

    Based on an estimation model of video subjective quality, a bandwidth reallocation strategy for video communications on NGN is presented. Experimental results show that the average PSNR of recovery video quality can be greatly increased by using the proposed method when the network bandwidth decreases.

9561-9580hit(20498hit)