The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

10161-10180hit(20498hit)

  • Proposal of an A/D Converter Clipping Noise Suppression Technique for High-Sensitivity Carrier-Sensing of Cognitive Radio Transceiver

    Tazuko TOMIOKA  Ren SAKATA  Tomoya HORIGUCHI  Takeshi TOMIZAWA  Kaoru INOUE  

     
    PAPER-Enabling Technology

      Vol:
    E91-B No:1
      Page(s):
    119-126

    A technique for suppressing the clipping noise of an analogue-to-digital converter (ADC) is proposed to realize a cognitive radio transceiver that offers high sensitivity carrier-sensing. When a large bandwidth cognitive radio transceiver performs carrier-sensing, it must receive a radio wave that includes many primary user transmissions. The radio wave may have high peak-to-average power ratio (PAPR) and clipping noise may be generated. Clipping noise becomes an obstacle to the achievement of high-sensitivity carrier-sensing. In the proposed technique, the original values of the samples clipped by an ADC are estimated by interpolation. Polynomial spline interpolation to the clipped signal is performed in the first step, and then SINC function interpolation is applied to the spline interpolated signal. The performance was evaluated using the signals with various PAPR. It has been found that suppression performance has a dependency on the number of samples clipped at once rather than on PAPR. Although there is an upper limit for the number of samples clipped at once that can be compensated with high accuracy, about 20 dB suppression of clipping noise was achieved with the medium degree of clipping.

  • An Analysis of an Optical Fiber with Two Inhomogeneous Sector Holes by Circular Fourier Expansion Method

    Shinichi FURUKAWA  Wataru SATOU  Takashi HINATA  Nao SHIMIZU  

     
    PAPER-Optical Fibers

      Vol:
    E91-C No:1
      Page(s):
    41-47

    In this paper, a fiber with two inhomogeneous sector holes around the core is proposed, and propagation characteristics of polarization maintaining region and single-polarization region are numerically analyzed by circular Fourier expansion method. In each case of the single-polarization region and the polarization maintaining region, a fiber is designed so as to satisfy the zero total dispersion at wavelength of 1.55 µm. Then, the single-polarization bandwidth for the single-polarization region and the modal birefringence for the polarization maintaining region are examined as the specific characteristics in each region. In addition, the power concentrating into the core region and distributions of Poynting vector is also discussed.

  • A Low Complexity MMSE Equalizer for OFDM Systems over Time-Varying Channels

    Shaoping CHEN  Guangfa DAI  Hongwen TANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    330-333

    A low complexity minimum mean squared error (MMSE) equalizer for orthogonal frequency division multiplexing (OFDM) systems over time-varying channels is presented. It uses a small matrix of dominant partial channel information and recursive calculation of matrix inverse to significantly reduce the complexity. Theoretical analysis and simulations results are provided to validate its significant performance or complexity advantages over the previously published MMSE equalizers.

  • Dual-Level LVDS Technique for Reducing Data Transmission Lines by Half in LCD Driver IC's

    Doo-Hwan KIM  Sung-Hyun YANG  Kyoung-Rok CHO  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:1
      Page(s):
    72-80

    This paper proposes a dual-level low voltage differential signaling (DLVDS) circuit aimed at low power consumption and reducing transmission lines for LCD driver IC's. We apply two-bit binary data to the DLVDS circuit as inputs, and then the circuit converts these two inputs into two kinds of fully differential signal levels. In the DLVDS circuit, two transmission lines are sufficient to transfer two-bit binary inputs while keeping the conventional LVDS features. The receiver recovers the original two-bit binary data through a level decoding circuit. The proposed circuit was fabricated using a commercial 0.25 µm CMOS technology. Under a 2.5 V supply voltage, the circuit shows a data rate of 1-Gbps/2-line and power consumption of 35 mW.

  • New Weakness in the Key-Scheduling Algorithm of RC4

    Toshihiro OHIGASHI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER-Symmetric Cryptography

      Vol:
    E91-A No:1
      Page(s):
    3-11

    In a key scheduling algorithm (KSA) of stream ciphers, a secret key is expanded into a large initial state. An internal state reconstruction method is known as a general attack against stream ciphers; it recovers the initial state from a given pair of plaintext and ciphertext more efficiently than exhaustive key search. If the method succeeds, then it is desirable that the inverse of KSA is infeasible in order to avoid the leakage of the secret key information. This paper shows that it is easy to compute a secret key from an initial state of RC4. We propose a method to recover an -bit secret key from only the first bits of the initial state of RC4 using linear equations with the time complexity less than that of one execution of KSA. It can recover the secret keys of which number is 2103.6 when the size of the secret key is 128 bits. That is, the 128-bit secret key can be recovered with a high probability when the first 128 bits of the initial state are determined using the internal state reconstruction method.

  • A Query System for Texts with Macros

    Keehang KWON  Dae-Seong KANG  Jinsoo KIM  

     
    LETTER-Automata and Formal Language Theory

      Vol:
    E91-D No:1
      Page(s):
    145-147

    We propose a query language based on extended regular expressions. This language extends texts with text-generating macros. These macros make it possible to define languages in a compressed, elegant way. This paper also extends queries with linear implications and additive (classical) conjunctions. To be precise, it allows goals of the form D —ο G and G1&G2 where D is a text or a macro and G is a query. The first goal is solved by adding D to the current text and then solving G. This goal is flexible in controlling the current text dynamically. The second goal is solved by solving both G1 and G2 from the current text. This goal is particularly useful for internet search.

  • Invisibly Sanitizable Digital Signature Scheme

    Kunihiko MIYAZAKI  Goichiro HANAOKA  Hideki IMAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:1
      Page(s):
    392-402

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  • RK-Means Clustering: K-Means with Reliability

    Chunsheng HUA  Qian CHEN  Haiyuan WU  Toshikazu WADA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:1
      Page(s):
    96-104

    This paper presents an RK-means clustering algorithm which is developed for reliable data grouping by introducing a new reliability evaluation to the K-means clustering algorithm. The conventional K-means clustering algorithm has two shortfalls: 1) the clustering result will become unreliable if the assumed number of the clusters is incorrect; 2) during the update of a cluster center, all the data points belong to that cluster are used equally without considering how distant they are to the cluster center. In this paper, we introduce a new reliability evaluation to K-means clustering algorithm by considering the triangular relationship among each data point and its two nearest cluster centers. We applied the proposed algorithm to track objects in video sequence and confirmed its effectiveness and advantages.

  • A Model of Computation for Bit-Level Concurrent Computing and Programming: APEC

    Takashi AJIRO  Kensei TSUCHIDA  

     
    PAPER-Fundamentals of Software and Theory of Programs

      Vol:
    E91-D No:1
      Page(s):
    1-14

    A concurrent model of computation and a language based on the model for bit-level operation are useful for developing asynchronous and concurrent programs compositionally, which frequently use bit-level operations. Some examples are programs for video games, hardware emulation (including virtual machines), and signal processing. However, few models and languages are optimized and oriented to bit-level concurrent computation. We previously developed a visual programming language called A-BITS for bit-level concurrent programming. The language is based on a dataflow-like model that computes using processes that provide serial bit-level operations and FIFO buffers connected to them. It can express bit-level computation naturally and develop compositionally. We then devised a concurrent computation model called APEC (Asynchronous Program Elements Connection) for bit-level concurrent computation. This model enables precise and formal expression of the process of computation, and a notion of primitive program elements for controlling and operating can be expressed synthetically. Specifically, the model is based on a notion of uniform primitive processes, called primitives, that have three terminals and four ordered rules at most, as well as on bidirectional communication using vehicles called carriers. A new notion is that a carrier moving between two terminals can briefly express some kinds of computation such as synchronization and bidirectional communication. The model's properties make it most applicable to bit-level computation compositionally, since the uniform computation elements are enough to develop components that have practical functionality. Through future application of the model, our research may enable further research on a base model of fine-grain parallel computer architecture, since the model is suitable for expressing massive concurrency by a network of primitives.

  • Backward Channel Protection Based on Randomized Tree-Walking Algorithm and Its Analysis for Securing RFID Tag Information and Privacy

    Wonjoon CHOI  Myungchul YOON  Byeong-hee ROH  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E91-B No:1
      Page(s):
    172-182

    Eavesdropping on backward channels in RFID environments may cause severe privacy problems because it means the exposure of personal information related to tags that each person has. However, most existing RFID tag security schemes are focused on the forward channel protections. In this paper, we propose a simple but effective method to solve the backward channel eavesdropping problem based on Randomized-tree walking algorithm for securing tag ID information and privacy in RFID-based applications. In order to show the efficiency of the proposed scheme, we derive two performance models for the cases when CRC is used and not used. It is shown that the proposed method can lower the probability of eavesdropping on backward channels near to '0.'

  • Security Evaluations of MRSL and DRSL Considering Signal Delays

    Minoru SAEKI  Daisuke SUZUKI  

     
    PAPER-Side Channel Attacks

      Vol:
    E91-A No:1
      Page(s):
    176-183

    In recent years, some countermeasures have been proposed against differential power analysis (DPA) at the basic composition element level of logic circuits. We propose a countermeasure named random switching logic (RSL). RSL involves computation with data masking using a single logic gate and suppression of transient transitions using ENABLE signals generated independently of input data. Recently, some countermeasures that were proposed against DPA, such as MRSL and DRSL, adopted the concept of RSL. Although MRSL is based on RSL, it uses a different method to suppress the transient transitions. DRSL uses RSL to avoid the possibility of leakage caused by a difference in delays occurring in MDPL that combines dual-rail circuits with random masking. The important difference between these countermeasures and RSL is that they can vary the output transition timing depending on the input data patterns. In this paper, we focus on this feature to evaluate the DPA resistance of MRSL and DRSL. Experiments are also conducted on DPA resistance by using an FPGA to verify the evaluation results. It is confirmed that in both MRSL and DRSL, there is a possibility of leakage if a sufficient difference in delays exists in input signals.

  • Low Insertion-Loss, and Wideband Dual-Mode Bandpass Filters with Dual Perturbation Elements

    Shih-Bin JHONG  Min-Hang WENG  Sean WU  Cheng-Yuan HUNG  Maw-Shung LEE  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:1
      Page(s):
    117-119

    A novel low insertion-loss and wideband microstrip bandpass filter has been designed and tested. The basic configuration of this novel dual-mode filter is a square ring resonator with direct-connected orthogonal feed lines, and dual-perturbation elements are introduced within the resonator at symmetrical location. The effects of the size of the perturbation element are studied. A new filter having wider bandwidth and transmission zeros are presented. The proposed filter responses are in good agreement with the simulations and experiments.

  • Blind CMA-Based Asynchronous Multiuser Detection Using Generalized Sidelobe Canceller with Decision Feedback

    Ann-Chen CHANG  Chih-Wei JEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    376-380

    This letter deals with blind multiuser detection based on the multi-channel linearly constrained constant modulus algorithm (MLCCMA) for asynchronous code division multiple access (CDMA) systems over frequency-selective Rayleigh fading channels. In conjunction with the decision-feedback generalized sidelobe canceller (DFGSC), we present an efficient approach to combat multiple access interference and intersymbol interference. Computer simulations confirm that the proposed MLCCMA-based DFGSC can significantly speed up convergence and improve the output performance.

  • Low Grazing Scattering from Sinusoidal Neumann Surface with Finite Extent: Total Scattering Cross Section

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:1
      Page(s):
    56-63

    This paper deals with the scattering of a transverse magnetic (TM) plane wave from a perfectly conductive sinusoidal surface with finite extent. By use of the undersampling approximation and a rectangular pulse approximation, an asymptotic formula for the total scattering cross section at a low grazing limit of incident angle is obtained explicitly under conditions such that the surface is small in roughness and slope, and the corrugation width is sufficiently large. The formula shows that the total scattering cross section is proportional to the square root of the corrugation width but does not depend on the surface period and surface roughness. When the corrugation width is not large, however, the scattered wave can be obtained by a single scattering approximation, which gives the total scattering cross section proportional to the corrugation width and the Rayleigh slope parameter. From the asymptotic formula and the single scattering solution, a transition point is defined explicitly. By comparison with numerical results, it is concluded that the asymptotic formula is fairly accurate when the corrugation width is much larger than the transition point.

  • Visual Tracking in Occlusion Environments by Autonomous Switching of Targets

    Jun-ichi IMAI  Masahide KANEKO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:1
      Page(s):
    86-95

    Visual tracking is required by many vision applications such as human-computer interfaces and human-robot interactions. However, in daily living spaces where such applications are assumed to be used, stable tracking is often difficult because there are many objects which can cause the visual occlusion. While conventional tracking techniques can handle, to some extent, partial and short-term occlusion, they fail when presented with complete occlusion over long periods. They also cannot handle the case that an occluder such as a box and a bag contains and carries the tracking target inside itself, that is, the case that the target invisibly moves while being contained by the occluder. In this paper, to handle this occlusion problem, we propose a method for visual tracking by a particle filter, which switches tracking targets autonomously. In our method, if occlusion occurs during tracking, a model of the occluder is dynamically created and the tracking target is switched to this model. Thus, our method enables the tracker to indirectly track the "invisible target" by switching its target to the occluder effectively. Experimental results show the effectiveness of our method.

  • Asymptotic Performance Analysis of Orthogonal Space-Time Block Codes in Spatially Correlated Rician Fading Channel

    Kyung Seung AHN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:1
      Page(s):
    426-429

    In this letter, we analyze symbol error probability (SEP) and diversity gain of orthogonal space-time block codes (OSTBCs) in spatially correlated Rician fading channel. We derive the moment generating function (MGF) of an effective signal-to-noise ratio (SNR) at the receiver and use it to derive the SEP for M-PSK modulation. We use this result to show that the diversity gain is achieved by the product of the rank of the transmit and receive correlation matrix, and the loss in array gain is quantified as a function of the spatial correlation and the line of sight (LOS) component.

  • Low Complexity Fano-Based Detection Algorithm with Iterative Structure for V-BLAST Systems

    Jongsub CHA  Hyoungsuk JEON  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    347-350

    We present a computationally efficient Fano detection algorithm with an iterative structure for V-BLAST systems. As our previous work, we introduced a Fano-based sequential detection scheme with three interrelated steps whose computational loads are excessive. To deal with the computational inefficiency, the proposed algorithm is redesigned by the addition of two steps: preparation and iterative tree searching. In particular, it employs an early stop technique to avoid the unnecessary iteration or to stop the needless searching process of the algorithm. Computer simulation shows that the proposed scheme yields significant saving in complexity with very small performance degradation, compared with sphere detection (SD).

  • Estimating Periodic Software Rejuvenation Schedules under Discrete-Time Operation Circumstance

    Kazuki IWAMOTO  Tadashi DOHI  Naoto KAIO  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:1
      Page(s):
    23-31

    Software rejuvenation is a preventive and proactive solution that is particularly useful for counteracting the phenomenon of software aging. In this article, we consider periodic software rejuvenation models based on the expected cost per unit time in the steady state under discrete-time operation circumstance. By applying the discrete renewal reward processes, we describe the stochastic behavior of a telecommunication billing application with a degradation mode, and determine the optimal periodic software rejuvenation schedule minimizing the expected cost. Similar to the earlier work by the same authors, we develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule, by applying the discrete total time on test concept. Numerical examples are presented to estimate the optimal software rejuvenation schedules from the simulation data. We discuss the asymptotic behavior of estimators developed in this paper.

  • Batch Processing for Proofs of Partial Knowledge and Its Applications

    Koji CHIDA  Go YAMAMOTO  

     
    PAPER-Protocols

      Vol:
    E91-A No:1
      Page(s):
    150-159

    This paper presents batch processing protocols for efficiently proving a great deal of partial knowledge. These protocols reduce the computation and communication costs for a MIX-net and secure circuit evaluation. The efficiency levels of the proposed protocols are estimated based on the implementation results of a secure circuit evaluation with batch processing.

  • Joint Tomlinson-Harashima Precoding and Frequency-Domain Equalization for Broadband Single-Carrier Transmission

    Kazuki TAKEDA  Hiromichi TOMEBA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    258-266

    The performance of single-carrier (SC) transmission in a frequency-selective fading channel degrades due to a severe inter-symbol interference (ISI). Using frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can improve the bit error rate (BER) performance of SC transmission. However, the residual ISI after FDE limits the performance improvement. In this paper, we propose a joint use of Tomlinson-Harashima precoding (THP) and FDE to remove the residual ISI. An approximate conditional BER analysis is presented for the given channel condition. The achievable average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER. The BER analysis is confirmed by computer simulation of the signal transmission.

10161-10180hit(20498hit)