The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

11421-11440hit(16314hit)

  • Use of Montgomery Trick in Precomputation of Multi-Scalar Multiplication in Elliptic Curve Cryptosystems

    Katsuyuki OKEYA  Kouichi SAKURAI  

     
    PAPER-Asymmetric Ciphers

      Vol:
    E86-A No:1
      Page(s):
    98-112

    We develop efficient precomputation methods of multi-scalar multiplication on ECC. We should recall that multi-scalar multiplication is required in some elliptic curve cryptosystems including the signature verification of ECDSA signature scheme. One of the known fast computation methods of multi-scalar multiplication is a simultaneous method. A simultaneous method consists of two stages; precomputation stage and evaluation stage. Precomputation stage computes points of precomputation, which are used at evaluation stage. Evaluation stage computes multi-scalar multiplication using precomputed points. In the evaluation stage of simultaneous methods, we can compute the multi-scalar multiplied point quickly because the number of additions is small. However, if we take a large window width, we have to compute an enormous number of points in precomputation stage. Hence, we have to compute an abundance of inversions, which have large computational amount. As a result, precomputation stage requires much time, as well known. Our proposed method reduces from O(22w) inversions to O(w) inversions for a window width w, using Montgomery trick. In addition, our proposed method computes uP and vQ first, then compute uP+vQ, where P,Q are elliptic points. This procedure enables us to remove unused points of precomputation. Compared with the method without Montgomery trick, our proposed method is 3.6 times faster in the case of the precomputation stage for simultaneous sliding window NAF method with window width w=3 and 160-bit scalars under the assumption that I/M=30, S/M=0.8, where I,M,S respectively denote computational amounts of inversion, multiplication and squaring on a finite field.

  • Symbol-by-Symbol Based Multilevel Transmit Power Control for OFDM Based Adaptive Modulation under High Mobility Terminal Conditions

    Tomoaki YOSHIKI  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    230-237

    This paper proposes a symbol-by-symbol-based multilevel transmit power control (MTPC) scheme for orthogonal frequency division multiplexing (OFDM) based adaptive modulation system (AMS) to achieve high quality broadband wireless transmission for high mobility terminals. In the proposed system, delay profile for each OFDM symbol is estimated by linearly extrapolating previously received delay profile information (DPI) sequence to improve tracking ability of OFDM based AMS with MTPC to the fast fading variation. Moreover, 2-branch reception diversity is applied to reduce dynamic range and variation speed of the multipath fading. Computer simulation confirms that the proposed system is effective in supporting higher mobility terminals with keeping high transmission quality.

  • The Optimum Channel Estimation for Coherent Receivers in Multicarrier CDMA System with Antenna Array

    Masahiro FUJII  Rie SHIMIZU  Makoto ITAMI  Kohji ITOH  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    365-374

    It is well known that diversity performance of communication systems using signals with high dimensions in time, frequency and/or spatial domains depends on correlation of the channel characteristics along signal dimensions. On the other hand, it has not been payed due attention how the coherent receiver which combines the signals is greatly affected by the erroneous channel estimation which can undermine the diversity gain. In this paper, assuming that the estimator is given the a priori probability of the channel characteristics, we propose an optimum estimation scheme based on MAP criterion, in an uplink-MC/CDMA system on channels with frequency selective fading, with an array of antennas at the receiver. The MAP estimator effectively takes into account the correlation of the channel characteristics that the conventional estimator neglects. We also propose a signal design in pilot symbol periods that enables the receiver to separately obtain the sufficient statistic for estimating the channel characteristics without MAI. Using computer simulation, we obtained MSE error performances of the proposed estimator compared with the conventional estimator and their effect on BER performances of the diversity combining receiver. It was observed that using the conventional estimator for combining greater number of signals than the effective channel dimension deteriorated the BER performance while using the proposed estimator kept the optimum performance just as the error-free estimator did. Also obtained for MC/CDMA systems are BER performances of the single user matched filter and MMSE receivers using the proposed and the conventional estimators. A considerable improvement of the MMSE performance was achieved owing to the optimum estimator. It remains for the a priori probability of the channel characteristics to be properly assumed and dealt with in sequential estimation.

  • Software Obfuscation on a Theoretical Basis and Its Implementation

    Toshio OGISO  Yusuke SAKABE  Masakazu SOSHI  Atsuko MIYAJI  

     
    PAPER-Protocols etc.

      Vol:
    E86-A No:1
      Page(s):
    176-186

    Software obfuscation is a promising approach to protect intellectual property rights and secret information of software in untrusted environments. Unfortunately previous software obfuscation techniques share a major drawback that they do not have a theoretical basis and thus it is unclear how effective they are. Therefore we propose new software obfuscation techniques in this paper. The techniques are based on the difficulty of interprocedural analysis of software programs. The essence of our obfuscation techniques is a new complexity problem to precisely determine the address a function pointer points to in the presence of arrays of function pointers. We show that the problem is NP-hard and the fact provides a theoretical basis for our obfuscation techniques. Furthermore, we have already implemented a prototype tool that obfuscates C programs according to our proposed techniques and in this paper we describe the implementation and discuss the experiments results.

  • Call Admission Control Using Differentiated Outage Probabilities in Multimedia DS-CDMA Networks with Imperfect Power Control

    Tao SHU  Zhisheng NIU  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    16-24

    A key problem under imperfect power control in multimedia DS-CDMA networks is how to guarantee the differentiated outage probabilities of different traffic classes resulted from the uncertainty of received powers. In addition, in order to utilize the scarce wireless resource efficiently, as many users as possible should be admitted into the network while providing guaranteed quality-of-service support for them. In this work, a call admission control scheme, Differentiated Outage Probabilities CAC or DOP-CAC, is proposed to achieve the above goals for imperfectly power-controlled multimedia CDMA networks. Two important features of CDMA systems are considered in our scheme: one is the power multiplexing among bursty traffics and the other is the power allocation scheme employed at the physical layer. The validity and efficiency of DOP-CAC are verified by numerical examples. Two power allocation schemes, Limited Optimal Power Allocation (LOPA) proposed in [3] and Quasi-Optimal Power Allocation (QOPA) we proposed in [6], are considered respectively and compared in the performance evaluation of DOP-CAC. The results show that DOP-CAC achieves much better resource utilization under QOPA than it does under LOPA. By employing QOPA at the physical layer and DOP-CAC at the link layer, our work suggests a high efficiency solution for QoS support of multimedia traffic under imperfect power control environment.

  • A Cyclic Window Algorithm for Elliptic Curves over OEF

    Tetsutaro KOBAYASHI  Fumitaka HOSHINO  Kazumaro AOKI  

     
    PAPER-Asymmetric Ciphers

      Vol:
    E86-A No:1
      Page(s):
    121-128

    This paper presents a new sliding window algorithm that is well-suited to an elliptic curve defined over an extension field for which the Frobenius map can be computed quickly, e.g., optimal extension field. The algorithm reduces elliptic curve group operations by approximately 15% for scalar multiplications for a practically used curve in compared to Lim-Hwang's results presented at PKC2000, which was the fastest previously reported. The algorithm was implemented on computers. Scalar multiplication can be accomplished in 573 µs, 595 µs, and 254 µs on Pentium II (450 MHz), 21164A (500 MHz), and 21264 (500 MHz) computers, respectively.

  • A Secure Multisignature Scheme with Signing Order Verifiability

    Mitsuru TADA  

     
    PAPER-Symmetric Ciphers and Hash Functions

      Vol:
    E86-A No:1
      Page(s):
    73-88

    In an order-specified multisignature scheme, one can verify not only a set of signers who have signed the message but also its signing order. Though we have seen several schemes with such properties proposed, none of them is given the security proof against active adversaries. The scheme can be easily modified to be an order-specified multisignature scheme, but still has the restriction that the possible signing orders are only ones of the type of serial signing. In this paper, we propose the first order-specified multisignature scheme, which is shown to be secure against adaptive chosen-message insider attacks in the random oracle model, and which allows the signing orders to form like any series-parallel graphs. The security is shown by using ID-reduction technique, which reduces the security of multisignature schemes to those of multi-round identification schemes. Furthermore, we discuss the efficiency of the proposed scheme and the upper bound of the possible number of participating signers.

  • On Window-Based Congestion Control with Explicit Congestion Notification

    Hee-Jung BYUN  Jong-Tae LIM  

     
    PAPER-Network

      Vol:
    E86-B No:1
      Page(s):
    421-427

    Explicit Congestion Notification (ECN) supports the binary congestion information of the network for adjusting the window size. However, this results in the oscillation of the window size and the queue length due to the insufficient congestion information. In this paper, we propose the window-based congestion control mechanism with the modified ECN mechanism. The proposed scheme is based on extracting the network status from the consecutive binary congestion information provided by ECN. From the explicit network information, we estimate the allowable window size to achieve better performance. Through the simulations, the effectiveness of the proposed algorithm is shown as compared with the ECN algorithm.

  • Radio Channel Spatial Propagation Model for Mobile 3G in Smart Antenna Systems

    Angel ANDRADE  David COVARRUBIAS  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    213-220

    Array antennas are employed at the receiver for a variety of purposes such as to combat fading or to reduce co-channel interference. To evaluate the performance of a wireless communications system using antenna arrays it becomes necessary to have spatial channel models that describe the Angle of Arrival (AOA), Time of Arrival (TOA) and the Angle Spread (AS) of the multipath components. Among the most widely used radio propagation models is the single bounce scattering geometric model, where propagation between the transmitting and receiving antennas is assumed to take place via single scattering from an intervening obstacle. Currently, several geometric models are available such as circular and elliptical scattering models, with each model being applicable to a specific environment type. This paper addresses the modeling, simulation and evaluation of the angle spread in smart antenna systems taking into account the Gaussian density model, and proves that the model finds use both in a micro cell as well as in a macro cell environment. Moreover, we show statistics for the angle and time of arrival.

  • Robust Digital Signature Scheme with Subliminal Channels

    Narn-Yih LEE  Dai-Rui LIN  

     
    LETTER

      Vol:
    E86-A No:1
      Page(s):
    187-188

    Jan and Tseng, in 1999, proposed two efficient digital signature schemes with subliminal channels. However, we show that a malicious subliminal receiver can forge subliminal messages that will be accepted by other subliminal receivers in Jan and Tseng's two schemes. Moreover, we also present a modification of Jan and Tseng's schemes to repair the security flaw.

  • An Adaptive MSINR Filter for Co-channel Interference Suppression in DS/CDMA Systems

    Yutaro MINAMI  Kohei OTAKE  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:1
      Page(s):
    235-243

    Many types of adaptive algorithms based on the MMSE criterion for co-channel interference suppression in DS/CDMA systems have been studied in great detail. However, these algorithms have such a problem that the training speed is greatly dropped under the strong near-far problem. In this paper, we propose and analyze an adaptive filter based on the Maximum Signal to Interference and Noise Ratio (MSINR) criterion, called adaptive MSINR filter. This filter is basically equivalent to the adaptive filter based on the MMSE criterion. However, due to the structual difference, the convergence speed is greatly improved. Specifically, the de-spreading vector in this filter is so renewed as to maximize the Signal to Interference and Noise Ratio (SINR) by minimizing the de-spread interference and noise power under the condition that the de-spread desired signal power keeps constant. So the proposed filter uses the estimated interference and noise signal calculated by subtracting the estimated desired signal from the received signal. It is just the reason why the adaptive MSINR filter shows remarkable convergence speed. And to satisfy the constant signal power condition, the projection matrix onto the orthogonal complement of the desired signal space is used for the de-spreading vector. For the proposed filter, we analyze the convergence modes and also investigate the de-spread interfernce and noise power for calculating the theoretical SINR curve. Then, we conduct some computer simulations in order to show the difference between this filter and the conventional one in terms of the SINR convergence speed. As the result, we confirm that the adaptive filter based on the MSINR criterion achieves significant progress in terms of the SINR convergence speed.

  • An Adaptive Channel Access Control Method for CDMA/PRMA

    Seok Youl KANG  Kwang Ho KOOK  Kang Won LEE  Hyunsoo YOON  Jung Wan CHO  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    3-15

    An adaptive channel access control method for CDMA/PRMA protocol is proposed. The proposed method utilizes a load and backlog based access control. Dynamic optimal channel loads by which the required packet loss probability can be satisfied are obtained. The number of contending terminals is also estimated more accurately, using statistical characteristics of source models. Permission probability is then calculated based on the dynamic optimal channel load and the estimated number of contending terminals such that the mean channel load (the mean number of packets transmitted in each time slot) can be maintained at the optimal channel load. By maintaining the mean channel load at the dynamic optimal channel load, the radio channel can be very effectively utilized, satisfying the required packet loss probability. A backlog based data transmission using a mixed mode of contention and reservation mode is also proposed to reduce redundant contention and corruption. Simulations are carried out in an isolated cell environment and a cellular environment. The simulation results show that the system capacity can be improved significantly by the proposed method compared with the conventional permission control methods.

  • Capacity Optimization by Using Cancellation-Error-Ascending Decoding Order in Multimedia CDMA Networks with Imperfect Successive Interference Cancellation

    Tao SHU  Zhisheng NIU  

     
    LETTER

      Vol:
    E86-B No:1
      Page(s):
    375-379

    We study the influence of decoding order on the capacity of multimedia DS-CDMA system employing imperfect successive interference cancellation. We prove that the capacity is maximized by decoding users according to the ascending order of cancellation errors. We also prove that this capacity-optimal decoding order makes total residual interference minimum at the same time.

  • Circuit Simulation Study for Characterization of High-Temperature Superconducting Sigma-Delta Modulator with 100 GHz Sampling

    Kazuo SAITOH  Futoshi FURUTA  Yoshihisa SOUTOME  Tokuumi FUKAZAWA  Kazumasa TAKAGI  

     
    INVITED PAPER-HTS Digital Applications

      Vol:
    E86-C No:1
      Page(s):
    24-29

    The capability of a high-temperature superconducting sigma-delta modulator was studied by means of circuit simulation and FFT analysis. Parameters for the circuit simulation were extracted from experimental measurements. The present circuit simulation includes thermal-noise effect. Successive FFT analyses were made to evaluate the dynamic range of the sigma-delta modulator. As a result, the dynamic range was evaluated as 60.1 dB at temperature of 20 K and 56.9 dB at temperature of 77 K.

  • Measurement of Polarization Mode Dispersion (PMD) with a Multiwavelength Fiber Laser

    Shinji YAMASHITA  Teruyuki BABA  Yoshinori NAMIHIRA  

     
    PAPER-Optoelectronics

      Vol:
    E86-C No:1
      Page(s):
    59-62

    We propose and demonstrate a novel method to measure the polarization mode dispersion (PMD) of optical devices. The device under test (DUT) is installed in a fiber laser cavity which can operate at multiwavelength. PMD can be evaluated by the wavelength spacing of the multiwavelength laser output spectrum. In our method, the maximum extrema wavelength is easier to be identified than in the conventional fixed-analyzer (FA) method. We measure the PMD of polarization maintaining fibers (PMFs) and the ITU-T round robin KDD samples.

  • Analysis of the Operation Modes of an RF-Field-Driven DC-SQUID

    Yoshinao MIZUGAKI  Keiji SUGI  

     
    PAPER-SQUIDs

      Vol:
    E86-C No:1
      Page(s):
    55-58

    Analysis of the operation modes of an RF-Field-Driven DC-SQUID (RFDS) is presented. We numerically calculate the current-voltage characteristics (IVC) of the RFDS, where the RF signal is coupled to the SQUID loop magnetically. Under no DC offset flux, the IVC exhibit the enhancement of the even-order steps. We first evaluate the dependence of the maximum 2nd step height of the RFDS upon frequency. Contrary to the results for a single junction, the RFDS maintains its step height at a certain value in the low frequency region. The maintained values of the maximum step height are dependent on βL. The smaller βL is, the larger the maximum step height becomes. Next, we evaluate the dependence of the current positions of the 2nd step upon the amplitude of the RF signal. Under the low frequency condition, the current positions agree with the interference patterns of the SQUID, which means that the operation of the RFDS is based on the quantum transitions in the SQUID loop. Under the high frequency condition, on the other hand, the current positions agree with the results for the single junction, which means that the quantum transitions does not follow the RF signal and that the RFDS behaves like a single junction.

  • Simultaneous Subtitling System for Broadcast News Programs with a Speech Recognizer

    Akio ANDO  Toru IMAI  Akio KOBAYASHI  Shinich HOMMA  Jun GOTO  Nobumasa SEIYAMA  Takeshi MISHIMA  Takeshi KOBAYAKAWA  Shoei SATO  Kazuo ONOE  Hiroyuki SEGI  Atsushi IMAI  Atsushi MATSUI  Akira NAKAMURA  Hideki TANAKA  Tohru TAKAGI  Eiichi MIYASAKA  Haruo ISONO  

     
    INVITED PAPER

      Vol:
    E86-D No:1
      Page(s):
    15-25

    There is a strong demand to expand captioned broadcasting for TV news programs in Japan. However, keyboard entry of captioned manuscripts for news program cannot keep pace with the speed of speech, because in the case of Japanese it takes time to select the correct characters from among homonyms. In order to implement simultaneous subtitled broadcasting for Japanese news programs, a simultaneous subtitling system by speech recognition has been developed. This system consists of a real-time speech recognition system to handle broadcast news transcription and a recognition-error correction system that manually corrects mistakes in the recognition result with short delay time. NHK started simultaneous subtitled broadcasting for the news program "News 7" on the evening of March 27, 2000.

  • Approximate Maximum Likelihood Source Separation Using the Natural Gradient

    Seungjin CHOI  Andrzej CICHOCKI  Liqing ZHANG  Shun-ichi AMARI  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:1
      Page(s):
    198-205

    This paper addresses a maximum likelihood method for source separation in the case of overdetermined mixtures corrupted by additive white Gaussian noise. We consider an approximate likelihood which is based on the Laplace approximation and develop a natural gradient adaptation algorithm to find a local maximum of the corresponding approximate likelihood. We present a detailed mathematical derivation of the algorithm using the Lie group invariance. Useful behavior of the algorithm is verified by numerical experiments.

  • A Three-Dimensional Distributed Source Modeling and Direction of Arrival Estimation Using Two Linear Arrays

    Seong-Ro LEE  Myeong-Soo CHOI  Man-Won BANG  Iickho SONG  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:1
      Page(s):
    206-214

    A number of results on the estimation of direction of arrival have been obtained based on the assumption that the signal sources are point sources. Recently, it has been shown that signal source localization can be accomplished more adequately with distributed source models in some real surroundings. In this paper, we consider modeling of three-dimensional distributed signal sources, in which a source location is represented by the center angles and degrees of dispersion. We address estimation of the elevation and azimuth angles of distributed sources based on the proposed distributed source modeling in the three-dimensional space using two linear arrays. Some examples are included to more explicitly show the estimation procedures under the model: numerical results obtained by a MUSIC-based method with two uniform linear arrays are discussed.

  • Comparison between an AND Array and a Booth Encoder for Large-Scale Phase-Mode Multipliers

    Yohei HORIMA  Itsuhei SHIMIZU  Masayuki KOBORI  Takeshi ONOMI  Koji NAKAJIMA  

     
    PAPER-LTS Digital Application

      Vol:
    E86-C No:1
      Page(s):
    16-23

    In this paper, we describe two approaches to optimize the Phase-Mode pipelined parallel multiplier. One of the approaches is reforming a data distribution for an AND array, which is named the hybrid structure. Another method is applying a Booth encoder as a substitute of the AND array in order to generate partial products. We design a 2-bit 2-bit Phase-Mode Booth encoder and test the circuit by the numerical simulations. The circuit consists of 21 ICF gates and operates correctly at a throughput of 37.0 GHz. The numbers of Josephson junctions and the pipelined stages in each scale of multipliers are reduced remarkably by using the encoder. According to our estimations, the Phase-Mode Booth encoder is the effective component to improve the performance of large-scale parallel multipliers.

11421-11440hit(16314hit)