The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time spread PPM(2hit)

1-2hit
  • Symbol Error Probability of Time Spread PPM Signals in the Presence of Co-channel Interference

    Jinsong DUAN  Ikuo OKA  Chikato FUJIWARA  

     
    PAPER-Communication Theory

      Vol:
    E81-B No:1
      Page(s):
    66-72

    Time spread (TS) pulse position modulation (PPM) signals have been proposed for CDMA applications, where the envelope detection is employed instead of coherent detection for easier synchronization of PPM. In this paper, a new method of deriving symbol error probability (SEP) of TS PPM signals in the presence of interference is introduced. The analysis is based on the moment technique. The maximum entropy criterion for estimating an unknown probability density function (PDF) from its moments is applied to the evaluation of PDF of envelope detector output. Numerical results of SEP are shown for 4, 8 and 16PPM in the practical range of signal-to-noise power ratio (SNR) and signal-to-interference power ratio (SIR) of 5, 10 and 20 dB. SEP by the union bound is also given for comparison. From the results it is noted that when PPM multilevel number is small, the union bound goes near to SEP by the proposed method, but when it increases the difference of the SEP by the bound and proposed method becomes larger. The effect of central frequency offset of TS-filter is evaluated as an illustrative example.

  • Bit Error Probability and Throughput Performance of Time Spread PPM/CDMA Systems

    Xuping ZHOU  Ikuo OKA  Chikato FUJIWARA  

     
    PAPER

      Vol:
    E75-A No:12
      Page(s):
    1696-1701

    A model for time spread-pulse position modulation (TS-PPM)/code division multiple access (CDMA) systems is presented. A TS signal is produced by a TS-filter, whose characteristic is a pseudonoise sequence in frequency domain. The error probability performance is analyzed and compared with those of on-off keying (OOK) and binary phase shift keying (BPSK). It is shown that at the same transmission speed TS-PPM is superior to TS-OOK and TS-BPSK due to the dramatic decrease of multiple access interference. The throughput of the network is analyzed, and its relation to the length of pseudonoise sequence and the packet length is also discussed.