2638

IEICE TRANS. COMMUN., VOL.E90-B, NO.10 OCTOBER 2007

| PAPER Special Section on New Challenge for Internet Technology and its Architecture |

Detecting and Guarding against Kernel Backdoors through Packet

Flow Differentials

SUMMARY In this paper, we present a novel technique to detect and
defeat kernel backdoors which cannot be identified by conventional secu-
rity solutions. We focus on the fact that since the packet flows of common
network applications go up and down through the whole network subsys-
tem but kernel backdoors utilize only the lower layers of the subsystem,
we can detect kernel backdoors by employing two host-based monitoring
sensors (one at higher layer and the other at lower layer) and by inspecting
the packet flow differentials. We also provide strategies to mitigate false
positives and negatives and to defeat kernel backdoors. To evaluate the ef-
fectiveness of the proposed technique, we implemented a detection system
(KbGuard) and performed experiments in a simulated environment. The
evaluation results indicate that our approach can effectively detect and de-
activate kernel backdoors with a high detection rate. We also believe that
our research can help prevent stealthy threats of kernel backdoors.

key words: kernel-mode backdoors, rootkits, backdoors, network monitor-
ing

1. Introduction

The explosive growth of the Internet helps people easily ac-
cess remote information by clicking on the mouse. Mean-
while, it also increases the possibility that someone steals
others’ information. In fact, many attackers have stolen
sensitive information using the backdoor which can enable
the attackers to access compromised systems without legit-
imate authentication [1], [2], [21]. Moreover, today’s back-
door shows its characteristics for evading Intrusion Detec-
tion Systems (IDSs) and hiding not only itself but also its
communication channels [12], [13], [24] as shown in cases
of Backdoor-ALI [14], SAdoor [18], yyt_hac’s ntrootkit [25]
and NTrootkit [8], [9].

The backdoor can run in either user-mode or kernel-
mode in the view of its running level [17]. A user-mode
backdoor can be easily detected by traditional anti-virus so-
lutions or IDSs because it usually opens a specific network
port and waits for the access from the attackers (passive
open mode). On the other hand, a kernel-mode backdoor
(kernel backdoor, also known as a kernel-mode Trojan or
a rootkit) cannot be detected by those conventional means
because it runs in kernel-mode as a component of network
subsystem. In addition, since the kernel backdoor runs in
privileged mode, it is so powerful that it can completely
control the compromised systems [2], [4]. Many security
experts believe that intruders have been using kernel back-

Manuscript received January 29, 2007.
Manuscript revised April 23, 2007.
"The authors are with Electronics and Telecommunications
Research Institute (ETRI), Daejeon, 305-700 Republic of Korea.
a) E-mail: chlee@etri.re.kr
DOI: 10.1093/ietcom/e90-b.10.2638

Cheolho LEE'®, Nonmember and Kiwook SOHN', Member

doors covertly for years and the lack of them captured in the
wild is a reflection of their effectiveness [1], [2], [21]. If they
spread all over the Internet by means of self-propagating
malicious code such as worms, every aspect of human ac-
tivities including businesses, economics, and military af-
fairs will be faced with world-wide stealthy threats of kernel
backdoors [21].

In this paper, we present a novel technique for detect-
ing and defeating kernel backdoors. The rest of this paper
is organized as follows. In the next section, we will men-
tion other researches for detecting user-mode backdoors as
well as kernel backdoors. In Sect. 3, we explain the structure
of network subsystem and the operation of backdoors. We
propose a technique to detect and defeat kernel backdoors
and describe its details in Sect.4. Section 5 then shows ex-
perimental results and further considerations. Finally, we
summarize our conclusions and future work in Sect. 6.

2. Related Work

Many research efforts [10],[19], [26],[27] including one
commercial product [23] have focused on detecting and pro-
tecting against kernel backdoors by investigating traffic in-
teractiveness, unintended network connections, changes of
system resources, or unauthorized drivers.

Cui et al. proposed a mechanism to detect unknown
malwares by identifying user unintended outbound connec-
tions [27]. They classified outbound network connections
into three classes: user intended, user unintended benign,
and user unintended malicious. In their approach, since they
assume that user intent is implied by user-driven activities,
network connections without user-driven activities can be
detected as malicious ones. They used a whitelist to cover
system daemons or applications automatically connecting to
the remote machines. Their approach is very effective to de-
tect unknown malwares and to detect kernel backdoors as
well. However, they considered only outbound connections
and focused on the whitelisting mechanism to cover unin-
tended benign connections. On the other hand, our tech-
nique considers both inbound and outbound connections and
has no whitelisting mechanism. Considering the fact that
the whitelist is difficult to manage in various network set-
tings and kernel backdoors may employ both inbound and
outbound connections, our technique is more effective than
their approach as far as kernel backdoors are concerned.

Zhang and Paxson developed a general algorithm and a
set of protocol-specific algorithms to detect interactive traf-

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers



LEE and SOHN: DETECTING AND GUARDING AGAINST KERNEL BACKDOORS

fic originated from backdoors through passively monitoring
packet size and timing characteristics [26]. They focused on
the fact that interactive traffics have smaller packet size and
longer idle period than most machine-driven traffics. How-
ever, this approach may not be effective because many cur-
rent backdoors can employ automated machine-driven traf-
fics.

Pennington et al. introduced a mechanism for detect-
ing backdoors by monitoring the changes of storage con-
tents [19]. In their mechanism, if system files are changed
or hidden files are found, it is regarded as the existence of
malicious behaviors including backdoors, worms, rootkits,
and so on. However, this approach may not be useful against
kernel backdoors in the sense that it is not easy to detect the
files hidden by kernel-level rootkits.

Sanctuary Device Control by SecuWave can prevent
unauthorized devices from being installed or running on the
system [23]. It strongly permits or blocks devices through
the device whitelist which ensures that no device, unless au-
thorized, can ever be used. However, since most of benign
users rarely know which devices should be authorized or
unauthorized, this method is very strong but not applicable
to the real field.

Rutkowska proposed a mechanism to detect rootkits by
looking for the witnesses of API hooking or changes in ker-
nel structures such as SST (System Service Table), IDT (In-
terrupt Descriptor Table), etc. [10]. Since rootkits often pro-
vide kernel backdoors with the functionalities to hide net-
work connections, processes, files, and drivers, detecting
rootkits can be helpful to find out kernel backdoors. Her
proposal is very useful to detect rootkits themselves and can
be applicable to the real field. Nevertheless, it cannot reveal
the evident witnesses of kernel backdoors themselves.

On the other hand, our approach focuses on the ker-
nel backdoor itself, not on its collateral effects as introduced
above. By addressing the packet flow differentials between
kernel backdoors and the legitimate network applications,
our approach can effectively detect and defeat kernel back-
doors.

3. Background

In this section, we discover the operational differences be-
tween user-mode network applications and kernel back-
doors within the network subsystem and find out the clues
to differentiate them.

3.1 Network Subsystem Structure

Windows network subsystem structure is described in Fig. 1.
The network subsystem has several layered function blocks
and each function block is hierarchically related with up-
per and lower layers— other platforms such as Unix or
Linux have similar structures to Windows. Windows has
Application Programming Interface (API), Transport De-
vice Interface (TDI), protocols, intermediate drivers, and
miniports. Network applications and services provide the

2639

users with top layer interfaces for network subsystem, and
they are connected to Sockets interface, NetBIOS inter-
face, or others according to their purposes. Then, these
network APIs are connected to kernel-mode TDI. Network
protocol drivers are the implementation of various protocols
such as TCP/IP, IPX/SPX, NetBEUI, and so on. They send
and receive network packets to and from Network Interface
Cards (NICs) through Network Driver Interface Specifica-
tion (NDIS). Within NDIS layer, miniports perform NIC-
specific operations and intermediate drivers provide stan-
dard interface between miniports and protocols [15], [16].

3.2 Backdoors

The operational structures of backdoors are presented in
Fig.2. User-mode backdoors are installed as executable

Sockets SO ANe&BIQS

o Applications

Sockets NetBIOS

Interface Interface API

user-mode

kernel-mode  AFD NetBIOS over TCP/IP
_________________________ ™I

TCPIP IPX/SPX NetBEUI Protocols
Intermediate
“ NDIS Intermediate Driver (IM) Drivers
=]
=
NDIS Miniport NDIS Miniport Miniports
NIC NIC

Fig.1  Windows network subsystem structure.

Sockets | | NetBIOS Applications
Application Application PP
=
Sockets NetBIOS API
user-mode Interface Interface

kernel-mode  AFD NetBIOS over TCP/IP

- ‘_ ..................... = TDI
TCP/P IPX/SPX  NetBEUI Protocols
t Intermediate
NDIS Intermediate Driver (IM) Drivers
@
: 3
NDIS Miniport NDIS Miniport Miniports
Nic NIC
(a) User-mode
. SQ::ket_s Service Ne:BIO_s Applications
Sockets NetBIOS API
user-mode Interface Interface
kernel-mode  AFD NetBIOS over TCP/IP
......................... TDI
TCP/P IPX/SPX Protocols
= = t Intermediate
“ NDIS Intermediate Driver (IM) Drivers
E L
NDIS Miniport NDIS Miniport Miniports
NIc NIC

(b) Kernel-mode

Fig.2  Operational structures of backdoors.



2640

modules and run as processes as legitimate network appli-
cations do. Usually, they open specific network ports (e.g.
1243/tcp for SubSeven, 12345/tcp for NetBus, etc.) and
wait for the access from the attackers. Moreover, since
the network packets from and to user-mode backdoors pass
through all layers of a network subsystem, their existence
can be exposed by common network monitoring tools or
port mappers such as Netstat, FPort [6] and TCPView [22].

On the other hand, kernel backdoors cannot be detected
by those conventional means because they run as compo-
nents of network subsystem such as TCP/IP, NetBEUI, Ap-
pleTalk, and so on. They are implemented as kernel-mode
drivers which can be inserted into the network subsystem —
especially, network protocol drivers [17], [21]. NTrootkit by
Greg Houglund [4], [8], [9], SAdoor [18], and yyt_hac’s nt-
rootkit [25] are actually network protocol drivers and they
have their own TCP/IP stacks to provide kernel-level com-
munication channels for the attackers without any visible
open ports. Moreover, since they work in the privileged
mode, they can completely access and control almost all
resources of compromised systems such as processes, files,
memories, networks, device drivers, and so on. For instance,
they can hide specific files, processes, drivers, and net-
work connections from legitimate users by hooking APIs or
changing kernel structures [4], [5], [8], [9], [18],[25]. They
provide so powerful system controlling ability in order to
steal information or prepare next step attacks on the com-
promised systems without any intervention of conventional
security solutions.

4. Packet Flow Differentials

To successfully detect and defeat kernel backdoors which
cannot be identified by conventional security solutions, we
present a novel technique and develop KbGuard to validate
the effectiveness of our approach.

4.1 Outline

As described in the previous section, the result of analysis
for both network subsystem structure and the operation of
kernel backdoors indicates the fact that there are great dif-
ferences between legitimate network applications and kernel
backdoors in terms of their packet flows within the network
subsystem. While the packets of common network applica-
tions go up and down through the whole network subsys-
tem from API to NDIS and vice versa, kernel backdoors use
only NDIS. Accordingly, we can detect kernel backdoors if
we have two host-based monitoring sensors — one at higher
layer (for TDI) and the other at lower layer (for NDIS).
Therefore, we now have a key idea that an IP network con-
nection which does not pass through built-in TCP/IP proto-
col stack should be regarded as a communication channel of
kernel backdoors.

Let us formally define our key idea. To adjust the sen-
sitivity of detection, we have three sensitivity levels; high,
medium, and low. Let us denote sensitivity level by s, mon-

IEICE TRANS. COMMUN., VOL.E90-B, NO.10 OCTOBER 2007

itoring time duration with sensitivity level by #,, inbound
direction by in, outbound direction by out, NDIS layer by
N, and TDI layer by T. Then, total number of packets for
each network layer during #, is as follows:

AN(ts) = Nip(ts) + Noyi(ts)
Ar(ts) = Tin(ts) + Tou(ty) (1)

For a given connection footprint and a given sensitiv-
ity level s, we can make a decision on the time of every #
after the connection is created. We also have a user-defined
threshold 6,(> 0) of a minimum number of packets (Ay(%;))
in order to say that it is a meaningful connection. The con-
nection footprint should be regarded as a kernel backdoor if
An(ty) = 6, and A7(t;) = 0, otherwise it must be normal.

4.2 Assumptions

We have following reasonable assumptions to ensure that
our key idea will meet the goal to effectively detect and de-
feat kernel backdoors:

1. Communication channels of kernel backdoors are
bidirectional: The communication between attackers
and kernel backdoors is composed of a bidirectional
channel for both commands and their results.

2. Kernel backdoors employ IP protocol: If kernel
backdoors employ non-IP protocols, their communica-
tion will be restricted out of the Internet. Therefore,
they employ IP protocol. In fact, all of them employ
only IP protocol [9], [14], [18], [25].

3. Only built-in TCP/IP stack treats legitimate IP
packets: If another protocol stack (not built-in TCP/IP)
treats IP packets, we regard it as an illegitimate treat-
ment of IP packets and eventually detect as a footprint
of kernel backdoor.

4. Kernel Backdoors are located at protocol layer: It
is believed that all current kernel backdoors are located
at protocol layer [5]. For instance, NTrootkit by Greg
Houglund [4], [8], [9], SAdoor [18], and yyt_hac’s nt-
rootkit [25] are network protocol drivers which have
their own TCP/IP stacks.

5. Kernel backdoors employ only non-reflective pack-
ets: If kernel backdoors use reflective packets (e.g.
ICMP Echo Requests, TCP/SYNs, etc.), the reflec-
tive packets will consequently expose the existence of
malicious network behaviors because built-in TCP/IP
stack tries to reply for them. Actually, most of ker-
nel backdoors employ only non-reflective packets [18],
[25]. We will discuss this issue in the later section.

6. Kernel backdoors have data payloads in their pack-
ets: When an attacker connects to kernel backdoors,
their packets must have data payloads — greater than a
specific size—to receive commands and to send their
results. Covert channels are beyond the scope of this

paper.



LEE and SOHN: DETECTING AND GUARDING AGAINST KERNEL BACKDOORS

4.3 Reflective and Non-reflective

As mentioned in the previous section, it is believed that ker-
nel backdoors are likely to employ non-reflective IP pack-
ets. For instance, when ICMP Echo Request packets are
employed for the communication between an attacker and
the kernel backdoor, for a given packet from the attacker
toward the kernel backdoor, not only a responded packet
from the kernel backdoor but also additive packets (ICMP
Echo Replies) from the built-in TCP/IP stack are sent back
to the attacker. Therefore, the attackers have no choice but to
employ non-reflective packets to keep secure — from their
point of view — communication channels. Table 1 shows
an example of non-reflective packets which are employed
by yyt_hac’s ntrootkit [25] for various communication meth-
ods of the kernel backdoor (TCP, UDP, ICMP, and IP user-
defined). When an attacker connects to the kernel back-
door through an ICMP channel of yyt_hac’s ntrootkit, an
attacker sends only ICMP Echo Reply packets and receives
only ICMP Destination Unreachable packets, which are not
reflective. As for TCP, kernel backdoors set RST flag for
TCP channels to avoid packet reflections [18], [25]. UDP
and user-defined channels also use non-reflective packets.

4.4 Strategies to Mitigate False Positives and Negatives

Since various network applications and services are working
on the Internet, our key idea may cause false positives or
false negatives. Actually, we found some false positives in
following network situations:

1. DNS Queries and Replies: When network applica-
tions on the local machine try to resolve domain names,
built-in TCP/IP stack sends DNS Queries to and re-
ceives DNS Replies from a registered DNS server with-
out interactions with TDI layer. The connection for
DNS Queries and Replies cause false positives accord-
ing to our key idea.

2. ICMP Echo Requests and Replies: If someone on the
remote machine uses Ping utility to check the aliveness
of the local machine, built-in TCP/IP stack of the lo-
cal machine will receive ICMP Echo Requests from
and send ICMP Echo Replies to the remote machine
regardless of TDI [20], which causes false positives.

3. ICMP Time Exceeds: If the gateway processing a
packet finds the TTL field is zero or a host reassem-
bling a fragmented packet cannot complete the re-

Table1 Non-reflective packets employed by yyt_hac’s ntrootkit [25].

No. Inbound
(toward a backdoor)
1 ICMP Echo Reply

Outbound Type
(toward an attacker)
ICMP Destination Un-  ICMP

reachable
2 445/tcp (RST set) 445/tcp (RST set) TCP
3 445/udp 445/udp UDP
4 Unknown Unknown IP—user de-
fined

2641

assembly within its time limit, they discard the packet
and may also send back to the source an ICMP Time
Exceed message [20]. Since built-in TCP/IP stack
treats the message alone, our key idea may regard it
as a kernel backdoor. This situation also occurs with
ICMP Destination Unreachables.

4. Denial-of-Service attacks: If someone on the remote
machine attacks the local system by means of Denial-
of-Service (DoS) attacks, the DoS packets cause false
positives because built-in TCP/IP stack treats them by
itself and our key idea regards this situation as a kernel
backdoor. Port scanners such as Nmap [7] may also
cause the same situation.

On the other hand, to connect with the kernel backdoor,
if an attacker uses UDP channels toward already opened
destination ports (e.g. 137/udp, 138/udp, 445/udp for file
sharing services) of the compromised system, the incoming
packets toward the opened UDP ports will go up to applica-
tion level, which in turn causes false negatives because the
status of the connection becomes Ar(#;) > 0 even though it
is a connection for the kernel backdoor.

To overcome above mentioned false positives and neg-
atives, we adopted the assumptions as described earlier
and constructed a decision tree as shown in Fig.3. Non-
bidirectional connections are regarded as normal at a glance
according to the first assumption, which is the first step. The
second step is our key idea. The third step takes a reflective
packet rate (y) or a non-reflective packet rate (100 — y) into
consideration according to the fifth assumption. Finally, the
sixth assumption makes the fourth step have three classes of
decision — normal, suspicious, and kernel backdoor — by
considering the average data payload size (denoted by 6) of
a given connection footprint. The rate of reflective packets
for a given connection is defined as shown in Eq. (2) where

The connection footprint

'

Mn(is) >0 and Nout(ts) >0 [ Step #1 ]
No Ye!
single-directional bidirectional
An(t:) = 8: and Ar(£)=0 [ Step #21]
No Yes
normal kernel backdoor
(100-7)> Sn and An(t)= S ¥ > Ok [ Step #3 ]
No Yes No Yes
kernel backdoor normal
6> Oa G >4 [Step#]
Yes No Yes No
A
normal kernel backdoor suspicious normal
“Allow” “Deny” “Allow or deny” “Allow”

Fig.3  The decision tree for detecting and defeating kernel backdoors.



2642

Ag is the total number of reflective packets for a given con-
nection.
/lR(ts)

y ) x 100 2)

Let 6; be maximum 7 to say that it is kernel backdoor
at the third step for the decision of kernel backdoor at the
second step and ¢, be maximum (100 — ) to say that it is
normal at the third step for the decision of normal at the
second step.

An average data size in bytes for a given connection is
defined as shown in Eq. (3). We can calculate it by analyzing
L4 protocols (e.g. TCP, UDP, ICMP, etc.) for each packet
and we also regard option fields in protocol headers as data.

0= 2 d(P) 3)

/lN (ts)

Let P; be i-th packet within a given connection, d(P;)
be data size of a given packet P;, and 6, be maximum 6 to
say that it is normal at the fourth step for the decision of
normal at the third step or to say that it is suspicious at the
fourth step for the decision of kernel backdoor at the third
step.

Therefore, the four-step decision process is performed
as follows. For a given connection footprint, if it is not bidi-
rectional, it is finally regarded as normal at the first step,
otherwise we go on to the next step. At the second step,
we calculate Ay(fy) and A7 (¢) then initially determine if it is
kernel backdoor or not. Next, we further decide if it is ker-
nel backdoor by analyzing vy or (100 — v) at the third step.
Hence, if Ay(t;) > 05 and Ar(t;) = O at the second step or
if Ar(t;) > O at the second step and (100 — y) > ¢, at the
third step, we should consider 6 at the fourth step. Finally,
we allow or deny the connection according to the decision.

4.5 KbGuard

To validate our approach, we implemented KbGuard and
performed experiments in a simulated environment. Fig-
ure 4 shows the overall structure of KbGuard. It is made
up of three components as follows:

1. TDI monitor: TDI monitor implemented as a TDI filer
driver captures all IP packets which pass through built-
in TCP/IP protocol stack.

2. NDIS monitor: All IP packets which go up and
down within NDIS are captured by NDIS monitor —
implemented as a NDIS intermediate driver. It can se-
lectively filter packets by the command of the Inspector
to deactivate suspicious connections.

3. Inspector: Inspector collects packet information from
both TDI monitor and NDIS monitor. It then analyzes
the information to build up the connection footprint ta-
ble, makes a decision, and allows or denies the connec-
tion according to the decision.

TDI monitor and NDIS monitor capture only IP pack-
ets for both incoming and outgoing traffics according to our

IEICE TRANS. COMMUN., VOL.E90-B, NO.10 OCTOBER 2007

second assumption. The connection footprint is consist of
several factors as shown in Table 2.

LocalAddr, LocalPort, RemoteAddr, RemotePort, and
Protocol are used to uniquely identify each connection.
Nin(ts), Nowl(ts), Tin(ts), and T,,(t;) represent the numbers
of packets of NDIS and TDI for both inbound and outbound
directions to analyze packet flow differentials. PacketData is
used to calculate a reflective packet rate (y) and an average
data size () for a given connection.

Table 3 shows an example of the connection footprint
table when two remote hosts (10.0.0.1 and 10.0.0.2) connect

Sockets Serion NetBIOS
Application Application
=
Mg “Inspector’ gy Sockets NetBIOS
: Interface Interface user-mode
: DB g NN

AFD NetBIOS over TCP/IP  --- kernel-mode

oo “TDI Monitor’ EEC N I

TCP/IP
3 3
S —— o osuonor
s 4 T 3

t %_egfl}_imate NDIS Miniport NDIS Miniport

raffic

‘ P]ger#_el Backdoor ‘ ‘ 1
raffic NIC e

Fig.4  The overall structure of KbGuard.

Table 2  The connection footprint.
Factor Description
LocalAddr local IP address
LocalPort local port (TCP or UDP)
RemoteAddr remote IP address
RemotePort remote port (TCP or UDP)
Protocol protocol (TCP, UDP, or IP)
PacketData packet data

Nin(ts) and Ny, (ts) total number of inbound and outbound
packets at NDIS layer

Tin(ts) and T, (t5) total number of inbound and outbound

packets at TDI layer
b% rate of reflective packets
6 average data payload size of packets

Table 3  An example of the connection footprint table where 6 = 40,
6, =80, 6s=5, 64=40, and 1,=3.
1Addr:1Port-

No. rAddr:rPort An(ts)  Ar(ts) vy [ Decision
(Proto) 1 2 3 4

1 10.0.0.166:23- 10 10 100 2 |- N N -
10.0.0.2:1132
(TCP)

2 10.0.0.166:80- 31 31 94 329|- N N -
10.0.0.2:2195
(TCP)

3 10.0.0.166- 20 0 50 16 |- K N N
10.0.0.2 (IP)

4 10.0.0.166:445- 45 15 0
10.0.0.1:445
(UDP)




LEE and SOHN: DETECTING AND GUARDING AGAINST KERNEL BACKDOORS

to the local host 10.0.0.166. Let us denote normal by N, sus-
picious by S, and kernel backdoor by K. The first connection
is for Telnet and the second one is for HTTP. They are to be
decided as normal because they are bidirectional at the first
step of the decision process, Ar(t;) > 0 at the second step,
and (100 — y) < ¢, at the third step. The third connection
is a set of legitimate ICMP Echo Requests and Replies. It is
initially determined as kernel backdoor through the first and
the second steps because it is bidirectional and Ay(zs) > 5
and Ar(t;) = 0. However, it is finally decided as normal
because y > d; and 6 < ¢y at the third and the fourth
step respectively. On the other hand, the fourth connec-
tion is for kernel backdoor. 1t is initially normal through
the first and the second steps because it is bidirectional and
Ar(ty) > 0, but it is finally decided as kernel backdoor be-
cause (100—-vy) > 9, at the third step and 6 > 9, at the fourth
step.

5. Evaluation

A screenshot of KbGuard is shown in Fig. 5. Three connec-
tions of kernel backdoors are successfully detected and im-
mediately deactivated. With KbGuard, we performed exper-
iments in our laboratory environment as shown in Fig. 6 for
the evaluation of our approach. The victim with KbGuard
installed is compromised by kernel backdoors — yyt_hac’s
ntrootkit 1.22 [25] and NTrootkit 0.40 [9]. All systems used
for experiments are constructed on Windows 2000 profes-
sional and the network bandwidth is 100 Mbps. When the

I KbGuard ¥1.0 - A System to Detect and Defeat Windows-based Kernel Backdoors =10 x|
Monitoring Network(l)  Help(H)
& i@
Connect ion Footprint Table | Listens & Connections | Who Access Network? | Filtering Packets|
J Monitored: 9 Suspicious: 3 Captured: 463 Treated: 463 &
. | LocalAddr:Loca. .. Decision
Kernel Backdoor

10.0.0.1:445
10.0.0.1:445

10.0.0.166:445  TCP 45/0 0/0
10.0.0.166:445  UDP 44/0 44/0

Kernel Backdoor
Kernel Backdoor

12740.0>.I:|3|I 127.0.0.1:1311  UOP 0/0 2/0 Normal

10.100.200.196... 10.100.101.4:80 TCP 172 172 Normal
10.0.0.1:1985 ID.IC’IJ,ZUIJ&.. I.IP 0/0 072 Normal

10.100.200.196... 10.100.200.81... UOP 0/0 30 Normal

| |

[ | NDIS:ON [TOI:ON  [2005-11-17 18:35:22

Fig.5 The screenshot of KbGuard.

&> |

Attacker
(10.0.0.1) I
Internet .
Victim
f 5 (10.0.0.166)
Client
(10.0.0.2)

Fig.6  Experimental setting of KbGuard.

2643

client connects to the victim with normal network services
such as HTTP, E-mail, etc and the attacker connects to the
victim through kernel backdoors, KbGuard constructs the
connection footprint table, makes a decision for each con-
nection, and finally filters the packets of kernel backdoor
connections. In the experiments, almost all kernel back-
doors were successfully detected and deactivated by Kb-
Guard. Moreover, false positives and negatives were effec-
tively mitigated.

Table 4  Experimental results in various network situations where 6 =
40, 6,=80, 65=5, 64=40, and t,=3.
Ar(ty) Decision
No. Class Case Wy Y [4 1 2 3 4
1 HTTP 1.00 99 206 |- N N -
2 HTTPS 1.00 99 281 - N N -
3 SMTP 1.00 100 96 - N N -
4 FTP 1.00 100 762 | - N N -
5 NetBIOS 085 89 32 - N N -
6 Microsoft-ds 094 94 67 - N N -
7 N MSN 1.00 100 18 - N N -
8 Telnet 1.00 100 2 - N N -
9 NNTP 1.00 99 276 | - N N -
10 ICMPEchoRe- 0.00 50 16 - K N N
quest/Reply
11 ICMP Time Ex- 0.00 0 20 N - - -
ceed
12 ICMP Desti- 0.00 0 20 N - - -
nation Unreach-
able
13 DNS 0.00 100 32 - K N N
14 send ONLY 0.00 - - N - - -
15 S,K send and re- 000 >6; >4 |- K N S
ceive
<64 |- K N N
<6 >64 | - K K K
<64 |- K K S
16 ntrootkit (open  0.79 0 48 - N K K
UDP port)
17 ntrootkit (open  0.00 0 48 - K K -
TCP port)
18 ntrootkit (closed 0.00 0 48 - K K -
TCP/UDP port)
19 K ntrootkit ICMP) 0.00 0 48 - K K -
20 ntrootkit (IP-  0.00 0 62 - K K -
user defined)
21 NTrootkit (open 0.00 100 54 - K N S
TCP port)
22 NTrootkit (closed 0.00 100 54 - K N §
TCP port)




2644

5.1 Performance

Table 4 shows the experimental results for various network
applications and situations. We explain the experiments in
more detail. To test normal cases, when a host (10.0.0.166)
connects to the Internet for various network services, all net-
work packets are monitored by KbGuard on the host. To test
the cases of kernel backdoors, an attacker (10.0.0.1) tries
to connect to the kernel backdoor of a victim (10.0.0.166)
when KbGuard installed on the victim performs the detec-
tion processes. As a special case, when WinPcap — a packet
capturing and generating utility —on the victim generates
IP packets, they are also monitored by KbGuard on the host.
We considered various network situations to evaluate the de-
tection rate of KbGuard. To test true negatives and false pos-
itives for normal cases, we used popular Internet services
and some specific network situations. Meanwhile, we used
WinPcap [11], yyt_hac’s ntrootkit 1.22 [25], and NTrootkit
0.40 [9] to test true positives and false negatives.

;;—8; of normal network applications (from the first to
the ninth cases) are almost 1.00, they are bidirectional, and
their y are nearly 100, which in turn makes them regarded as
normal at both the second and the third steps. ICMP Time
Exceed and Destination Unreachable are finally decided as
normal at the first step because they are single-directional.
Meanwhile, since ICMP Echo Request/Reply and DNS are
bidirectional and can be seen by only NDIS monitor, they
are initially determined as kernel backdoor through the first
and the second steps, but the third and the fourth steps finally
regard them as normal in the sense that y > J; and 6 < d .
Therefore, KbGuard accurately makes decisions as normal
for various normal network situations.

If WinPcap generates IP packets, our decision varies
according to the types of generated packets and the data
payload size (6). We will consider this issue in the next sec-
tion. With yyt_hac’s ntrootkit [25], its connection footprints
are successfully detected without regard to its communica-
tion channels such as TCP, UDP, ICMP, and user-defined
IP. However, the second step regards it as normal in cases
of open UDP ports because of the connectionlessness of

IEICE TRANS. COMMUN., VOL.E90-B, NO.10 OCTOBER 2007

UDP. On the other hand, NTrootkit [9] is initially detected
as kernel backdoor at the second step, but it is regarded as
normal at the third step and finally suspicious at the fourth
step. It actually employs 100% reflective packets with its
own TCP/IP stack and we can even connect to it with legit-
imate Telnet clients. However, it cannot get along with the
built-in TCP/IP stack in order not to cause packet reflections
by built-in TCP/IP stack or to treat all IP packets alone [8],
[9], which in turn makes it inapplicable to the real field. It
is just a proof of concept for kernel backdoors as the author
says [8].

Considering overall evaluation results as mentioned
above, our approach effectively detects and defeats kernel
backdoors.

5.2 Considerations

If WinPcap sends and receives IP packets, its connections
may be detected as suspicious or kernel backdoor in some
special cases as shown in Table 4. However, they are not
false positives because generating artificial packets is suspi-
cious enough in itself. In fact, some types of kernel back-
doors such as yyt_hac’s ntrootkit [25] and SAdoor [18] em-
ploy WinPcap to communicate with the attackers. It seems
that they make bad use of WinPcap to avoid detection as-
suming that most of security solutions regard it as one of
known legitimate network tools. Therefore, the activities
of sending and receiving packets by WinPcap must not be
regarded as normal. KbGuard successfully detects the con-
nections related with WinPcap as suspicious or kernel back-
door.

5.3 Overheads

To evaluate network and CPU overheads of KbGuard, we
examined the changes of network inbound/outbound rates
and CPU usages by Microsoft Web Application Stress Tool
(MWAST) and Performance Counter (Windows diagnostic
mechanism) respectively. While the MWAST on the client
concurrently connected to the web server on the victim with
or without KbGuard, we changed network workloads by

80

2000
70 . ﬂ;_,'_-._:tl
~ 1600
%‘ __ B0
X €.
@ 1200 o
o o
ﬂ w 40
5 2
x 800 2 30
e (]
g 100 7 e - inbound rate w/ KhGuard 20 |
2 - =+ - outbound rate w/ KbGuard CPU I KbGuard
——inbound rate wfo KbGuard 10 B "'[-I N usage w] kb Guar
’ —s=—outbound rate w/o KbGuard CPU usage wio KhGuard
0 - . c - - ¢
A B c D E F A B C D E F
Workload Workload
(a) Network (b) CPU
Fig.7  Overheads.



LEE and SOHN: DETECTING AND GUARDING AGAINST KERNEL BACKDOORS

adjusting concurrent connections of the MWAST — 1(A),
2(B), 4(C), 8(D), 16(E), and 32(F). The web server also had
three types of mixed documents in their size (10K, 20K,
and 30K) to vary traffic patterns. As shown in Fig.7, we
have found maximum degradation effects with workload
E — network(inbound) 3.73%, network(outbound) 3.84%,
and CPU usage 2.30%, which would be acceptable to the
real field.

5.4 Limitations and Weaknesses

Although our approach successfully detects and defeats ker-
nel backdoors as shown earlier, it also has some limitations
and weaknesses. First, we have two monitoring sensors ac-
cording to our fourth assumption. However, our approach
will not work properly if future kernel backdoors are located
at NDIS intermediate drivers or even miniports. To avoid
this situation, the lower layer one (NDIS monitor) should
go down or cover whole NDIS layers to sandwich the fu-
ture kernel backdoors. Second, we need to consider self-
protection mechanisms to prevent some types of attacks to-
ward KbGuard.

6. Conclusions

In this paper, we have proposed a novel technique to effec-
tively detect and defeat kernel backdoors, and implemented
KbGuard to evaluate the performance of our technique. It
successfully detected the network connections between ker-
nel backdoors and attackers by analyzing packet flow dif-
ferentials for the connections within the network subsystem
according to our four-step decision process. Furthermore, it
could immediately deactivate kernel backdoors by filtering
the suspicious connections. We believe that our technique is
one of the most effective countermeasures against stealthy
threats of kernel backdoors. We will extend our technique
to scaled-up network environments, apply to another plat-
forms (e.g. Unix, Linux, etc.), and try to overcome its limi-
tations and weaknesses. We will also elaborate the proposed
four-step decision process.

References

[1] Admin, “Backdoors,” Unix Security, Internet Software Marketing
Ltd., 2002.

[2] B. Bobkiewicz, “Hidden backdoors, trojan horses and rootkit tools
in a Windows environment,” Windows OS Security, Internet Soft-
ware Marketing Ltd., 2004.

[3] J. Braun, “What port numbers do well-known Trojan horses use?,”
SANS Intrusion Detection FAQ, 2001.

[4] EJ. Cibelli, “Beware of geeks bearing gifts: A Windows NT rootkit
explored,” Incident Handling and Hacker Exploit Practical, 2001.

[5] firewOrker, “Kernel-mode backdoors for Windows NT,” Phrack
Magazine, vol.62-6, 2004.

[6] Foundstone, “FPort v2.0 — TCP/IP process to port mapper,” 2000.

[7] Fyodor, “Nmap — The art of port scanning,” 1997.

[8] G. Houglund, “A *REAL* NT rootkit, patching the NT kernel,”
Phrack Magazine, vol.55-5, 1999.

[9] G. Houglund, “NTrootkit v0.40,” 2001.

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

2645

R. Joanna, “Rootkits detection on Windows systems,” Proc. ITUn-
derground Conference, pp.40—44, Warsaw, 2004.

Network Research Group, “Libpcap,” Lawrence Berkeley National
Labs., 2004.

Y. Liu, “W32.HLLW. Doomjuice,” Technical Description, Symantec
Security Response, 2004.

Marcus, “The art of rootkits (2nd ed),” The Infosec Writers Text
Library, 2004.

McAfee, “BackDoor-ALIL” McAfee, Networks Associates Technol-
ogy, 2001.

Microsoft, NetBIOS over TCP/IP, MSDN Library, Microsoft Cor-
poration, 2004.

Microsoft, Network Devices and Protocols, MSDN Library, Mi-
crosoft Corporation, 2004.

NISCC, “Trojan horse programs and rootkits,” NISCC Technical
Note, 2003.

C.M. Nyberg, “SAdoor winserver version 1.1,” 2003.

A.G. Pennington, J.D. Strunk, J.L. Griffin, C.A. Soules, G.R.
Goodson, and G.R. Ganger, “Storage-based intrusion detection:
Watching storage activity for suspicious behavior,” Proc. 12th
USENIX Security Symposium, pp.137-152, Washington, DC, Aug.
2003.

J. Postel, “Internet control message protocol,” Network Working
Group, RFC 792, Sept. 1981.

K. Poulsen, “Windows rootkits a stealthy threat,” SecurityFocus
HOME News, 2003.

M. Russinovich, “TCPView for NT/2000/XP/9x,” Sysinternals,
2002.

SecureWave, “Sanctuary device control,” 2004.

A. Vidstrom, “ACK tunneling Trojans,” NTSecurity.nu, 2001.
yyt-hac, “yyt_hac’s ntrootkit 1.22,” 2004.

Y. Zhang and V. Paxson, “Detecting backdoors,” Proc. 9th USENIX
Security Symposium, pp.157-170, 2003.

W. Cui, R.H. Katz, and W. Tan, “Design and implementation of
an extrusion-based break-in detector for personal computers,” Proc.
21st ACSAC, pp.361-370, 2005.

Cheolho Lee received the B.S. degree
in Information and Computer Engineering from
Ajou University in 2002 and the M.S. degree
in Information and Communications Engineer-
ing from Ajou University in 2004. Since 2004,
he has been with Electronics and Telecommu-
nications Research Institute (ETRI), where he
is a member of research staff. His research in-
terests include security monitoring, behavioral
analysis, network security, and malicious code
detection.

Kiwook Sohn received the B.S. and
M.S. degrees in Information Engineering from
Sungkyunkwan University in 1990 and 1992,
respectively. He received the Ph.D. degree
in Electricity, Electronics, and Computer En-
gineering from Sungkyunkwan University in
2002. Since 1992, he has been with Electron-
ics and Telecommunications Research Institute
(ETRI), where he is a principal member of re-
search staff. His research interests include cryp-
tographic protocol, network security, and mali-

cious code detection.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


