This paper presents the bit error rate (BER) upper bounds for trellis coded asymmetric 8PSK (TC-A8PSK) system using the Ka-band satellite in the rain fading environment. The probability density function (PDF) for the rain fading random variable can be theoretically derived by assuming that the rain attenuation can be approximated to a log-normal distribution and the rain fading parameters are calculated by using the rain precipitation data from the Crane global model. Furthermore, we analyze the BER upper bounds of TC-A8PSK system according to the number of states in the trellis diagram and the availability of channel state information (CSI). In the past, Divsalar and Simon has analyzed the BER upper bounds of 2-state TCM system in Rician fading channels; however, this paper is the first to analyze the BER upper bounds of TCM system in the rain fading channels. Finally, we summarize the dominant six factors which are closely related to the BER upper bounds of TC-A8PSK satellite system in the rain fading channel as follows: (1) frequency band, (2) rain intensity, (3) elevation angle, (4) bit energy to noise ratio, (5) asymmetric angle, and (6) availability of CSI.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sunghyun HWANG, Hyungjin CHOI, "Bit Error Bounds for Trellis Coded Asymmetric 8PSK in Rain Fading Channel" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 11, pp. 2474-2485, November 2000, doi: .
Abstract: This paper presents the bit error rate (BER) upper bounds for trellis coded asymmetric 8PSK (TC-A8PSK) system using the Ka-band satellite in the rain fading environment. The probability density function (PDF) for the rain fading random variable can be theoretically derived by assuming that the rain attenuation can be approximated to a log-normal distribution and the rain fading parameters are calculated by using the rain precipitation data from the Crane global model. Furthermore, we analyze the BER upper bounds of TC-A8PSK system according to the number of states in the trellis diagram and the availability of channel state information (CSI). In the past, Divsalar and Simon has analyzed the BER upper bounds of 2-state TCM system in Rician fading channels; however, this paper is the first to analyze the BER upper bounds of TCM system in the rain fading channels. Finally, we summarize the dominant six factors which are closely related to the BER upper bounds of TC-A8PSK satellite system in the rain fading channel as follows: (1) frequency band, (2) rain intensity, (3) elevation angle, (4) bit energy to noise ratio, (5) asymmetric angle, and (6) availability of CSI.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_11_2474/_p
Copy
@ARTICLE{e83-b_11_2474,
author={Sunghyun HWANG, Hyungjin CHOI, },
journal={IEICE TRANSACTIONS on Communications},
title={Bit Error Bounds for Trellis Coded Asymmetric 8PSK in Rain Fading Channel},
year={2000},
volume={E83-B},
number={11},
pages={2474-2485},
abstract={This paper presents the bit error rate (BER) upper bounds for trellis coded asymmetric 8PSK (TC-A8PSK) system using the Ka-band satellite in the rain fading environment. The probability density function (PDF) for the rain fading random variable can be theoretically derived by assuming that the rain attenuation can be approximated to a log-normal distribution and the rain fading parameters are calculated by using the rain precipitation data from the Crane global model. Furthermore, we analyze the BER upper bounds of TC-A8PSK system according to the number of states in the trellis diagram and the availability of channel state information (CSI). In the past, Divsalar and Simon has analyzed the BER upper bounds of 2-state TCM system in Rician fading channels; however, this paper is the first to analyze the BER upper bounds of TCM system in the rain fading channels. Finally, we summarize the dominant six factors which are closely related to the BER upper bounds of TC-A8PSK satellite system in the rain fading channel as follows: (1) frequency band, (2) rain intensity, (3) elevation angle, (4) bit energy to noise ratio, (5) asymmetric angle, and (6) availability of CSI.},
keywords={},
doi={},
ISSN={},
month={November},}
Copy
TY - JOUR
TI - Bit Error Bounds for Trellis Coded Asymmetric 8PSK in Rain Fading Channel
T2 - IEICE TRANSACTIONS on Communications
SP - 2474
EP - 2485
AU - Sunghyun HWANG
AU - Hyungjin CHOI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2000
AB - This paper presents the bit error rate (BER) upper bounds for trellis coded asymmetric 8PSK (TC-A8PSK) system using the Ka-band satellite in the rain fading environment. The probability density function (PDF) for the rain fading random variable can be theoretically derived by assuming that the rain attenuation can be approximated to a log-normal distribution and the rain fading parameters are calculated by using the rain precipitation data from the Crane global model. Furthermore, we analyze the BER upper bounds of TC-A8PSK system according to the number of states in the trellis diagram and the availability of channel state information (CSI). In the past, Divsalar and Simon has analyzed the BER upper bounds of 2-state TCM system in Rician fading channels; however, this paper is the first to analyze the BER upper bounds of TCM system in the rain fading channels. Finally, we summarize the dominant six factors which are closely related to the BER upper bounds of TC-A8PSK satellite system in the rain fading channel as follows: (1) frequency band, (2) rain intensity, (3) elevation angle, (4) bit energy to noise ratio, (5) asymmetric angle, and (6) availability of CSI.
ER -