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SUMMARY Ever-evolving malware makes it difficult to prevent it from
infecting hosts. Botnets in particular are one of the most serious threats to
cyber security, since they consist of a lot of malware-infected hosts. Many
countermeasures against malware infection, such as generating network-
based signatures or templates, have been investigated. Such templates are
designed to introduce regular expressions to detect polymorphic attacks
conducted by attackers. A potential problem with such templates, however,
is that they sometimes falsely regard benign communications as malicious,
resulting in false positives, due to an inherent aspect of regular expressions.
Since the cost of responding to malware infection is quite high, the number of
false positives should be kept to a minimum. Therefore, we propose a system
to generate templates that cause fewer false positives than a conventional
system in order to achieve more accurate detection of malware-infected
hosts. We focused on the key idea that malicious infrastructures, such as
malware samples or command and control, tend to be reused instead of
created from scratch. Our research verifies this idea and proposes here
a new system to profile the variability of substrings in HTTP requests,
which makes it possible to identify invariable keywords based on the same
malicious infrastructures and to generate more accurate templates. The
results of implementing our system and validating it using real traffic data
indicate that it reduced false positives by up to two-thirds compared to the
conventional system and even increased the detection rate of infected hosts.
key words: malware, botnet, dynamic analysis, template

1. Introduction

Ever-evolving malware is a root cause of recent cyber attacks.
Malware-infected hosts are controlled by attackers in such a
way that they become accomplices in various cyber attacks.
Communications and infrastructure between attackers and
infected hosts are called command and control (C&C). An
infected host controlled by C&C is called a bot, and a group
of bots connected via C&C is called a botnet. Attackers
transmit attack instructions to bots to carry out cyber attacks,
and the results of attacks by bots are transmitted to attackers
via C&C. Botnets enable attackers to conduct cyber attacks
while keeping their existence untraceable. Thus, botnets are
one of the most serious threats in the cyber security field.

C&C is an essential function of a botnet, i.e., C&C com-
munications from bots must occur in a network. C&C com-
munications have involved various protocols such as IRC,
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HTTP, P2P, and HTTP+P2P [2]. Recently, attackers have
tended to use more general protocols for their C&C commu-
nications to prevent them from being analyzed or detected.
Thus, over 60% of botnets use HTTP or HTTP+P2P as their
C&C protocol [3]. In enterprise networks, in particular, fil-
tering for outbound traffic is applied to limit their protocol
only to HTTP and HTTPS. Therefore, using HTTP as a C&C
protocol is effective for attackers.

Countermeasures against botnet consist of defeating
botnets themselves, referred to as a takedown, or detect-
ing bots or C&C communications in a botnet. For example,
takedowns of the Zeus botnet, the Citadel botnet, and the
GameOver Zeus botnet were conducted in 2012, 2013, and
2014, respectively [4]–[6]. Takedowns can help prevent
cyber attacks. However, they are not easily implemented
because it is necessary to keep precise track of C&C infras-
tructure and to ensure cooperation among relevant organiza-
tions.

Therefore, detecting infected hosts on a particular net-
work is necessary to mitigate cyber attacks, and the impor-
tance of this has significantly increased recently. This coun-
termeasure can be divided into two categories: host-based
and network-based. When an infected host is under the con-
trol of an attacker, any host-based countermeasure, such as
antivirus software, has been disabled. In this case, network-
based countermeasures are more effective, and many such
countermeasures have been focused on C&C communica-
tions. One countermeasure is to blacklist known C&C do-
main names or URLs. Matching the communications with
the blacklists makes it possible to detect C&C communica-
tions and infected hosts in a network.

Matching communications with blacklists is not always
successful because attackers evade blacklists by changing all
or part of their C&C domain names and URLs, namely their
hostnames, domain names, URL paths, and URL queries.
For example, some attackers use a domain generation al-
gorithm (DGA) to change domain names effectively. Poly-
morphic URLs, which attackers generate to evade blacklists,
tend to have similar patterns because attackers reuse their
web servers or use the same toolkit.

Research on generating network-based signatures or
templates, which involves the use of regular expressions to
detect polymorphic patterns, has been conducted to use these
patterns in URLs. For example, Xie et al. proposed a sys-
tem AutoRE to generate signatures with regular expressions
to detect the polymorphic URLs in spam emails sent from
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botnets [7]. Perdisci et al. proposed a method of generating
signatures with regular expressions to detect the URLs used
in C&C communications based on HTTP traffic captured
in a controlled environment, which is a sandbox system to
dynamically analyze malware samples [8]. Nelms et al. im-
proved upon the above research [8] and proposed a system
called ExecScent, which introduced the concept of templates
that can cover not only URLs but also HTTP request head-
ers [9].

However, a potential problem with such signatures or
templates is that they may falsely regard benign communi-
cations as malicious, resulting in false positives, due to an
inherent aspect of regular expressions. Given that the cost
of dealing with malware infection is high, false positives
should be kept to a minimum. The cost can be enormous
in organizations. A study showed that an average of 395
hours a week is spent responding to false alerts of malware
infection, which costs about $1.27 million per year [10].

We therefore propose a system, called BotProfiler, to
generate templates that cause fewer false positives than with
the conventional system ExecScent [9] in order to achieve
more accurate detection of malware-infected hosts. We fo-
cused on the key idea that malicious infrastructures, such
as malware and C&C, are prone to be reused instead of
created from scratch. Our research verifies this idea and
proposes here BotProfiler to profile the variability of sub-
strings in HTTP requests. BotProfiler identifies invariable
keywords based on the same malicious infrastructures and
makes it possible to generate more accurate templates.

Our main contributions are as follows:

• We propose a system called BotProfiler that gener-
ates templates to detect infected hosts after profiling
invariable substrings of URL paths, URL queries, and
user agents in HTTP requests from infected hosts.

• Our research presents the first-ever analysis of the ex-
istence and its reason of invariable substrings used by
attackers and contributes to automatically generating
more accurate and valuable templates than ExecScent.

• The effectiveness of BotProfiler was validated with
actual large traffic datasets. The results indicated that
it reduced the number of false positives by up to two-
thirds compared to ExecScent and even increased the
detection rate of infected hosts.

The rest of this paper is organized as follows. The detec-
tion methodology of BotProfiler is introduced in Sect. 2.
The datasets and the results of our evaluation are described in
Sect. 3. The limitation of our system is discussed in Sect. 4.
Section 5 reviews related work. Finally, Sect. 6 concludes
the paper.

2. Detection Methodology

2.1 System Overview

BotProfiler generates templates to detect infected hosts
in a network. Figure 1 is an overview of the system. It

Fig. 1 BotProfiler system overview.

involves four steps; step 1: variability profiling, step 2: tem-
plate generation, step 3: rarity profiling, and step 4: tem-
plate matching. This matching concept was originally in-
troduced with the conventional system ExecScent; however,
BotProfiler generates more precise and valuable templates
than ExecScent. Steps 1 and 2 involve generating templates
from outbound traffic captured in our sandbox system [11]
running malware samples (malware traffic). Our malware
samples were obtained from our high-interaction honey-
client [12], [13]. Steps 3 and 4 involve matching traffic
with templates based on two criteria: the similarity to the
templates and the rarity of each element in the templates.
For example, an element that has high rarity means that it
appears very infrequently in a deployment network. Bot-
Profiler determines the rarity to use the characteristics of
modern malware samples, which tend to affect a limited
percentage of all hosts in a network, and to reduce false
positives. Figure 1 also shows that the architecture of Bot-
Profiler is divided into a lab environment and deployment
network. The lab environment requires a honeyclient and a
sandbox; however, the deployment network does not require
them and only uses templates from the lab environment.
This architecture readily enables us to deploy BotProfiler
in multiple deployment networks. The details of BotPro-
filer are explained step by step in the following sections.

2.2 Step 1: Variability Profiling

Step 1 enables us to generate templates with regular expres-
sions that cause fewer false positives than ExecScent. We
focused on the key idea that malicious infrastructures, such as
malware and C&C, tend to be reused instead of created from
scratch. On the basis of this idea, in step 1, the variability
of substrings in malware-generated HTTP requests is pro-
filed to identify invariable keywords and variable substrings.
Figure 2 shows the detailed procedure of step 1. First, sub-
strings composed of two or more characters in URL paths,
URL queries, and user agents in HTTP requests of malware
traffic are extracted as candidate keywords. From the candi-
date keywords, invariable keywords are then detected based
on the number of malware samples using the keywords. If
there are more malware samples that use the same candidate
keyword, it is more likely that the keyword is invariable and
reused based on the same malicious infrastructure.

It is claimed that ExecScent [9] observed the existence
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Fig. 2 Example of variability profiling.

of stable URL paths in some malware-generated HTTP re-
quests. However, it does not reveal how to detect and use
them. On the other hand, we focused on invariable key-
words not only in URL paths but also in URL queries, and
user agents. Moreover, step 1 contributes to automatically
detecting such invariable keywords to generate more accurate
and valuable templates without using any particular ground
truth data. The effectiveness of BotProfiler is validated
later in Sect. 3.

2.3 Step 2: Template Generation

2.3.1 Replacing Substrings in HTTP Requests with Regu-
lar Expressions

Step 2 involves generating templates using invariable key-
words produced in step 1. These templates contain features
of URL paths, URL queries, and user agents, based on the
result of clustering HTTP requests in malware traffic. Our
templates include not only URLs but also user agents in
HTTP request headers to reduce false positives with consid-
ering only URLs. To detect polymorphic patterns used by
attackers, HTTP requests are segmented into substrings with
symbols (e.g., ‘/’, ‘?’, ‘=’, ‘-’, ‘.’) and replaced with regu-
lar expressions (e.g., <str; length>) containing the data type
(e.g., string (str), integer (int), hexadecimal (hex), base64)
and length indicated in Table 1. Figure 3 shows examples of
how substrings are replaced with regular expressions using
both ExecScent and BotProfiler. ExecScent basically re-
places all substrings with regular expressions to effectively
aggregate HTTP requests into templates. However, this sys-
tem has a potential problem of falsely matching benign HTTP
requests with templates, which results in false positives, due
to an inherent aspect of regular expressions. For example,
even if the structure of the URL path in a benign HTTP
request (e.g., /foobar/index.htm) and that in malware traffic
(e.g., /images/logos.gif) are totally different, the regular ex-
pressions that correspond to these structures are the same
(e.g., /<str;6>/<str;5>.<str;3>). BotProfiler avoids such
false positives based on regular expressions. Thus, it does
not replace the substrings that match any invariable keywords
produced in step 1 since these substrings tend to be reused by
the same malicious infrastructure. The efficiency for aggre-
gating HTTP requests into templates in ExecScent is higher

Table 1 Example of patterns in regular expressions.
Data type Regular expression
String <str; length>
Integer <int; length>
Hexadecimal <hex; length>
Base64 <base64; length>

Fig. 3 Example of replacing substrings in HTTP requests with regular
expressions.

than that of BotProfiler because more HTTP requests are
converted into the same regular expression patterns. How-
ever, BotProfiler generates more specific templates since
it uses the reused nature of malicious infrastructures.

2.3.2 Aggregating HTTP Requests

To reduce the number of templates and matching cost using
the templates, ExecScent aggregates similar HTTP requests
into one template. BotProfiler also uses this concept to
generate practical templates. Specifically, it introduces two
stages of clustering of HTTP requests with regular expres-
sions. An overview of this is given in Fig. 4.

The first stage consists of clustering using the criterion
of destination IP addresses. This clustering process groups
HTTP requests that share the same destination IP address
range or prefix to generate IP range clusters. The second
stage consists of applying agglomerative hierarchical clus-
tering to HTTP requests within each IP range cluster. The
agglomerative hierarchical clustering sequentially combines
similar requests based on the predefined similarity metric to
output a dendrogram, which is a tree-like diagram represent-
ing the distance between clusters [14]. Cutting the dendro-
gram at a certain height, which is called the cut height and
is determined empirically, divides the IP range cluster into
similar request clusters that include multiple similar HTTP
requests. BotProfiler finally selects 0.5 as the cut height
based on the best result of preliminary experiments. In each
similar request cluster, BotProfiler extracts the centroid,
which refers to one of the HTTP requests that maximizes
the sum of similarities between the request and all other re-
quests. From the centroids, the templates that contain URL
paths, URL queries, and user agents are extracted.

The similarity metric Sim(ha, hb) between HTTP re-
quests ha and hb is defined by the following equation.
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Fig. 4 Overview of process to generate templates using clustering.

Sim(ha, hb) =
1
n
·

n∑
k=1
σk (ha, hb) (1)

Here, σk is the function to calculate similarities between
elements in ha and hb , and n is the number of considered
elements; we set n = 4. Specifically, σ1 is the similarity
between URL paths and is calculated using the normalized
edit distance, σ2 is the similarity between the combination
of parameter names in the URL queries and is calculated
using the Jaccard similarity, σ3 is the similarity between the
values in the URL queries and is calculated using the ratio of
having the same data type and length, andσ4 is the similarity
between user agents and is calculated using the normalized
edit distance. The above definitions result in σk ∈ [0, 1],∀k
and Sim(ha, hb) ∈ [0, 1].

Note that the host header of HTTP requests, such as a
domain name or an IP address, is not included as an element
in the templates. Under the assumption that attackers reuse
their malicious infrastructure, such as web servers and toolk-
its, to conduct other attacks at a different domain name or IP
address, a host header might be changed. For example, using
a domain generation algorithm (DGA) enables attackers to
change domain names frequently. However, elements in our
templates (URL paths, URL queries, and user agents) are
more stable than the host header. Thus, our templates can
be used to detect attacks caused by the reuse of malicious
infrastructure by attackers.

2.4 Step 3: Rarity Profiling

Step 3 contributes to reducing false positives when match-
ing templates with traffic in a deployed network. This step
involves calculating the rarities of elements in our templates
generated in step 2. That is, this step involves finding the
rare elements that appear very infrequently in benign traffic.
Given that the number of infected hosts is far lower than that
of non-infected hosts in a deployment network, the infre-
quent elements might be presumed to be sent from infected
hosts in the network. Rarities of elements vary from net-
work to network; thus, rarities should be calculated on each
deployment network. We focused on the rarities of URL
paths, URL queries, and user agents. ExecScent also uses
a set of other headers in HTTP requests in addition to the
above. However, we did not use it since such other headers
are not available in the traffic capture environment in the
deployment network. The rarity ρt,k of an element k in a
template t is calculated using the following equation.

ρt,k = 1 − nt,k
maxi ni

(2)

Here, nt,k is the number of hosts that send HTTP requests
containing k in t, and maxi ni is the maximum number of
hosts in all elements of the same type (e.g., URL paths,
URL queries, and user agents). The definition results in
ρt,k ∈ [0, 1],∀t,∀k.

2.5 Step 4: Template Matching

Step 4 involves matching traffic to be evaluated with both
the templates generated in step 2 and the rarities in step 3
to detect malware-infected hosts. Specifically, a matching
score Score(h, t) between an HTTP request h and a template
t is calculated from the following equation.

Score(h, t) =
∑n

k=1 σk (h, t) · ω(σk (h, t), ρt,k )∑n
k=1ω(σk (h, t), ρt,k )

· ρh,d

(3)

Here, σk (h, t) is defined in the same way as explained in
Sect. 2.3.2, ρt,k is the rarity of k in t, ρh,d is the rarity of
a destination fully qualified domain name (FQDN) d in h
and is calculated in the same way as step 3, and ω is the
weight function between σk (h, t) and ρt,k and is defined by
the following equation.

ω(σk (h, t), ρt,k ) = 1 +
1

(2 − σk (h, t) · ρt,k )m
(4)

The value m is a fixed parameter and determined empiri-
cally. The above definitions result in Score(h, t) ∈ [0, 1]. A
matching score Score(h, t) is designed to be high when the
similarity between an HTTP request h and a template t is
high, and the rarities of elements in t are high in a deploy-
ment network. If Score(h, t) exceeds a predefined threshold
(matching score threshold), which means an HTTP request
closely matches a template and the elements in the request
have rarely appeared in the deployment network, BotPro-
filer determines h to be generated by an infected host.

3. Evaluation

3.1 Evaluation Overview

BotProfiler was evaluated using extensive actual datasets.
This section explains how we evaluated it in terms of feasi-
bility and detection performance in comparison to the con-
ventional system ExecScent. The feasibility is based on the
effectiveness of invariable keywords and the results of our
variability profiling and template generation. Detection per-
formance was measured by the detection rate of infected
hosts and the false positive rate in the deployed network.
Note that ExecScent is closed-source software; thus, we
reimplement it based on the paper [9] to compare the de-
tection performance in both systems.
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3.2 Datasets

Malware traffic captured in the sandbox and benign traffic
in the deployment network were used to evaluate the effec-
tiveness of BotProfiler when deployed in a real network.
We simulated the situation in which infected hosts exist in
the deployment network. Our evaluation involved dividing
both malware traffic and benign traffic based on the date of
January 1, 2013. Specifically, malware and benign traffic
before that date was used to generate templates or calcu-
late rarities, whereas those kinds of traffic after that date
were used to evaluate the detection rate or false positive rate.
This situation is equivalent to evaluating the future detection
performance of BotProfiler because it uses only the infor-
mation as of January 1, 2013. The details of our datasets are
described further below.

Malware traffic was captured from the sandbox sys-
tem [11] running malware samples. The sandbox supports
executable files only in Microsoft Windows environments.
These malware samples were collected using the honey-
client [12], [13] crawling public blacklists such as MDL [15]
and hpHosts [16] and some commercial blacklists from Au-
gust 2011 to August 2013. Table 2 lists the number of mal-
ware samples in each dataset, number and ratio of samples
detected by antivirus software, number of unique malware
family names, and number of HTTP requests. The Current
dataset was used for generating templates and composed
of HTTP requests generated by 2,507 unique malware sam-
ples. Datasets labeled Future were used to evaluate detection
performance and consisted of datasets divided into months
Future_1–8. Note that there were no overlaps in malware
samples between the Current and Future_1–8 datasets.

All malware samples were checked with multiple an-
tivirus software programs using the VirusTotal [17] as of
January 6, 2015. Kaspersky was selected to label samples
with malware family names for the following two reasons.
One reason is that it achieved the best detection rate except-
ing the uninformative labels (e.g., generic, heuristic). The
other reason is that the rule for family names is openly avail-
able [18]. The latest malware definition file of the software
as of January 6, 2015 was used for the evaluation. Table 2
indicates that the detection rate for antivirus software was not
very good in any of the datasets even if the latest definition
file was used. The reason is that most of the malware samples
were not suitably collected or analyzed by the antivirus ven-
dors. Table 3 lists the top 10 malware family names detected
by the antivirus in both the Current and Future_1–8 datasets.
This result indicates that the malware samples in our datasets
were unbiased in terms of malware families. Moreover, the
result shows the difference in distribution of families be-
tween Current and Future_1–8. Note that malware family
information was used as reference in our evaluation and was
not used in BotProfiler.

Benign traffic was captured in a large, real enterprise
network from December 2012 to August 2013. The traf-
fic was inspected by security engineers using commercial

Table 2 Malware traffic datasets.

Dataset # Malware
samples

# Detected
samples

# Malware
families

# HTTP
requests

Current
(Aug. 2011–Dec. 2012) 2,507 431 (17%) 44 598,534
Future_1 (Jan. 2013) 426 366 (86%) 25 11,427
Future_2 (Feb. 2013) 444 396 (89%) 17 67,030
Future_3 (Mar. 2013) 451 282 (63%) 45 32,113
Future_4 (Apr. 2013) 511 301 (59%) 69 17,996
Future_5 (May. 2013) 616 376 (61%) 55 19,385
Future_6 (Jun. 2013) 438 344 (79%) 37 8,259
Future_7 (Jul. 2013) 695 465 (67%) 40 9,567
Future_8 (Aug. 2013) 1,477 932 (63%) 49 23,020

Table 3 Malware families in malware traffic datasets.
(A) Current

Malware family # Malware samples
Backdoor.Win32.ZAccess 157
Trojan-Ransom.Win32.PornoAsset 50
Backdoor.Win32.PMax 38
Trojan-PSW.Win32.Tepfer 31
Trojan-Downloader.Win32.Agent 25
Trojan.Win32.Bublik 16
Trojan-Downloader.Win32.Andromeda 12
Trojan-Spy.Win32.Zbot 12
Trojan.Win32.FakeAV 8
Trojan-FakeAV.Win32.SmartFortress 8

(B) Future_1–8
Malware family # Malware samples
AdWare.Win32.Agent 541
Trojan-PSW.Win32.Tepfer 272
Trojan-Ransom.Win32.Foreign 242
Backdoor.Win32.ZAccess 174
Trojan-Downloader.Win32.Agent 166
RiskTool.Win32.Agent 155
Downloader.Win32.LMN 132
Trojan-Ransom.Win32.PornoAsset 128
AdWare.NSIS.Indirect 127
AdWare.Win32.iBryte 100

Table 4 Benign traffic datasets.
Dataset # Src IP addresses # HTTP requests
Training (Dec. 2012) 5,261 95,438,564
Testing (Jan. 2013–Aug. 2013) 8,055 723,903,639

ground truth data to filter out the possibility of containing
malicious traffic in January 2015. Table 4 shows the num-
ber of source IP addresses and number of outbound HTTP
requests. The Training dataset was used to calculate rarities,
and the Testing dataset was used to evaluate the false positive
rate.

3.3 Verifying the Effectiveness of Invariable Keywords

In this section, we validate the effectiveness of invariable
keywords used with BotProfiler. Specifically, URL paths,
URL queries, and user agents in HTTP requests of the Cur-
rent dataset were analyzed to reveal effective and ineffective
cases when introducing invariable keywords to the templates.
To the best of our knowledge, this is the first analysis focus-
ing on the structure of malware-generated HTTP requests.
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Table 5 Classification of URL path structure.

URL path class # Malware
families

Effectiveness of
BotProfiler

Fixed path structure 30 (68%) Effective
Random path structure 14 (32%) Ineffective

The following results are the basis of the superiority of Bot-
Profiler.

Table 5 lists the results of analyzing the structure of
the URL paths in each malware family. The results indicate
that 68% of malware families in the Current dataset send
HTTP requests that have a fixed URL path structure, meaning
that it contains fixed and fixed-length substrings. Invariable
keywords in BotProfiler are effective for such fixed URL
path structures. Two reasons can be considered for the large
portion of fixed URL path structures. One is the use of
publicly available APIs by malware samples. Some attackers
use APIs (e.g., GeoIP) to obtain information on infected hosts
such as IP addresses and locations. Using such APIs forces
attackers to comply with the requirements of the APIs and to
send HTTP requests that have a fixed URL path. The other
reason is the high cost for attackers to accept random URL
path structures. For example, attackers need to receive and
interpret HTTP requests with such random URL paths on
their C&C servers.

Table 6 lists the result of analyzing the structure of the
URL queries in each malware family. The results indicate
that 32% of malware families in the Current dataset send
HTTP GET requests that have fixed URL query field names.
Invariable keywords in BotProfiler are effective for such
fixed URL query field names. The reasons for the fixed
URL query field name are the same as those for having a
fixed URL path, namely, the utilization of publicly available
APIs and the high cost for attackers to accept a random URL
query field name. In Table 6, the item listed as no queries in
the HTTP GET method includes instances of checking the
Internet connection using malware samples, and no queries
in the HTTP POST method includes instances of sending
information using the body of the request.

The results of analyzing the structure of user agents in
each malware family are listed in Table 7. The results indi-
cate that 77% of malware families in the Current dataset send
HTTP requests that have the same user agent as general web
browsers such as Internet Explorer and Firefox. User agents
of general web browsers consist of fixed substrings, which
represent the name of the browser or OS, and the version
number (e.g., Mozilla/4.0 (compatible; MSIE 8.0; Windows
NT 6.1)). Therefore, using such fixed substrings as invari-
able keywords in BotProfiler is effective in generating ac-
curate templates. The reason that most attackers use general
web browsers as user agents is that they try to hide their
C&C communications in legitimate HTTP communications.
On the other hand, 11% of malware families send HTTP
requests with unusual user agents (e.g., _Converter_agent,
VBTagEdit). However, most of these user agents include
fixed substrings. Thus, using such fixed substrings as invari-
able keywords is also considered to be effective.

Table 6 Classification of URL query structure.

URL query class HTTP
Method

# Malware
families

Effectiveness of
BotProfiler

Fixed field name GET 14 (32%) Effective
Random field name GET 5 (11%) Ineffective
No queries GET 11 (25%) -
No queries POST 14 (32%) -

Table 7 Classification of user agent structure.

User agent class # Malware
families

Effectiveness of
BotProfiler

Common web browsers 34 (77%) Effective
Unusual user agents 5 (11%) Effective
No user agents 5 (11%) -

Fig. 5 CCDF of number of malware samples for each keyword.

3.4 Results of Variability Profiling

This section explains the results of conducting variability
profiling (step 1) with the Current dataset listed in Table 2.
Specifically, we analyzed the relationship between candi-
date keywords in URL paths, URL queries, and user agents,
and the number of malware samples that use each candidate
keyword. The more malware samples that use a candidate
keyword, the more likely it is that the candidate keyword is
the invariable keyword that is based on the same malicious
infrastructure. Figure 5 is the complementary cumulative
distribution function (CCDF) showing the relationship be-
tween candidate keywords and the number of malware sam-
ples that use the keywords. In this case, CCDF corresponds
to the probability of the candidate keywords being greater
than or equal to the specified number of malware samples.

Figure 5 reveals the existence of invariable keywords
that are reused across multiple malware samples in the URL
paths, URL queries, and user agents of HTTP requests gen-
erated by infected hosts. BotProfiler sets a threshold for
the number of malware samples, and any candidate keyword
that exceeds the threshold is identified as an invariable key-
word. In our further evaluation, the threshold was set to five
malware samples based on the best result in our preliminary
verification. Table 8 lists the number of candidate keywords
and that of invariable keywords in each URL path, URL
query, and user agent. Moreover, Table 9 gives examples of
invariable keywords identified with BotProfiler.
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Table 8 Summary of variability profiling.
URL path URL query User agent

# Candidate keywords 6,521 1,365 601
# Invariable keywords 483 259 142

Table 9 Example of detected invariable keywords.
Element Examples of invariable keywords

URL path
php, js, exe, txt, app, geo, geoid, images, up, stat,
city, jpg, html, img, png, gif, install, htm, css, track

URL query
id, type, affid, ver, name, ts, event, short, currency, group,
fail, ini, cmd, version, file, page, source, os, subid, step

User agent
Windows, Mozilla, NT, compatible, MSIE, SV, Opera,
Agent, User, Presto, Gecko, Lang, ID, rv, Firefox, NET,
CLR, JP, en, US

3.5 Results of Generating Templates

This section describes the results of generating templates
(step 2) with the Current dataset and invariable keywords
output from step 1. Table 10 lists the number of templates
output from ExecScent, which does not use invariable key-
words in templates, and that from BotProfiler, which uses
invariable keywords. As explained in Sect. 2.3.1, the number
of templates in BotProfiler exceeds that in ExecScent be-
cause the efficiency of aggregating requests in BotProfiler
is lower than that in ExecScent.

Examples of templates generated with BotProfiler
are shown in Fig. 6. For example, Template #1 was cre-
ated by keep-alive C&C communications used by the Sality
botnet. Template #2 was produced by C&C communica-
tions that involved counting the number of infected hosts by
the ZeroAccess botnet, which mainly uses P2P as a C&C
protocol. However, BotProfiler succeeded in generating
templates from a limited percentage of HTTP requests in Ze-
roAccess. Template #3 was generated by communications in
which infected hosts are forced to download and install fake
antivirus software. Note that these templates are automati-
cally generated with BotProfiler only from HTTP requests
in the Current dataset without using any other information
such as malware family names obtained by antivirus soft-
ware. With BotProfiler, generated templates are delivered
to the deployment network and matched with traffic using
pre-calculated rarities in the deployment network to reduce
false positives.

The relationship between created templates and mal-
ware family names was analyzed, revealing that templates
were generated from 39 out of 44 malware families in the
Current dataset. There are two reasons that templates were
not generated for five malware families. One reason is that
some malware families do not use HTTP as their C&C pro-
tocol. BotProfiler is only focused on HTTP requests;
therefore, such families were out of the scope of this study.
However, this is not a major problem for us because our de-
ployment network does not allow protocols other than web
protocols (HTTP, HTTPS) using outbound traffic filtering.
The other reason is the limitation of dynamic analysis in the

Table 10 Summary of template generation.
# Input HTTP requests # Output templates

ExecScent 598,534 1,749
BotProfiler 598,534 2,098

Fig. 6 Examples of generated templates.

Table 11 Malware families in generated templates.
Malware family name # Templates
Trojan-Downloader.Win32.Agent 310
Trojan-PSW.Win32.Tepfer 193
Trojan-Downloader.Win32.Andromeda 64
Trojan-Spy.Win32.Zbot 30
Backdoor.Win32.Hlux 22
Backdoor.Win32.Simda 18
Trojan.Win32.Jorik 17
Trojan.Win32.FakeAV 9
Trojan-FakeAV.Win32.FakeSysDef 7
Trojan.Win32.Genome 7

sandbox. That is, malware samples that do not run or do not
generate any HTTP requests in the sandbox are out of the
scope of this study.

Table 11 lists the top 10 malware family names de-
tected by the antivirus software in the generated templates.
A comparison between Table 3 (A) and Table 11 reveals that
the composition of malware families in the Current dataset
and that in templates generated from the Current dataset
differ widely. This is due to the characteristics of C&C
communications. For example, the number of inputted Ze-
roAccess (Backdoor.Win32.ZAccess) malware samples was
large; however, it mainly uses P2P as the C&C protocol and
sends a few variations of HTTP requests. Thus, the number
of generated templates is small.

3.6 Detection Rate

This section compares the detection rate in both ExecScent
and BotProfiler. The detection rate is defined by the ra-
tio of correctly detected infected hosts. For simplicity, an
infected host is only infected with one malware sample at a
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Table 12 Detection rate on malware traffic datasets.
Matching score threshold 0.75 0.80 0.85 0.90 0.95

Future_1 ExecScent 91.08% 90.14% 88.97% 60.56% 60.33%
BotProfiler 91.55% 91.08% 89.91% 69.95% 62.91%

Future_2 ExecScent 88.96% 88.96% 84.01% 79.28% 79.28%
BotProfiler 89.64% 89.64% 84.68% 79.50% 79.28%

Future_3 ExecScent 68.74% 65.41% 52.55% 26.39% 26.39%
BotProfiler 67.85% 63.41% 54.55% 27.49% 26.83%

Future_4 ExecScent 37.18% 28.57% 15.07% 2.94% 2.74%
BotProfiler 35.81% 23.48% 14.68% 3.33% 3.13%

Future_5 ExecScent 32.31% 21.92% 11.53% 1.14% 0.81%
BotProfiler 28.90% 18.34% 10.88% 1.14% 0.81%

Future_6 ExecScent 26.03% 14.38% 4.57% 0.23% 0.23%
BotProfiler 22.37% 11.64% 6.39% 0.23% 0.23%

Future_7 ExecScent 23.31% 16.83% 4.46% 0.43% 0.43%
BotProfiler 17.41% 9.78% 7.19% 0.43% 0.43%

Future_8 ExecScent 19.96% 14.83% 3.10% 0.27% 0.27%
BotProfiler 14.16% 9.37% 7.35% 0.27% 0.27%

time. That is, a malware sample in a dataset was consid-
ered to be detected if at least one of the HTTP requests in
each malware sample was detected with BotProfiler. In
our evaluation, we determined the detection rate of BotPro-
filer, which generates templates with invariable keywords
output from step 1, and that of ExecScent, which does not
use invariable keywords.

Table 12 lists the results of detecting malware samples
in Future datasets using templates generated by the Current
dataset. This table shows detection rates with a variable
matching score threshold. If Score(h, t) exceeds the match-
ing score threshold, BotProfiler determines the HTTP re-
quest h as being generated by an infected host, as described in
Sect. 2.5. The Future datasets consisted of datasets divided
by month Future_1–8. Each Future dataset contains malware
samples collected after the Current dataset was compiled.
Our evaluation using the Future datasets enabled us to track
changes in the detection rate of templates from the Current
dataset over time.

The results reveal three facts concerning detection rates
in both systems. First, the detection rates of both systems
decreased linearly over time (from Future_1 to Future_8)
in each matching score threshold. This is due to matching
Future datasets with the same templates generated from the
Current dataset, even if the malware samples in the Future
datasets vary over time. This fact led us to conclude that
templates should be updated using the latest malware sam-
ples on a regular basis. In this case, the templates should be
updated after two months (Future_2) to obtain a detection
rate of at least 80% at a matching score threshold of 0.85.

Second, the detection rates of BotProfiler tended to
be lower than those of ExecScent as time advanced. For
example, at a matching score threshold of 0.75, the detec-
tion rates in Future_1 and Future_2 were more than those of
ExecScent. On the other hand, the detection rates between
Future_3 and Future_8 were lower than those of ExecScent.
These results indicate that the effective period of templates
in ExecScent is longer than that of BotProfiler since the
matching area covered by the regular expressions of ExecS-
cent is wider than that of BotProfiler. However, the actual

Fig. 7 CDF of URL path rarities in malware traffic datasets.

operation of BotProfiler in the deployment network in-
cludes downloading templates from the lab environment at
least once every month. In such a case, the detection rate of
BotProfiler is superior to that of ExecScent.

Finally, BotProfiler improved the detection rates with
all thresholds between 0.75 and 0.95 in Future_1 and Fu-
ture_2, even when it introduced invariable keywords to gen-
erate more specific templates. This is not a surprising re-
sult and is reasonable. The only reason is that BotPro-
filer determines not only the similarity to the templates
but also the rarity of each element in the templates. For
example, the rarity of the URL path in BotProfiler (e.g.,
/images/<str;5>.gif) is higher than that of ExecScent (e.g.,
/<str;6>/<str;5>.<str;3>) because the latter matches various
types of HTTP requests in the deployment network. Figure 7
shows the CDF of URL path rarities in the deployment net-
work when calculating a matching score of Future datasets.
This graph illustrates that URL path rarities in BotProfiler
are higher than those of ExecScent. This difference con-
tributes to raising the matching scores of HTTP requests to
improve the detection rates in BotProfiler.

3.7 False Positive Rate

This section compares the false positive rates for both Exec-
Scent and BotProfiler. The false positive rate is defined by
the ratio of falsely detected benign HTTP requests. Table 13
presents the false positive rates with variable matching score
thresholds. The results indicate that the false positive rates
of BotProfiler are always lower than those of ExecScent
for all matching score thresholds between 0.75 and 0.95. In
particular, at the threshold of 0.75, the false positive rate of
BotProfiler (1.18%) was less than one-third that of Exec-
Scent (3.89%). This is due to the effect of using invariable
keywords in BotProfiler. Our invariable keywords enable
BotProfiler to generate more accurate templates, which
causes fewer false positives. We conclude that BotProfiler
achieves a higher detection rate and lower false positive rate
simultaneously under the condition in which templates are
regularly updated. In operating BotProfiler in the deploy-
ment network, a matching score threshold is set based on an
acceptable false positive rate in the network. For example,
setting the threshold at 0.85 enables BotProfiler to reduce
the false positive rate to 0.06%.
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Table 13 False positive rate on benign traffic datasets.
Matching score threshold 0.75 0.80 0.85 0.90 0.95
ExecScent 3.89% 0.46% 0.08% 0.04% 0.01%
BotProfiler 1.18% 0.20% 0.06% 0.03% 0.01%

4. Limitation

4.1 Detecting Invariable Keywords

Our variability profiling (step 1) heuristically set the thresh-
old of the number of malware samples to five, based on the
result of the preliminary verification. That threshold is used
to identify invariable keywords; that is, any candidate key-
words that exceed the threshold are identified as invariable
keywords. Specifically, increasing the threshold reduces the
number of invariable keywords and vise versa, as shown in
Fig. 5. Reducing the number of invariable keywords causes
an expansion of the matching area of regular expressions in
our templates. This leads to an increase in both the detection
rate and the false positive rate. Our future task is to auto-
matically set the optimal threshold to meet the requirement
for detection rate or false positive rate in each deployment
network.

BotProfiler needs to update not only templates but
also invariable keywords to catch up the latest trend of mal-
ware samples. The cost for updating invariable keywords
is not so large and is small enough to update monthly at
the same timing as updating templates. For example, in our
preliminary experiment, it took only 18 seconds to create in-
variable keywords for Current dataset that contains 598,534
HTTP requests. Therefore, if we set the threshold prelimi-
nary, our system can update invariable keywords on a regular
basis to support the latest attacks.

Dynamic analysis with code tainting can be used as an-
other implementation of the concept of our variability profil-
ing. Code tainting is an approach to track data propagation
on a running system and is combined with dynamic analysis
or a sandbox system [19]. Under the assumption that the
data propagation reveals the existence of fixed substrings in
HTTP requests generated by malware samples, such fixed
substrings can be utilized as invariable keywords. However,
code tainting is a resource-hungry technique to run. There-
fore, our lightweight approach, which is based on counting
the number of malware samples, has a competitive advantage
over code tainting.

4.2 Generating Templates from Dynamic Malware Analy-
sis Results

As shown in Fig. 1, BotProfiler generates templates from
malware traffic. That is, to generate ideal templates, our lab
environment needs to collect malware samples exhaustively
and to analyze the collected samples adequately. These tasks
may be problematic regarding cyber security for two reasons.
One reason is that it is virtually impossible to collect all mal-
ware samples because attackers mass-produce their malware

samples using a toolkit, and they have recently been target-
ing particular environments or organizations using drive-by
downloads or advanced persistent threats (APTs). The other
reason is that some malware samples can evade detection by
identifying the sandbox environment. If malware samples
include such a function, they cannot be dynamically ana-
lyzed using the sandbox. Kirat et al. recently proposed a
malware analysis system using a real environment that does
not include a monitoring component inside the system [20].
Such an analysis method may be a solution to analyze so-
phisticated malware samples.

4.3 Update of Rarities on Deployment Network

BotProfiler generates rarities based on one month of traffic
in the deployment network to reduce false positives. How-
ever, the rarities should be updated with the appropriate tim-
ing. For example, the rarities of URL paths or URL queries
might be dynamically changed when websites or web appli-
cations, which members in the deployment network usually
use, are updated. Moreover, user agents might be changed
if new software is introduced in the deployment network or
if regularly used browsers are updated by their vendors. As
stated above, the appropriate timing for updating the rarities
depends on the situation in the deployment network. Thus,
our future task might include developing a method for calcu-
lating rarities in diverse or multiple deployment networks.

5. Related Work

5.1 Generating Network-Based Signatures or Templates

Much research has been done on generating network-based
signatures or templates as a network-based countermeasure
against infected hosts. Xie et al. proposed a system called
AutoRE for generating signatures with regular expressions
to detect polymorphic URLs in spam emails sent from bot-
nets based on the nature of similar substrings in malicious
URLs [7]. BotProfiler differs from AutoRE in that the fo-
cus is not spam emails but infected hosts, and the suffix-array
algorithm proposed for AutoRE cannot appropriately be ap-
plied to substrings in HTTP requests. Perdisci et al. proposed
a method of generating signatures with regular expressions
to detect the URLs used in C&C communications based
on HTTP traffic captured in a controlled environment [8].
BotProfiler targets not only URLs but also HTTP requests
and determines not only similarities but also rarities to re-
duce false positives. Nelms et al. improved Perdisci et al.’s
method [8] in their system called ExecScent, which covers
HTTP requests [9]. ExecScent is one of the most advanced
systems for generating templates for infected hosts using
regular expressions and was a significant influence in devel-
oping BotProfiler. We expanded ExecScent to introduce
the concept of invariability in substrings in HTTP requests.
Zarras et al. proposed the BotHound system to focus on
the sequence of components in HTTP headers to generate
templates [21]. BotProfiler does not use the sequence
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of HTTP headers, that is, it is a more lightweight system
than BotHound. Zand et al. proposed a method of generat-
ing signatures to detect C&C communications by focusing
on frequent words in C&C communications [22]. The idea
is similar to our invariable keywords, although this method
cannot generate accurate templates composed of URL paths,
URL queries, and user agents and cannot determine both
invariable and variable features in templates.

5.2 Modeling and Detecting Botnets

Another countermeasure against infected hosts includes
modeling and detecting multiple infected hosts by using char-
acteristics of botnets. Gu et al. proposed BotSniffer [23] and
BotMiner [24] to detect simultaneous and similar network
behaviors between multiple hosts in order to identify the ac-
tivities of infected hosts based on the key idea that infected
hosts of the same botnet have similar characteristics. Un-
like with BotProfiler, controlling the false positive rate
is generally difficult with these anomaly-based systems, and
they are also difficult to deploy in a large and real network.
Rossow et al. proposed a method to observe and model P2P
botnets such as Zeus, ZeroAccess, and Kelihos [25]. Also,
Zhang et al. proposed a method to detect such P2P botnet
activities in a network [26]. BotProfiler does not focus on
P2P botnets because our deployment networks basically only
accept web protocols and do not accept P2P protocol. Ca-
ballero et al. proposed a method called protocol reverse en-
gineering to analyze messages in unknown or undocumented
protocols used in C&C communications [27]. BotProfiler
only focuses on HTTP request headers, as HTTP is a known
and documented protocol. Thus, our system does not need
to use such techniques.

5.3 Detecting C&C Domain Names

The other approaches focus on the characteristics of domain
names used in C&C communications to detect accesses to
such domain names as infected hosts’ activities. Holz et
al. and Passerini et al. proposed methods to utilize fea-
tures of Fast-Flux, which is a technique used by attackers
to frequently change the mappings of their C&C domain
names and a lot of IP addresses, and to identify C&C do-
main names [28], [29]. Also, Schiavoni et al. proposed a
method focusing on the characteristics of DGAs, which are
frequently used in C&C to generate multiple domain names,
and to detect such DGA domain names [30]. These methods
focus exclusively on the relationship of domain names and
differ from BotProfiler in the way that our templates only
focus on URL paths, URL queries, and user agents. There-
fore, these methods could be combined with our templates
to detect infected hosts more accurately.

6. Conclusion

We proposed a system called BotProfiler to generate tem-
plates to detect infected hosts in a network. The key idea of

our proposal is that malicious infrastructures such as mal-
ware and C&C tend to be reused instead of created from
scratch. On the basis of this key idea, BotProfiler profiles
invariable substrings in HTTP requests and generates more
accurate templates than a conventional system. Our evalu-
ation with large actual datasets revealed that BotProfiler
reduced false positives by up to two thirds compared with the
conventional system, and it even increased the detection rate
of infected hosts. We also described a limitation of BotPro-
filer and the problems that remain to be solved regarding
cyber security.
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