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SUMMARY As the demand for higher transmission rates and spectral
efficiency is steadily increasing, the research and development of novel mo-
bile communication systems has gained momentum. This paper focuses on
providing a comprehensive survey of research and development activities
on fifth generation mobile communication systems in Japan. We try to sur-
vey a vast area of wireless communication systems and the developments
that led to future 5G systems.
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1. Introduction

With the tremendous growth in wireless data traffic and mo-
bile services, fifth generation (5G) mobile communication
systems have gained considerable interest from academia,
industry, and standards bodies. Among various technolog-
ical aspects related to 5G mobile communication systems,
a survey article [1] covers research and development activ-
ities for 5G reported in the IEICE technical committee on
radio communication systems (RCS), in which nearly 400
papers are presented every year. The IEICE RCS offers
academic open discussion to 5G researchers in operators,
vendors, and universities in Japan. Unlike IEEE Standards
Association, IEICE RCS does not have standardization ac-
tivity. In this survey paper, we expand its scope to include
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major published papers in Japan. And also, references are
updated.

The traffic increasing rate of the mobile communica-
tion systems in Japan is around 50% per year [2]. This in-
creasing rate leads to 1000 folded traffic within 20 years.
Therefore, one of the main objectives of 5G mobile commu-
nication systems should, not only offer more traffic capacity,
but also support emerging applications described in Sect. 2.

As the key for the success of 5G, most of the re-
searchers emphasize the technical aspect of the use of higher
frequency bands. This is the most important issue to be cov-
ered by R&D activities. Throughout this article, we describe
in-depth survey of recent progress on cutting-edge technolo-
gies intended to contribute toward 5G, especially the tech-
nologies for higher frequency bands are highlighted.

The remainder of this paper is organized as follows.
We first present definition of 5G in Sect. 2. Section 3 cov-
ers heterogeneous networks and radio access network archi-
tectures. Section 4 introduces technical studies for 5G fre-
quency bands. Section 5 describes multi-antenna technolo-
gies. Advanced modulation and multiple access schemes
are presented in Sect. 6. In Sect. 7, challenges to further
enhance coverage and services are given. Section 8 sum-
marizes proof-of-concept activities. Finally, Sect. 9 presents
the conclusions of this paper.

2. Definition of 5G

Currently, the service rollout of long term evolution (LTE)-
Advanced “true 4G” is being underway to further enhance
LTE performance. However, anticipated challenges of the
next decade (2020s) are so tremendous and diverse that
there is a vastly increased need for a 5G mobile communi-
cations system with even further enhanced capabilities and
new functionalities.

5G use cases, requirements, concept, and radio access
technologies (RATs) are being discussed by many operators
and vendors worldwide [3]–[6], and especially in Japan,
“Association of Radio Industries and Businesses (ARIB)
2020 and Beyond Ad Hoc” organization has summarized
them [7], [8]. In [8], 5G will enhance socio-economic satis-
faction for existing services. 5G provides more efficient and
safer transportation, home security and remote control of
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Fig. 1 Maximum system capabilities of 5G RAN [7].

consumer electronics, collision avoidance and rescue from
distress and accidents, and prediction technology for dis-
aster using massive sensors. These services support ma-
chine type communications (MTC) and Internet of things
(IoT) with massive connectivity and ultra reliability. Dis-
tance learning, virtual experience, remote medical exam-
ination, and richer contents such as multiuser ultra-high-
definition teleconferences, videos, music, and books are also
experienced by users in 5G. In addition to the enhance-
ment of user satisfaction for existing services, 5G induces
completely new use cases. Smart citizen services realize
knowledge creation and activity support. Shared experi-
ence provides virtual and perceptual touches with fidelity,
reality and tactile sense. Automatic information sharing
in proximity assists communication between unacquainted
persons. In the 5G era, such new applications and services
are expected to emerge to satisfy diverse needs and require-
ments of users. In [7]and [8], 5G radio access network
(RAN) needs to provide significant performance gains in
system capacity (> 1000×), peak data rates (> 10 Gbps),
the number of simultaneously connected devices, and la-
tency as shown in Fig. 1. 5G RAN consists of New RAT(s)
and Enhanced IMT-Advanced (LTE-Advanced), and New
RAT(s) will emerge to satisfy the requirements not satisfied
by Enhanced IMT-Advanced that is a further enhancement
of IMT-Advanced as shown in Fig. 2.

In order to ensure a sustainable system evolution, it is
crucial to extend the spectrum usage to the frequency bands
higher than currently used frequency bands. To this end, 5G
will efficiently integrate new spectrum bands over a wide
range of frequency bands. One example of 5G promising
technologies for the integration of lower and higher fre-
quency bands is control (C)-plane and user data (U)-plane
split over the radio access [3], [9]. For exploitation of
higher frequency bands such as centimeter wave and mil-
limeter wave, massive MIMO, which employs very large
number of antenna elements, is one promising technology
for the 5G RAN [3]–[5], [7], [9].

On the other hand, [10] presented the Ministry’s efforts
along with ‘The 5G Roadmap’ contained in the interim re-
port of ‘Radio Policy Vision Council’ toward realizing 5G

Fig. 2 Definition of 5G [7].

around 2020. Note that 5G activities in “2020 and Beyond
Ad Hoc” are continued by “Fifth Generation Mobile Com-
munications Promotion Forum (5GMF)” [2].

3. 5G Architecture

3.1 Heterogeneous Network

A promising concept for the 5G RAN architecture is in-
troduced [5], [11]–[15]. As shown in Fig. 3, 5G RAN is
generally perceived as a heterogeneous network employ-
ing different RATs, that combines with Enhanced IMT-
Advanced using the existing cellular frequency bands and
New RAT(s) using higher frequency bands with wider band-
width as an enabler of more advanced capabilities. The
anticipated future traffic growth is so tremendous that, be-
sides further spectrum efficiency enhancements, there is a
vastly increased need for further network densification with
small cells, and utilization of higher and wider frequency
bands. Figure 4 shows these promising approaches for
increasing network capacity introduced in [11]. The rest
of this section mainly focuses on heterogeneous network
structure with different cell sizes and different frequency
bands. The technical studies for spectrum expansion with
higher and wider frequency bands are introduced in Sect. 4.
Those of spectrum efficiency improvement, such as multi-
antenna technologies, advanced modulation and multiple
access schemes, are introduced in Sect. 5 and Sect. 6, re-
spectively.

From the view points of increasing network capacity
and improving Quality of Experience (QoE), network den-
sification based on heterogeneous cell deployment using dif-
ferent cell sizes, in which small-cell base stations (BSs) with
a low transmission power are overlaid at the hot spot area
(local area) of a wide area covered by macro-cell BS with
a high transmission power, is a very important approach for
5G RAN as well as 4G RAN i.e., LTE-Advanced. This is
because the heterogeneous cell deployment enables network
densification without the change of the macro-cell cover-
age. Note that co-channel inter-cell interference (ICI) from
macro cells to small cells is unavoidable when the same car-



1640
IEICE TRANS. COMMUN., VOL.E99–B, NO.8 AUGUST 2016

Fig. 3 A promising concept of heterogeneous network for 5G RAN [11].

Fig. 4 Promising approaches for increasing network capacity [11].

Fig. 5 Heterogeneous cell deployment scenarios [17].

rier frequency is applied between macro and small cells, as
shown in Fig. 5(a). On the other hand, when the different
carrier frequencies are applied between them, the ICI is eas-
ily avoidable, as shown in Fig. 5(b).

In the heterogeneous cell deployment, however, there is
a lack of connectivity and mobility in small cell area, when
small cells using higher frequency bands are high-densely
overlaid over existing macro cells in lower frequency bands
as shown in Fig. 5(b). In order to solve this issue, a new
network concept with C-plane/U-plane split configuration,
called Phantom-cell, is also proposed [11]. Figure 6 shows
the concept of Phantom-cell using C-plane/U-plane split.
The Phantom-cell concept is very reasonable for the fol-
lowing reasons. In the Phantom-cell concept, the C-plane
is mainly provided by macro-cells in a lower frequency
band to maintain good connectivity and mobility. On the
other hand, U-plane is mainly provided by small-cells us-
ing higher frequency bands with wider bandwidth in order

Fig. 6 C-plane / U-plane split and Phantom cell [11].

to boost the user data rate. Therefore, it is a promising
approach for 5G RAN developments to establish heteroge-
neous network technologies using different RATs and dif-
ferent cell sizes with different carrier frequency based on C-
plane/U-plane split. A development of heterogeneous net-
work technologies based on C-plane/U-plane split is also
introduced in order to realize 5G RAN [12].

In heterogeneous networks for 5G RAN using a
huge number of small cells, efficient small-cell opera-
tion techniques, such as ICI mitigation among small cells,
cell-discovery, cell-selection, and self-organizing networks
(SON), are also very important. Since the highly dense
small-cells increase residual ICI among small-cells due to
common signals constantly transmitted from all BSs, the
residual ICI degrades the user throughput. In order to solve
this issue, the concept of small-cell On/Off operation, in
which small-cell BSs without user-data traffic stop most
of common signals so as to decrease the residual ICI, is
introduced [16], [17]. The small-cell On/Off operation is
also effective to reduce power consumption for heteroge-
neous networks with dense small-cells. A highly energy-
efficient small-cell BS On/Off switching algorithm with the
aim of balancing traffic load and energy consumption is pro-
posed [18]. On the other hand, the performance degradation
problem on small-cell discovery in high-density small-cell
environments is revealed [19], [20], and a small-cell discov-
ery improvement scheme is introduced when applying the
small-cell On/Off operation in the case that small-cell BSs
synchronize to macro-cell BSs in time domain [17], [21].
SON algorithms for heterogeneous cell deployment scenar-
ios are proposed in order to operate high-density small cells
efficiently [22], [23]. In [22] and [23], automatic neighbor
relation (ANR), mobility robust optimization (MRO), and
coverage and capacity optimization (CCO) are introduced.

3.2 RAN Architecture

In order to reduce the operating cost of heterogeneous
network using a huge number of small cells, use of a
centralized- (or cloud-) RAN (C-RAN) architecture has at-
tracted attention [14]. Figure 7 shows the typical C-RAN ar-
chitecture. C-RAN consists of a center unit (CU), fronthaul
links and remote radio units (RRUs). CU carries out the
layer 1, layer 2 and layer 3 processing. Specifically, layer 1
processing includes digital baseband modulation. Layer 2 is
composed of media access control (MAC), radio link con-
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Fig. 7 Typical C-RAN architecture.

trol (RLC) and packet data convergence protocol (PDCP)
layer. Layer 3 is composed of radio resource control (RRC)
layer. RRU transmits/receives radio signals. Since CU and
RRUs work in close cooperation, it becomes easy to intro-
duce new technologies to enhance network capability. One
of the new technologies is coordinated multi point transmis-
sion/reception (CoMP). C-RAN architecture and CoMP are
very compatible because the information for the coordinated
cells can be treated in CU. Coordinated beamforming (CB),
which is one of CoMP schemes, was studied for ultra-high-
density small cell [24]. In CB, precoding weights for trans-
mission antennas are selected so as to avoid ICI. By apply-
ing CB, it was possible to achieve network capacity in pro-
portion to the ultra-high-density of small cell.

In C-RAN architecture, fronthaul links require higher
data rate and lower latency as radio data rate is higher [25].
In order to address these requirements, there are two ap-
proaches. One approach is to enhance data compression
scheme for fronthaul links; the other approach is to revise
C-RAN architecture to alleviate the requirements of fron-
thaul links. As the former approach, an enhanced data com-
pression scheme was proposed [26]. The data compression
scheme minimized the performance degradation with reduc-
ing the latency increase due to data compression/extension.
As the latter approach, layer2(L2)-C-RAN architecture was
proposed [27]. In L2-C-RAN architecture, the function of
processing on layer1 is transferred from CU to RRU.

Similar to fronthaul links, an enhancement of backhaul
links was proposed for group mobility issue [28]. Group
mobility issue is performance degradation due to concen-
tration of control load. The proposal is to introduce mov-
ing cells, which are installed inside the moving object such
as bus and train, and to apply massive MIMO to backhaul
links. It was reported that the proposal was feasible in terms
of backhaul link capacity and amount of control signal.

4. Technical Studies for 5G Frequency Bands

In order to provide throughput of over 10 Gbps, in addition
to 4–6 GHz bands, new bands over 6 GHz, referred to as
higher frequency bands, are required. Technical problems
and solutions related to usage of the higher frequency bands
are described in this section.

For 5G, wide frequency bands from 4 GHz to 100 GHz
have been well studied. In [29], low-SHF band (–8.4 GHz)
are evaluated with the time-spatial propagation model.
In [30], high-SHF band (6–30 GHz) and EHF band (30–
60 GHz) are introduced as promising bands, and vegeta-
tion loss, human body shadowing, and scattering effect on
rough surface are some of loss inducing elements in the
aforementioned bands. On MIMO aspects, a multi-path
angular spread is receiving much more attention and re-
sults from several measurement campaigns demonstrate rich
multipath angular spread and effectiveness of MIMO trans-
mission in the following conditions: outdoor-to-indoor in
2.2 GHz [31], indoor measurements in 3.35 GHz [32], out-
door measurements in 11 GHz [33] and 44 GHz [34].

In higher frequency bands, high gain antennas with
high directivity are effective to overcome the severe path
loss effect. Massive MIMO technology is a promising one
mentioned in Sect. 5.

Also, rain attenuation in higher frequency bands be-
comes much severe and its effects are well evaluated [35]. In
addition, studies on user’s hand shadowing effect against the
mobile terminal are other issues [36]. [37] evaluates perfor-
mance of the prototype with two 4-elements array antennas
in order to avoid this effect. Furthermore, [38] shows the ef-
fectiveness with an antenna-sharing cooperation among mo-
bile terminals, which can multiply the number of antenna
elements virtually.

Thanks to these research activities, a cost-effective base
station with large number of antennas is realized. Moreover,
the distance between the base station and the mobile termi-
nal can be extended to several tens of meters and more. As
a result, an environmentally friendly 5G system in higher
frequency bands can be realized with the reduced number of
base stations.

5. Multi-Antenna Technologies

Multi-antenna technologies are mandatory technologies in
5G wireless systems to increase spectral efficiency. Since
frequency resource is highly limited, spectral efficiency is
expected to be mainly improved by spatial reuse.

Multi-user multi-input multi-output (MU-MIMO) can
achieve MIMO transmission by regarding the multiple users
as the virtual large scale array antenna system. Nonlin-
ear precoding MU-MIMO is promising to increase sys-
tem capacity [39], [40]. However, the transmission per-
formance seriously degrades due to inter-user-interference
(IUI) caused by low channel state information (CSI) accu-
racy. [41] proposes IUI suppression scheme for nonlinear
MU-MIMO. In the receiver, perturbation vector is temporar-
ily estimated through spatial linear filtering and then maxi-
mum likelihood detection (MLD) with sphere decoding is
applied for the filtered signal space. [42] proposes THP
scheme minimizing the influence of noise enhancement at
the receivers by placing the diagonal weighted filters at both
transmitter side and receiver side with square root.

Beamforming using adaptive antenna array (AAA) is a
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significant technique for flexible cell design. Various beam-
controlling technologies including beam search [43], beam
transition [44], and coordinated beamforming [24] are stud-
ied. Full-dimensional MIMO (FD-MIMO), also known as
three-dimensional MIMO (3D-MIMO) or vertical MIMO,
is a new beamforming paradigm in cellular systems. Spa-
tial multiplexing gains will be obtained by exploiting not
only horizontal dimension but also the vertical dimension.
[45] reports that the throughput of FD-MIMO is 30% larger
than the legacy MIMO in cumulative distribution function
(CDF) 50% from the field experiment for 4–by–2 MU–
MIMO transmission. Link-adaptable non-linear precoder
for FD-MIMO is studied in [46].

Massive MIMO is also a key technology for 5G wire-
less systems. Base station with huge number of trans-
mit/receive antennas will realize sharper beamforming,
wider coverage expansion, and higher order spatial division
multiplexing. With the massive MIMO technologies, [47]
and [48] investigate a novel mobile communication system.
[49] proposes a massive MIMO system applied in line-of-
sight (LOS) link to establish a wireless entrance MU-MIMO
system. Since direct wave is dominant and stable in LOS en-
vironment, coherent combining of desired signal is achieved
without frequent CSI update. IUI is fortunately suppressed
without null-steering since interference waves are randomly
combined thanks to massive antennas property. Another ef-
ficient IUI suppression technique with massive MIMO is
null-space extension [50], which uses some spatial degrees
of freedom to expand the dimension of the null space with
current and past CSIs. The complexity of MIMO algorithms
grows significantly with the number of antennas. Cost-
effective solutions for base stations with large number of
antenna elements are also important research topics: hy-
brid massive MIMO systems with fixed and adaptive ana-
log beams are investigated in [44], [51], [52], respectively,
which provide beam-space MIMO processing with the num-
ber of spatial-multiplexing streams. Other practical issue for
massive MIMO is computational complexity for detection at
the receiver. Belief propagation (BP) algorithm based sig-
nal detection technique [53], that passes likelihood between
antenna nodes, is an attractive approach to reduce the com-
plexity proportional to the second power of the number of
antenna elements. Antenna calibration regarding the differ-
ence of each radio frequency (RF) circuit on antenna is the
other practical issue for realizing massive MIMO. [54] and
[55] propose antenna calibration schemes for implicit feed-
back downlink beamforming exploiting uplink CSI. On the
other hand [56] proposes an antenna calibration scheme for
explicit feedback beamforming.

Mobile station like small smart-phone may have a lim-
itation for the number of installed antennas due to its form
factor. Overloaded MIMO, that permits the more signal
streams multiplexing than receive antennas, is an approach
to achieve much higher speed transmission for downlink
without huge number of reception antennas. Joint detec-
tion and decoding for repetition-coded overloaded MIMO-
OFDM is proposed in [57]. The transmitted signal stream is

encoded by a repetition code and the spatially multiplexed
signals are jointly decoded after joint MLD in the receiver.
Various receiver structures with idea of virtual channels for
overloaded MIMO is introduced in [58]. It achieves supe-
rior performance to MIMO linear detectors with much lower
computational complexity than MLD receivers.

MIMO transmission can be jointly used with other
transmission technologies. [59] and [60] evaluated MIMO
with non-orthogonal multiple access technology mentioned
in Sect. 6.

6. Advanced Modulation and Multiple Access Schemes

Considering 5G, further enhancement to achieve significant
gains in capacity and system throughput performance is a
high priority requirement. Non-orthogonal multiple access
(NOMA) has been attracting much attention as a candidate
multiple access scheme for future radio access network sys-
tems. In NOMA, multiple signals for different users are su-
perimposed before transmission on common resources. At
the receiver, successive interference cancellation (SIC) is
applied in order to reduce the inter-user interference caused
by the non-orthogonally multiplexing. NOMA can be ap-
plied to both downlink and uplink [61]–[65].

In NOMA, the signals are assigned different power
levels to facilitate reception at the receiver and therefore,
not only channel dependent scheduling, which is commonly
used in 4G, but also pairing of multiplexed users and multi-
user power allocation should also be considered for further
enhancement of user throughput. For downlink, the perfor-
mance of NOMA using various user pairing and multi-user
power allocation schemes are studied in [61], [62]. In [62],
pre-defined user grouping and fixed per-group power allo-
cation is proposed to reduce the overhead associated with
power allocation signaling while maintaining a hefty por-
tion of NOMA gains. The complexity reduced proportional
fair scheduling method for NOMA is proposed in [63]. It
was shown that by searching only the user combinations
that are worth non-orthogonally-multiplexing, the number
of the user combinations to be searched can be significantly
reduced while keeping almost identical average and cell-
edge throughput performance compared with conventional
exhaustive search method. Similar to downlink NOMA, re-
source allocation, user grouping, and power allocation is-
sues are studied in [64], [65] for uplink single-carrier fre-
quency division multiple access (SC-FDMA).

NOMA is also beneficial for the reliable readiness
communication, which is one of key applications of 5G.
By simultaneously transmitting own message by spectrum
sharing on the basis of NOMA from plural nodes, the la-
tency can be shorter. Resource management methods are
proposed in [66] to suppress the impact of interference.

The researches on NOMA above are mostly based
on traditional orthogonal frequency division multiplexing
(OFDM) waveform design. On the other hand, new wave-
form has also been attracting much attention in recent year
as one of the key enabling technologies for 5G. New wave-
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form research is also undergoing a paradigm shift from or-
thogonal to non-orthogonal design approach [67]. Faster-
than-Nyquist (FTN) transmission and filter bank multi car-
rier (FBMC) transmission are considered as examples of
candidate non-orthogonal transmission schemes for future
systems that could improve the spectrum efficiency by in-
creasing the data rate. For both FTN and FBMC, channel es-
timation is one of the key technical issues as classical chan-
nel estimation schemes used for OFDM cannot be applied
in a straightforward manner due to presence of interference
caused by the relaxation of the orthogonality. Channel esti-
mation methods are studied in [68] for FTN and in [69] for
FBMC.

A well-known simultaneous transmission and recep-
tion (STR) or full duplex transmission can also enhance
the spectral efficiency (theoretically double the spectral ef-
ficiency), and is expected to be realized in 5G. An STR
scheme utilizing MIMO spatial modulation, in which the
unselected antenna is used as a reception antenna of STR, is
proposed in [70]. Development of self-interference cancel-
lation technique is proposed in [71].

7. Challenges to Further Enhance Coverage and Ser-
vices

In 5G system, it is considered that technologies which are
not currently implemented are to be developed and to be
included as much as possible. Some topics of these tech-
nologies are introduced in this section.

The proximity service, defined as a concept to improve
user experiences and resource utilization by taking advan-
tage of users’ proximity, becomes more important in recent
mobile communications. By the proximity communication
using location information, the large effects such as cov-
erage expansion, latency reduction, spectral efficiency im-
provement, and provision of social networking service, are
expected. Device to device (D2D) communication is quite
suitable for those proximity services and has already been
discussed in 3GPP standardization. Because it is planned
that the cellular uplink resource is shared with the D2D link,
the interference mitigation between cellular uplink and D2D
link, and between D2D links is essential. To realize it, a ran-
dom resource allocation scheme to suppress the interference
for D2D throughput enhancement is proposed [72]. Further-
more, a transmit power control scheme with interference-
aware adaptive transmission modes in D2D is proposed and
its improvement on system capacity is shown [73]. Before
D2D communication, the D2D discovery process is always
needed, and it is shown that the discovery resource enhance-
ment and the intermittent transmission from D2D terminal
improves the discovery performance [74]. The demands for
D2D communication is growing and the commercial use
will be started in the initial stage of 5G. This technology
is connected to machine to machine (M2M) communication
of Internet of things (IoT). M2M is a rather genetic term
in which a machine automatically connects communication
networks each other, and is also called as machine type com-

munication (MTC). In general, M2M includes D2D. In 5G
M2M communications, there are some requirements such as
massive connectivity, eco M2M, reliable M2M, that include
huge demands of home smart meter and autonomous driv-
ing.

On the other hand, the utilization of satellite commu-
nication is also considered in 5G. To deploy services in iso-
lated areas such as mountainous region and ocean, the satel-
lite communication is efficient. In addition, when the ter-
restrial network is down by a natural disaster, the satellite
communication becomes quite important communication
method. Because of this effectiveness and importance, the
cooperation of terrestrial and satellite systems has been dis-
cussed in ITU-R standardization [75]. For the disaster case,
a simultaneous short-message communication with million
terminals based on spread spectrum - code division multiple
access (SS-CDMA) using satellite is proposed [76]. There
are two schemes for terrestrial-satellite cooperation, indirect
and direct communications. In the indirect scheme, a ter-
restrial base station has the satellite backhaul and forwards
the connection to terminals [77]. In the direct scheme, the
terrestrial terminal directly connects to the satellite basesta-
tion [78]. In addition to that, there are two types in the direct
scheme, the common wireless interface between terrestrial
and satellite systems, and the different interfaces with dual
mode chip in mobile terminal. If the satellite system can
synchronize the terrestrial system, the satellite cell can be
accommodated as a super macro cell of 5G, and the 5G sys-
tem will be further evolved.

8. Proof of Concept

Several proof-of-concept activities and investigations on the
5G concept and RATs in Japan have been introduced [34],
[79]–[83], [84] and are summarized in Table 1. In [79], the
world first 10 Gbps transmission experiment was reported
in outdoor mobile environments using 8×16 MIMO system
with 400 MHz bandwidth in 11 GHz frequency band. Fur-
thermore, [80] presented the experimental trial and its con-
cept for a new radio interface design in 15 GHz frequency
band, and [81] investigated other experimental trial for the
5G millimeter-wave radio access with super wideband sin-
gle carrier (SC) transmission. In addition, to verify the po-
tential of massive MIMO beamforming in sub-6 GHz fre-
quency band, [82] described a fundamental transmission
experiment using time-domain beamforming by over-100
antenna elements. [83] introduced preliminary results of
the 28 GHz band experimental trial using analog RF beam-

Table 1 5G proof-of-concept activities.

Ref. No. Technical issues Frequency (bandwidth)

[3], [79] Super high bit rate MIMO 11 GHz (400 MHz)
[80] , [84] Radio interface design 15 GHz (400 MHz)
[81] , [84] Millimeter-wave SC radio access 73 GHz (1 GHz)

[82] Time-domain beamforming 5 GHz (100 MHz)
[83] RF beamforming in BS and UE 28 GHz (800 MHz)
[34] Hybrid beamforming 44 GHz (100 MHz)
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forming in both the BS and user equipment (UE), and [34]
showed the potential of massive MIMO hybrid (analog-
digital) beamforming for 5G ultra high capacity by exploit-
ing 44 GHz band propagation measurement results. [84]
also described massive MIMO experimental trials briefly.

9. Conclusion

With the increasing demand for mobile data communica-
tions, higher frequency bands are gaining importance. This
paper surveys recent research and development activities in
Japan related to 5G mobile communication systems. Those
are creating new paths to “5G World” especially on higher
frequency bands. As the result of sophisticated integra-
tion of these innovative technologies, 5G systems will pro-
vide pleasant services for users with unprecedented capac-
ity, higher throughput, and less latency.
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