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Distributed Optimization in Transportation and Logistics Networks

K. Y. Michael WONG†a), David SAAD††, and Chi Ho YEUNG†††, Nonmembers

SUMMARY Many important problems in communication networks,
transportation networks, and logistics networks are solved by the mini-
mization of cost functions. In general, these can be complex optimization
problems involving many variables. However, physicists noted that in a
network, a node variable (such as the amount of resources of the nodes)
is connected to a set of link variables (such as the flow connecting the
node), and similarly each link variable is connected to a number of (usu-
ally two) node variables. This enables one to break the problem into local
components, often arriving at distributive algorithms to solve the prob-
lems. Compared with centralized algorithms, distributed algorithms have
the advantages of lower computational complexity, and lower communica-
tion overhead. Since they have a faster response to local changes of the
environment, they are especially useful for networks with evolving condi-
tions. This review will cover message-passing algorithms in applications
such as resource allocation, transportation networks, facility location, traffic
routing, and stability of power grids.
key words: message-passing, cavity method, finite bandwidths, facility
location, power grids

1. Introduction

Optimization of network flows is one of the most important
problems in science with many areas of application [12].
It has found wide application in circuits transporting elec-
tric currents, transportation networks, communications net-
works, hydraulic networks, mammalian circulatory systems
and vascular systems in plants [1], [7], [14], [26], [29]. A
unified approach to these problems is facilitated by the min-
imization of cost functions. For example, the cost functions
may represent the dissipation energy (via Thomson’s princi-
ple for electric currents) [12] or time delays in communica-
tions networks. There is a close relation between the flow
patterns and the cost functions.

Traditionally, network resource allocation and routing
problems have been solved using global optimization tech-
niques, such as linear or quadratic programming [4]. How-
ever, with the increasing sizes of fixed networks and the
evolving configuration of wireless networks, centralized con-
trol becomes increasingly costly and infeasible. Distributed
control in networks involves a group of independent con-
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trollers which make locally optimal decisions. Compared
with the traditional centralized approach, this has the advan-
tage of less computational load and communication over-
head, and robustness against network breakdown. The Dy-
namic Alternative Routing of British Telecom was an early
successful example [17]. Also, in computer science, many
algorithmic solutions have been proposed to distribute com-
putational load among computers connected in a network,
but they are usually more heuristic. Some of them may tend
to optimize the benefit to an individual node or task, without
considering the impact it makes to the rest of the network
[5].

Message-passing algorithms originated from two
threads. In the physics literature, the microscopic descrip-
tion of disordered systems is derived from the Thouless-
Anderson-Palmer (TAP) equations [30], which were subse-
quently generalized to become the cavity method [20], and
resulted in many computationally efficient schemes. These
approaches have laid the foundation for the study of complex
systems. Applications can be found in associative memories,
perceptron learning, error-correcting codes, image restora-
tion, CDMA multiuser demodulation [24], data compression
[21] and compressed sensing [19]. In complex optimization,
the theory has been applied to problems with discrete vari-
ables, such as graph partitioning [24], travelling salesman
[21], number partitioning [24], K-satisfiability [18], graph
coloring [23], and coloring diversity [25].

Parallel to the development in the physics commu-
nity, the informatics community applied graphical models
to probabilistic information processing [14]. By mapping
the probabilistic relations between the parameters to links in
graphs, the problems become factorized and can be solved
by iterating the message-passing equations that relate the
conditional probabilities on neighboring nodes. This tech-
nique has been fruitfully applied to pattern classification, im-
age restoration, error-correcting codes and data compression.
For example, the famous belief propagation (BP) algorithm
has been successfully applied to error-correcting codes.

In this review, we consider the application of message-
passing algorithms to resource and flow allocation problems
in transportation and logistics networks. Our contributions
have been presented in several previous publications [15],
[16], [30], [31], [34]–[37], [39].

2. The Resource Allocation Problem

We start with a typical model of resource allocation on net-
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works [31], [32]. Consider a network of N nodes, labeled
i = 1, . . . , N . The set of neighbors of node i is given by ∂i.
Let Λi be the capacity of node i. Positive Λi represents the
provision of resources, and negative Λi their consumption.
The objective of optimization is to transport the resources
along the links so that the total transportation cost is min-
imized, while the final quantity of resources of each node
becomes non-negative.

Let yi j ≡ −yji be the flow on the link from j to i, and an
even function ϕ(yi j ) the transportation cost along link (i j).
Depending on the context, ϕ(y) can be a convex or concave
function of yi j . If ϕ(y) is convex, for example, ϕ(y) ∝ yγ

for γ > 1, it tends to homogenize the flow. This is useful
when traffic is heavy and one aims to avoid congestion. On
the other hand, if ϕ(y) is concave, for example, ϕ(y) ∝ yγ

for γ < 1, it tends to concentrate the flows in a few links. This
is useful when traffic is light or one aims at consolidating the
resources to utilize fewer links [33].

Hence the optimization problem becomes the mini-
mization of E = Σ(i j)ϕ(yi j ) subject to∑

j∈∂i
yi j + Λi ≥ 0 for all i. (1)

Introducing Lagrange multipliers, the function to be mini-
mized becomes

L =
∑
(i j)

ϕ(yi j ) +
∑
i

µi
*.,
∑
j∈∂i

yi j + Λi
+/- and µi ≤ 0 ∀i.

(2)

The non-positivity of µi arises from the minimization of L.
Optimizing L with respect to yi j , one obtains

yi j = ϕ
′−1(µ j − µi), (3)

where µi is referred to as the chemical potential of node i,
and ϕ′ is the derivative of ϕ with respect to its argument.
This can be interpreted as the current being driven by the
potential difference.

The chemical potentials can be obtained by solving
Eq. (1) together with the non-positivity of µi . In particu-
lar, for the quadratic cost ϕ(y) = y2/2,

µi = min


1
|∂i |

*.,
∑
j∈∂i

µ j + Λi
+/- , 0

 . (4)

Alternatively, we introduce the cavity method. This
method is known to be exact in sparse networks. Since the
probability of finding loops of finite lengths is vanishing
in large sparse networks, the structure of a sparse network
can be approximated by a tree locally, and the correlations
among the branches of a tree are neglected. In each branch,
nodes are arranged in generations. A node is connected to
an ancestor node of the previous generation, and node i is
connected to |∂i |−1 descendant nodes of the next generation.

Suppose the ancestor of node j is node i, and its de-
scendants are labeled by k ∈ ∂ j\i. Then the total energy

Ej→i (yi j ) of the tree terminated at node j can be expressed
as the energies Ek→j (yjk ) of its descendants that branch out
from node j

Ej→i (yi j ) = min
{yjk |∑k∈∂ j\i yjk−yi j+Λ j ≥0}


∑

k∈∂j\i
Ek→j (yjk ) + ϕ(yi j )

 .
(5)

In the framework of the cavity method, these energies are
cavity energies, since the effects of the ancestor nodes are not
accounted for. The local nature of their recursion relation
points to the possibility that the network optimization can be
solved by message-passing approaches. However, in contrast
to other message-passing algorithms that pass conditional
probability estimates of discrete values to neighboring nodes,
the messages in the present context are more complex, since
they are functions Ej→i (yi j ) of the current yi j .

We simplify the messages to two parameters, namely,
the first and second derivatives of the vertex energies. Let

(
Ai j, Bi j

)
= *,

∂Ej→i (yi j )
∂ yi j

,
∂2Ej→i (yi j )

∂ y2
i j

+-
be the message passed from node j to i. Based on the
messages received from the descendants k , i, the vertex
energy from j to i can be obtained by minimizing the energy
in the space of the current adjustments ε jk drawn from the
descendants. The optimal solution is given by

Ej→i (yi j ) = ϕ(yi j ) +
∑

k∈∂j\i

µ2
i j − A2

jk

2Bjk
, (6)

where

µi j = min


∑

k∈∂j\i
(yjk − B−1

jk Ajk ) − yi j + Λj∑
k∈∂j\i

B−1
jk

, 0

 .
(7)

The first and second derivatives of the optimal solution lead
to the forward message

Ai j = ϕ
′(yi j ) − µi j, Bi j = ϕ

′′(yi j ) +
Θ(−µi j − ε)∑

k∈∂j\i
B−1
jk

,

(8)

To calculate the flow yi j on a link, we can consider the link as
the bridge between two trees, one with vertex i and the other
j, with flows y and−y from the vertices respectively. Taking
into account the double-counting of the transportation cost
on the bridge, the current is given by

yi j = arg min
{y }

[
Ei→j (y) + Ej→i (−y) − ϕ(y)

]
. (9)

The average transportation cost per link can also be calcu-
lated from
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⟨∆Elink⟩ =
⟨
ϕ(y) |y=arg min{y′}[Ei→ j (y′)+Ej→i (−y′)−ϕ(y′)]

⟩
.

(10)

The message-passing algorithm achieves global optimiza-
tion by randomly selecting links and passing messages to
neighbors to calculate the optimal flows.

It can be verified that the message-passing algorithm, in
the two-parameter approximation, yield solutions identical
to the chemical potential algorithm, which is exact even when
loops are present, as long as the algorithms converge [32].

3. Networks with Finite Bandwidths

The message-passing algorithm can be extended to con-
sider the effects of bandwidths of the transportation links
[35], [36]. In communication networks, connections usu-
ally have assigned bandwidths. Bandwidths limit the flows
in the links. However, in these networks, nodes with re-
source demand can still experience shortage even though
their neighbors have adequate supply of resources, since the
provision of resources can be limited by the bandwidths of
the links. Hence the cost function is generalized to include
the cost of shortage of resources, and the problem becomes
the minimization of the cost function

E =
∑
i

ψ(ξi) +
∑
(i j)

Rϕ(yi j ) (11)

subject to constraints

∑
j∈∂i

yi j + Λi + ξi ≥ 0, ξi ≥ 0, −W ≤ yi j ≤ W . (12)

For quadratic costs ϕ(y) = y2/2 and ψ(ξ) = ξ2/2, the flow
is related to the potential difference by yi j = Y (µ j − µi),
where

Y (x) = max
{
−W,min

[
W, [ϕ′]−1

( x
R

)]}
. (13)

The message-passing algorithm can also be worked out.
Here we describe some interesting results due to the band-
width constraints.

Links of three types can be identified. Those links with
| yi j | = W are referred to as saturated links. Those with
0 < | yi j | < W and | yi j | = 0 are referred to as unsaturated
and idle links respectively. From Fig. 1, we note that as the
bandwidth decreases, the fraction of saturated links increases
since for a link to transport the same flow, it is easier to
saturate a link with low bandwidth than one with higher
bandwidth.

To provide sufficient resources to the consumer nodes,
one would anticipate a decreasing fraction of idle links as
the bandwidth decreases, since more links should participate
in the task of resource allocation. Surprisingly, we notice an
increasing fraction of idle links as the bandwidth decreases,
in contrast with our anticipation.

This is a consequence of the bottleneck effect, as illus-
trated in Fig. 2. When the bandwidth decreases, resources

Fig. 1 The fraction of idle, unsaturated and saturated links as a function
of bandwidth for ⟨Λ⟩ = 0. The red cross is the analytical result [35].

Fig. 2 An example of a bottleneck effect [35].

transferred from the secondary neighbors may become re-
dundant since resources from nearest neighbors already sat-
urate the link to the unsatisfied node, which can therefore be
considered as a bottleneck in transportation. The existence
of bottlenecks is common in many real networks. Among the
most common examples are bottlenecks occurring in traffic
congestion.

Next, we consider the high connectivity limit. In this
limit, the transportation is so efficient that no nodes suf-
fer from shortage for positive ⟨Λ⟩. For negative ⟨Λ⟩, all
resources from the providers can be distributed to the con-
sumers. For the quadratic cost ψ(ξ) = ξ2/2, µ = −ξ, and the
chemical potential is equal to the final resource (or the minus
of the shortage). In the high connectivity limit, the chemical
potential µ of a node becomes a well-defined function of the
initial resource Λ.

For quadratic costs ϕ(y) = y2/2 and ψ(ξ) = ξ2/2,
and a Gaussian distribution of Λ with variance 1, this func-
tion is monotonic as long as W ≤

√
π/2/c, where c is the

connectivity. However, when W >
√
π/2/c, turning points

exist as shown in Fig. 3(a). This creates a thermodynam-
ically unstable scenario, since in the region with negative
slope, nodes with lower capacities have higher chemical po-
tentials than their neighbors with higher capacities. This
implies that resource flow from poorer nodes to richer ones.
Nevertheless, there exists another stable solution in which
the unstable region is replaced by a range of constant µ as
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Fig. 3 Maxwell’s construction on µ(Λ) [35].

Fig. 4 The simulation results for µ(Λ) for N = 10, 000, c = 15, R = 0.1,
⟨Λ⟩ = −1 and W = 3/c with 70,000 data points, compared with the
theoretical prediction. Inset: the corresponding results for W = 1.2/c
[35].

shown in Fig. 3(b), analogous to Maxwell’s construction in
thermodynamics. The position of this construction can be
determined by the conservation of resources, which implies
that the areas A and B in Fig. 3(b), weighted by the distribu-
tion of Λ, should be equal.

Nodes with uniform chemical potentials represent clus-
ters of nodes interconnected by an extensive fraction of un-
saturated links, which provides the freedom to fine-tune their
flows so that the shortages among the nodes are uniform.
They are referred to as balanced nodes. Their quantity is a
measure of the efficiency of resource allocation.

As shown in Fig. 4, the simulation results agree with
the analytical results. The presence of the balanced nodes
at high bandwidth, and the absence at low bandwidth, are
evident.

It is well known that communication networks have
scale-free structures [2]. Their connectivity distribution
obeys a power law, and is characterized by the presence of
hubs, which can modify the network behavior significantly.
Figure 5 shows the simulation results for nodes with connec-
tivity 3 and 10 in a scale-free network. The data points are
consistent with the analytical results for both sets of nodes.
This implies that the previous argument of increasing effi-
ciency by increasing connectivity also holds for scale-free
networks, as a smaller gradient is found for nodes with higher
connectivity.

More important, nodes with low connectivity benefit
from the presence of hubs in the networks. To see these

Fig. 5 Simulation results for (Λ, µ) for N = 2 × 105, R = 0.1, Wi j =

3/max(ci, c j ) and ⟨Λ⟩ = −1 as compared with theoretical results, for (a)
nodes with ci = 10 in scale-free networks with P(ci ) ∼ c−3

i , (b) nodes
i with ci = 3 in scale-free networks and nodes in regular networks with
c = 3. Each data set contains 2,500 data points [35].

benefits, the simulation results for nodes in scale-free net-
works are compared with nodes in regular networks of the
same connectivity. As shown in Fig. 5(b), the data points
from regular networks are more scattered away from the
Maxwell’s construction, when compared with those from
scale-free networks. This shows that the presence of hubs
increases the efficiency of the entire network, especially for
nodes with low connectivity. This provides support for scale-
free networks being better candidates for resource allocation
than regular networks.

4. Optimal Source Location

So far we have considered the issue of optimizing transporta-
tion costs by adjusting the flow of resources. A further issue
in network design and optimization involves selecting addi-
tional locations to install source nodes. The optimal source
location problem has wide applications [34], [37]. For ex-
ample, to determine the optimal locations of access points in
wireless networks, one needs to balance the installation cost
of the access points and the power transmission cost of the
channels linking the subscribers.

With network applications in mind, we consider the
case in which a fraction ϕs of nodes are surplus nodes with
Λi = A (≫ 1), and a fraction of ϕd ≡ 1 − ϕs of nodes are
deficient nodes with Λi = −1. Formally, we introduce the
state variables si = ±1. For a surplus node i, si is fixed at+1,
whereas for a deficient node i, si = −1 when it is converted
to a source node with Λi = A, and si = +1 when it remains
a consumer node. The cost function is then

E =
u2

4

∑
i

(1 − si) +
1
2

∑
(i j)

y2
i j, (14)

subject to si
(
Λi +

∑
j∈∂i yi j

)
≥ 0. u2/2 is the installation

cost of converting an initially deficient node to a source node.
The optimal flow is given by yi j = µ j s j − µisi and µi =

min
[
0,

(
Λi +

∑
j∈∂i µ j s j

) /
(si |∂i |)

]
. The set of optimal {si }

can be found by an approach similar to the GSAT algorithm
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Fig. 6 Simulation results of average energy per node and the fraction of
network nodes acting as source nodes. Parameters: c = 3, N = 100, and
90% of the nodes are deficient. New clusters formed on increasing u−1 are
sketched on top, with filled and unfilled circles representing consumer and
source nodes respectively [37].

[27].
As shown in Fig. 6 for networks with regular connec-

tivity c = 3, two phases can be identified: (1) the all-source
phase for u−1 ≥

√
3, in which all nodes are assigned as source

nodes; (2) the partial-source phase for 0 < u−1 <
√

3, in
which only some nodes are assigned as source nodes. The
fraction of source nodes is a discontinuous function of u−1,
showing abrupt jumps at threshold values of u−1. The step
size of the curve decreases as u−1 decreases, and gradually
becomes unresolvable in the numerical experiments. This re-
sembles the Devil’s staircase observed in the circle map and
other dynamical systems [10]. These thresholds mark the
positions at which certain configurations of the source and
consumer nodes become energetically stable. The regime√

3/2 < u−1 <
√

3 with isolated consumer nodes is the
singlet regime, and

√
21/25 < u−1 <

√
3/2 is the doublet

regime.
Using the cavity method, we can show that in the singlet

regime, only 3 cavity states are relevant. They form a closed
set under recursion: source (S), consumer (C), and bistable
(B). The recursion relations reduce to

S/B + · · · + S/B → C, (15a)
S/B + · · · + S/B + C → B, (15b)
all other combinations→ S. (15c)

In Eqs. (15a) and (15b), the states of c − 1 and c − 2 descen-
dants are either S or B respectively. Similarly, the full states
of a node are denoted as C, B and S, representing respec-
tively the consuming, bistable and source states. They are
obtained via

S/B + · · · + S/B→ C, (16a)
S/B + · · · + S/B + C→ B, (16b)
all other combinations→ S. (16c)

However, discrepancy exists between the simulated and
predicted results of the average energy when the fraction
of initially deficient nodes is high. We thus examine the

Fig. 7 The site averages of the variables η
j→i
s , η j→i

s and η
j→i
s as a

function of ϕd , the fraction of initially deficient nodes for c = 3. The
symbols represent the simulated fraction of non-converging messages. ϕAT

d
locates the AT transition [37].

stability of the assumption that the optimal state is unique
(the so-called replica symmetric (RS) ansatz). We define
η
j→i
s = 1 if the cavity state of node j excluding i is uniquely

S (that is, the probability of the cavity state to be S is exactly
1), and 0 otherwise. Similarly, η j→i

c = 1 if the cavity state is
uniquely C, and 0 otherwise. We further introduce η j→i

g =

1−η j→i
s −η j→i

c . η j→i
g > 0 indicates the occurrence of glassy

behavior.
As shown in Fig. 7, the picture of a unique optimal so-

lution breaks down when the fraction of initially deficient
nodes is greater than 0.75 for c = 3. Similar to the point
where the RS solution in disordered systems becomes un-
stable, this transition is called the Almeida-Thouless (AT)
transition [9].

To improve the analysis, entropic effects have to be con-
sidered since bistable states exist [16]. Recursion relations
similar to the minimal vertex problem were introduced [39].
The message passed from node j to node i consists of two
cavity variables: the probability of node j being in the S state
(when node i is excluded), and the entropy change when node
j and its adjacent links are added, except (i j). Extending the
analysis to the picture that multiple clusters of optimal solu-
tions exist (the so-called one-step replica symmetry-breaking
solution), the predicted fraction of source nodes is consistent
with the asymptotic limit obtained by extremal optimization
[6].

Accompanying entropic effects is the appearance of
frozen nodes, which are those initially deficient nodes taking
the same state (source or consumer) in all optimal solutions.
In networks where the positions of the initially deficient
nodes are randomly distributed, it is sufficient to consider
freezing on the 2-core subgraph, that is, the graph that re-
mains after recursively removing the initially deficient nodes
of connectivity one or lower. If the thermodynamics of the
2-core is simple, so is the entire graph, since the initially
deficient nodes outside the 2-core are in tree-like structures
and their states can be determined accordingly.

We classify the deficient nodes in the network into 2-
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Fig. 8 The dependence of the fraction of frozen nodes on the fraction
of surplus nodes ϕs . (a) All frozen 2-core nodes considered. (b) Frozen
hubs. (c) Frozen chain nodes. (d) Frozen peripheral nodes. Lines: replica
symmetric prediction. Symbols: Asymptotic results of the extremal opti-
mization algorithm [16].

core nodes and peripheral nodes (those that are not on 2-
core). Figures 8(a) and (d) show that the fraction deviates
from the RS prediction when ϕs is small, whereas the fraction
of frozen peripheral nodes is almost consistent with the RS
prediction in the entire range of ϕs . Among the 2-core nodes
for c = 3, we further classify the nodes into hubs (those
connected to 3 other 2-core nodes) and chain nodes (non-
hubs connected to only 2 other 2-core nodes). Comparing
Figs. 8(b) and (c), we conclude that the deviation from the
RS prediction is primarily due to the hubs rather than other
substructures.

5. Facility Location Problem

So far we have considered the optimization of transportation
costs on networks, but there are many communication and
logistics networks in which the coverage of a geographical
region is equally crucial. Examples include networks of fire
sensors, surveillance video cameras, local weather monitors,
locations of supermarket branches, teller machines, chain
store outlets, and public facilities such as such as schools
and clinics.

As an example illustrating the need to balance coverage
and transportation cost, consider a population of sensors,
each with simple structure, used to collect local information
in a region. The sensors form a network sending the col-
lected information to a central base station [8], [40]. Due to
the limited power available to each sensor, the active lifetime
of the network may be short. To prolong the lifetime of the
network, an alternative is to render some sensors inactive. If
the transportation cost is to be minimized, then only those
sensors in the neighborhood of the base station will be acti-
vated. However, to reduce the amount of information loss,
the active sensors should be spread out.

Hence we consider a transportation network and intro-
duce Si = 1, −1 when node i is active or idle, respectively
[39]. The cost function is given by

E =
∑
(i j)

ϕ(yi j ) +
U
2

∑
i

(1 − Si) + J
∑
(i j)

SiSj . (17)

Compared with previous models, there are two extra terms.
The second term represents the loss in value due to idling
a node, and U is the turn-off cost. The last term tends to
spread the active nodes and hence increase the coverage, and
J is the redundancy cost.

In the following example, ϕ(x) = x2, the flow originat-
ing from each node is (1 + Si)/2, and all flows terminate at
the base station.

As shown in Fig. 9(a), a typical configuration consists
of an active core around the center, surrounded by an area of
alternating active and idle nodes, and an outer inactive band.

Figure 10 shows the phase diagram in the space of U
and J. The examples in Fig. 9 belong to the mixed phase at
the center of the diagram. When U increases, the active core
expands until it covers the entire lattice, and results in the all-
active phase. When J increases, the active-idle band expands
until it covers the entire lattice, resulting in the active-idle
phase. When U or J decreases, we have an active-idle core
or an all-active core surrounded by an all-idle region.

With the extensive regions of the all-active and active-
idle states in the phase diagram, it may be misleading to
conclude that optimal solutions in the mixed phase which
have more complex configurations do not result in signif-
icant gains over all-active or active-idle state. However,
Fig. 11 shows that the energy of the optimal state is signif-
icantly lower than the all-active and active-idle states when
the fraction of active nodes lie between 0.5 and 1.

6. Traffic Routing

In the family of network optimization problems, multipath
optimization is among those with the broadest applications,
ranging from public transport to Internet traffic, sensor net-
works, military convoy movements and journey planners.
However, the difficulty lies in the requirement to simultane-
ously assigning the individual paths that affect each other
while optimizing the global cost. This is similar to mini-
mizing the energy of interacting polymers, and was recently
used to derive a message-passing algorithm for routing [33].
The same result can also be derived from the cavity method.

Consider the routing of M passengers, each labeled
with given source and destination on the network, and the
cost function is E = Σiϕ(λi), where λi is the fraction of
passengers passing through node i.

Let the cavity energies be Aν
j→i when passenger ν routes

from node j to i, Bν
j→i when she routes from node i to j,

and Nν
j→i when she does not route between i and j. As

schematically shown in Fig. 12, the recursion relations can
be written as

Aν
j→i = min

{k |k∈∂j\i }

ϕ
(
λ j +

1
M

)
+ Aν

k→j+
∑

l∈∂j\ik
Nν
l→j

 ,
(18a)



WONG et al.: DISTRIBUTED OPTIMIZATION IN TRANSPORTATION AND LOGISTICS NETWORKS
2243

Fig. 9 Three examples of optimized node configuration on a square lattice
of N = 121 at different values ofU and J . The blue frames in (a) correspond
to the active core (innermost), the active-idle band (in-between) and the
inactive band (outermost) [39].

Bν
j→i = min

{k |k∈∂j\i }

ϕ
(
λ j +

1
M

)
+ Bν

k→j+
∑

l∈∂j\ik
Nν
l→j

 ,
(18b)

Fig. 10 Phase diagram and the fraction of active nodes as a function of
J and U on a square lattice with N = 121. The optimal configurations
obtained at points A, B and C are shown in Figs. 9(a)–9(c) respectively. fa
is the fraction of active nodes. fAN is the fraction of active nodes with at
least one active neighbor. fON is the fraction of nodes where all neighbors
are in the opposite state. fa−i is the fraction of links which connect an
active and an idle node [39].

Fig. 11 The dependence of energy on U of the all-active, the active-
idle, and the optimal states of a square lattice with N = 121 and J/N ln
N = 0.0083 [39].

Nν
j→i = min

[
min

{k,l |k,l∈∂j\i }

(
ϕ

(
λ j +

1
M

)
+ Aν

k→j

+Bν
l→j +

∑
m∈∂j\ikl

Nν
m→j

+/- , ϕ
(
λ j

)
+

∑
k∈∂j\i

Nν
k→j

 .
(18c)

To determine the route of passenger ν, it suffices to provide
the values of the cavity energies relative to Nν

j→i . Hence the
two messages to be passed from node j to i for passenger ν
are

aνj→i = min
{k |k∈∂j\i }

(
aνk→j

)
− cνj→i, (19a)

bνj→i = min
{k |k∈∂j\i }

(
bνk→j

)
− cνj→i, (19b)

where cνj→i =min
[
min{k,l |k,l∈∂j\i }

(
aν
k→j
+bν

k→j

)
,−ϕ′(λ j )

]
.

We apply the algorithm on the London under-ground
network based on real passenger source-destination data ob-
tained from the Oyster card system. The cost function is
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Fig. 12 The recursion relations for Aν
j→i , B

ν
j→i and Nν

j→i .

E =
∑

i λ
2
i , considered to be a measure of congestion, since

it is proportional to the average crowd size a passenger will
meet along her journey. Comparing with the commonly used
Dijkstra algorithm [11], the cost is reduced by 20%, with only
a slight increase in the average path length by 5.8%. Com-
paring with the state-of-the-art congestion-aware algorithm,
the cost is reduced by 0.7%, with an increase in the average
path length by 0.7% [28].

7. Power Grids

The stability and robustness of power grids received renewed
interest with the advent of renewable energy such as wind
and solar power. These energy sources are much more inter-
mittent and volatile, and the power grid needs to cope with
fluctuations in supplies and demand. If these fluctuations
lead to node or link failures, they can cascade throughout a
large area of the network [3], [22].

In a typical situation, the power distributor needs to
consider the pattern of distribution in the next 15 to 60 min-
utes. Hence distribution algorithms need to make decisions
based on probabilistic predictions of future supply and de-
mand. Recently, a message-passing approach was proposed
to deal with the probabilistic nature of the problem [15].
This can be done by considering Eq. (6), but noting that Λj

is a fluctuating quantity. Averaging over Λj , we have

Ej→i (yi j ) = ϕ(yi j ) +
∑

k∈∂j\i

⟨
µ2
i j

⟩
Λ j
− A2

jk

2Bjk
, (20)

where

µi j =

⟨
min


∑

k∈∂j\i
(yjk−B−1

jk Ajk )− yi j+Λj∑
k∈∂j\i

B−1
jk

, 0


⟩
Λ j

.

(21)

For Λj obeying a Gaussian distribution with mean ⟨Λj⟩
and σ2

j , analytical expressions can be obtained, albeit a bit
tedious to be presented in this review. Nevertheless, the
method can efficiently allocate extra resources to cope with
fluctuating demands. Ongoing research work will continue

to address more issues in this family of problems.

8. Conclusion

We have considered how message-passing algorithms can be
applied to different useful problems in transportation and lo-
gistics networks. Starting from the fundamental and typical
problem of optimizing transportation costs during the alloca-
tion of resources from source nodes to consumer nodes, the
algorithm can be extended to various applications. In deal-
ing with bandwidth constraints, we found interesting effects
such as the bottleneck effect and the appearance of clusters
of balance nodes. The problem can also be combined with
the decision of optimal source locations, arriving at a prob-
lem involving both continuous and discrete variables. This
leads to pictures of complex energy landscapes that involve
multiple optimal solutions, corresponding to the so-called
replica symmetry-breaking solutions. To deal with the facil-
ity location problem, one can also include redundancy costs
that take into account the need to increase coverage. Gen-
eralizing from unlabeled traffic to multi-class labeled traffic
(that is, traffic with individual components specifying source
and consumer nodes), the algorithm can be applied to multi-
passenger routing. By including uncertainties in supply and
demand, it can be used in pre-emptive control in power grids.

These studies show that the message-passing technique
has the advantages of being decentralized, having lower com-
putational complexity, lower communication overhead, and
faster response to local changes. Although it is derived by
assuming a sparse network structure, it yields exact results
when the algorithm converges. The cavity method also en-
ables us to introduce interesting analysis.

Another distributed approach that we have introduced
is the chemical potential algorithm. Chemical potentials
arise from the Lagrange multipliers of the conservation of
resources. Since they can be interpreted as storage prices
of resources at the nodes [32], they have the potential to be
applied to soft control of traffic and logistics through pricing
policies.

The above decentralized approaches are expected to be
applicable to many problems that can be formulated in terms
of network structures. Besides transportation and logistics
networks, they can also be useful in areas such as engineer-
ing, biology, economics and social science.
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