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Toward In-Network Deep Machine Learning for Identifying Mobile
Applications and Enabling Application Specific Network Slicing
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SUMMARY In this paper, we posit that, in future mobile network, net-
work softwarization will be prevalent, and it becomes important to utilize
deep machine learning within network to classify mobile traffic into fine
grained slices, by identifying application types and devices so that we can
apply Quality-of-Service (QoS) control, mobile edge/multi-access comput-
ing, and various network function per application and per device. This
paper reports our initial attempt to apply deep machine learning for iden-
tifying application types from actual mobile network traffic captured from
an MVNO, mobile virtual network operator and to design the system for
classifying it to application specific slices.
key words: software-defined networking (SDN), network functions virtual-
isation (NFV), network virtualization, 5G, network slicing

1. Introduction

Network softwarization is an overall transformation trend
for designing, implementing, deploying, managing and
maintaining network equipment and network components
by software programming, exploiting characteristics of soft-
ware such as flexibility and rapidity of design, development
and deployment throughout the life-cycle of network equip-
ment and components [1], [2].

Network softwarization is considered a main driving
factor for enabling network slicing [3], as realization of
network functions and equipment by software program is
considered a key to the network slicing concept. Software-
defined networking (SDN) and network function virtualiza-
tion (NFV) are the two main enabling technologies in creat-
ing network slices on physical infrastructure resources.

In the meantime, exploiting the flexibility in rapidly
developing and deploying network functions driven by net-
work softwarization has brought another interesting direc-
tion of research, “in-network deep machine learning”, as re-
ported by [4]–[6]. Since data plane, a.k.a., a set of traffic
forwarding functions, is now software-defined, implement-
ing deep machine learning within data plane becomes feasi-
ble. Deep Machine Learning [7]–[9] in this paper is defined
as machine learning with deep neural networks composed of
multiple processing layers to learn representations of data
with multiple levels of abstraction. Each layer is a collec-
tion of connected computing units called “neurons” that can
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process input data and pass the output result to downstream
neurons.

In this paper, we posit that, in future mobile network,
network softwarization will be prevalent, and it becomes im-
portant to utilize deep machine learning within network to
classify mobile traffic into fine grained slices, by identifying
application types and devices so that we can apply Quality-
of-Service (QoS) control, mobile edge/multi-access com-
puting, and various network function per application and per
device. This paper reports our initial attempt to apply deep
machine learning for identifying application types from ac-
tual mobile network traffic captured from an MVNO, mobile
virtual network operator and to design the system for classi-
fying it to application specific slices.

Our contributions in this paper are as follows. First, we
posit that in future mobile network, in-network deep ma-
chine learning for application and device specific identifica-
tion and traffic classification becomes possible and show the
ground for this position by our preliminary analysis.

Second, we propose “speculative data collection” tech-
niques for in-network deep machine learning for application
identification. The technique is elaborated in Sect. 6 but we
believe this technique is applicable to many other machine
learning for traffic analysis.

The rest of the paper is organized as follows. Section 2
introduces the concept of application specific end-to-end
network slicing. Section 3 presents our proof-of-concept
of end-to-end networking slicing in a real MVNO network.
Sections 4 present our position for in-network deep machine
learning for identifying mobile applications for enabling ap-
plication specific end-to-end network slicing. Section 5 pro-
poses our prototype system and reports our preliminary re-
sults. Section 6 discusses speculative data collection for in-
network deep machine learning. Finally, Sect. 7 briefly con-
cludes.

2. Application Specific End-to-End Network Slicing

Network slicing has attracted a great deal of attentions in
5G mobile networks. Before network slicing gains popular-
ity among mobile networking researchers, we have defined
“slice” as an isolated set of programmable resources to im-
plement network functions and application services through
software programs for accommodating individual network
functions and application services within each slice without
interfering with the other functions and services on the coex-
isting slices [10]. In fact, the concept of slice in networking
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Fig. 1 End-to-end slicing concept [17].

has been introduced in network virtualization research ef-
forts such as PlanetLab [11], in 2002, PlanetLab EU [12],
GENI [13], VNode [14], FLARE [15], and Fed4Fire [16].

Thus, the slicing concept has been originally intro-
duced in fixed networks, but it has come to make sense to
extend to mobile networks as the target performance of 5G
mobile networks becomes comparable to that of fixed ones.
Therefore, 5GMF [17] network architecture committee led
by the authors of this paper has identified the importance of
end-to-end network slicing, all the way from user equipment
(UE) to cloud data centers for enabling end-to-end qual-
ity and extreme flexibility to accommodate various appli-
cations, as shown in Fig. 1 included in the white paper [17].
The implications of the end-to-end network slicing archi-
tecture design shown in Fig. 1 have two significant aspects.
First, using network, computing and storage resources em-
bedded end-to-end, we should be able to program network
functionalities all the way along end-to-end communication.
Second, we can allocate an end-to-end network slice from
UE to cloud data center per application/service.

The 5GMF white paper [17] considers one of the
most important concepts to realize 5G mobile network
is “extreme flexibility” partly enabled by network soft-
warization and network slicing. Since 5G mobile networks
are expected to accommodate at least three, very differ-
ent types of applications eMBB (enhanced MobileBroad
Band), mMTC (massive Machine Type Communications),
and URLLC (Ultra Reliable and Low Latency Communica-
tions), it makes sense for 5G mobile networking infrastruc-
ture to support very different QoS and computations for each
type of communications, thus, it is a crucial requirement for
the infrastructure to support extreme flexibility in 5G mobile
networks.

3. Prototyping Application Specific End-to-End Slicing

In this section, we develop a proof-of-concept of end-to-end
network slicing in a real MVNO mobile network, where we
introduce slicing smart phones with trailer-slicing technol-
ogy, RAN slicing with MVNO, multi-access computing and
Evolved Packet Core (EPC) slicing on FLARE to classify
application specific traffic into slices and apply different ser-

Fig. 2 Slicing EPC on FLARE switch [19].

vices to different mobile applications.

3.1 Trailer-Based UE Slicing

It is too power-consumptive to run hypervisors (e.g., KVM)
or even container-based visualization (e.g., LXC) based slic-
ing technologies on smartphones. Here we develop a much
lighter UE slicing technologies, where we install our soft-
ware on smartphones to capture the very first packets for
an application and examine the process table and the socket
table of the operating system to look for a corresponding
application process name that uses the flow space and at-
tach the information as a trailer. After adjusting of header
fields in Layer-3 and Layer-4, we can get packets with trail-
ers through existing network appliances since trailers are
treated as Layer-7 data bits.

3.2 Application Specific Multi-Access Computing Slicing

In our prototype, we classify traffic from phones to differ-
ent virtual network functions accordingly. The traffic of dif-
ferent slices is isolated using VLANs on the hosting multi-
access computing running Open vSwitch [18]. Packets from
smartphones are classified and tagged with different VLAN
IDs according to applications. In each slice of multi-access
computing, we apply specific optimization policy according
to applications. For example, we run HTTP caching service
for web browsing (e.g., Chrome), video transcoding service
for video streaming (e.g., YouTube), and bandwidth control
for Tethering traffic.

3.3 EPC Slicing on FLARE

In this section, we introduce how to implement an EPC slice
in a FLARE slice shown in Fig. 2, where signaling related
EPC entities (e.g., MME) are implemented in control plane
while user data forwarding and processing (e.g., S-GW and
P-GW) are implemented in data plane.

3.3.1 Data Plane

We offload the GTP-U channel creation and user data pro-
cessing from control plane to data plane, which is imple-



1538
IEICE TRANS. COMMUN., VOL.E101–B, NO.7 JULY 2018

mented with GTPv1-U kernel module in the original OAI
software. In order to scale network functions, we imple-
ment SP-GW data plane components with chained Click el-
ements. When a FLARE node receives packets from eNB,
its classifier called Slice slicer will classify packets to dif-
ferent slices as well as classifying signaling packets, e.g.,
GTP-C from data packets, e.g., GTP-U. The signaling pack-
ets are forwarded to control plane while the data packets are
processed in data plane with many-core processors.

3.3.2 Control Plane

We execute the signaling entities of an EPC slice, e.g., MME
and the control plane of SP-GW in a Docker instance. We
also execute HSS entity in another Docker instance within
the same sliver of a FLARE node. A sliver is defined as ex-
ecution environment in a FLARE node that is part of a net-
work wide slice constructed across multiple FLARE nodes.

These two Docker instances are isolated without inter-
fering with each other. For example, we can install different
versions of software packages in MME and HSS instances
even if they may conflict with each other when installed on
the same host machine.

The interfaces between EPC and HSS entities are im-
plemented with internal Ethernet links. They can communi-
cate with each other via TCP and SCTP protocols.

4. In-Network Deep Machine Learning for Identifying
Mobile Applications

4.1 Application Identification

In order to enable application specific network slicing, the
first challenge we face is to classify traffic by applications.

Conventional application identification [20] relies on
packet headers (destination IP and/or port), or signatures re-
constructed from payloads. Traditionally, many applications
use ‘well-known’ ports on their dedicated servers. Recently,
the packet header based traffic identification [21] fails due
to the fact that many mobile applications use common ports
(e.g., 80 and 443) and are often hosted on some public
clouds, which makes it hard to classify applications only by
destination ports in packet headers.

The signature-based application identifications [22],
[23] impose significant complexity and processing load on
the device, which must be frequently updated to keep up
with the latest knowledge of application protocol semantics.
When an application specification changes or a new appli-
cation appears, people must start over for exploring valuable
signatures, which is time-consuming and labor-intensive.

Usually, it is not obvious to identify an application that
has transmitted a given flow that network equipment ob-
serves, as network infrastructure, for the simplicity’s sake,
has been designed to be independent of application contexts.
In general, network stacks below Layer 7 (L7) should not (or
must not) care about application contexts as applications are
designed to run at end systems and part of applications are

not to be executed within networks.

4.2 Application Specific Data Processing

Network operators are interested not only in identifying
and classifying mobile traffic for different QoS, but also
in applying specific optimization policy according to ap-
plications. For example, we run HTTP caching service for
web browsing (e.g., Chrome), video transcoding service for
video streaming (e.g., YouTube), and bandwidth control for
tethering traffic.

4.3 In-Network Deep Machine Learning

There are several ways to achieve application identification
and classification, e.g., packet header marking such as Type
of Service (ToS) and its extended version, and deep packet
inspection (DPI) where we detect so called signature per ap-
plication, application specific characteristics learned from
packet payloads, as well as packet headers.

DPI is often implemented in middle boxes such as fire-
walls, but it is mainly used for detecting attacks and embed-
ded malwares. Application identification and classification
for application specific network slicing is much more chal-
lenging as we must be able to classify generic applications,
not just malicious ones, dealing with a broader scope of
applications. Also application specific information is most
likely encrypted so it becomes harder and harder to identify
application from the content conveyed in packet payload.

As network softwarization becomes popular, it is nat-
ural to embed much more intelligent network functions
within network. Especially when data plane is software-
defined, it is feasible to implement much more powerful ma-
chine learning methods than just simple pattern matching to
learn application specific characteristics to enable applica-
tion identification.

Machine learning based identification has been pro-
posed in [24], [25]. The selected features are fed into some
kind of classifier such as Naive Bayes [26], K-Means [27]
and Neural Network [28]. Conventional machine learning
techniques are limited in processing natural data in their
raw form. Usually, much expertise is required to construct
pattern-recognition feature vectors from raw data.

Deep learning has enabled many practical applications
of machine learning, such as image classification and object
detection. The most important advantage of deep learning
over conventional machine learning is replacing handcrafted
features with efficient algorithms for feature learning and hi-
erarchical feature extraction. A deep learning system con-
sisting of many layers of neurons can be fed with raw data,
to increasingly abstract the raw data, and automatically dis-
cover the representations needed for detection or classifica-
tion.

We posit that network softwarization opens a door to
in-network deep machine learning for identifying and clas-
sifying mobile applications and for enabling application net-
work slicing.
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Fig. 3 In-network deep learning-based application classification and
processing.

5. Prototype of In-Network Deep Learning

5.1 Real-Time Application Classification System

As shown in Fig. 3, we propose a method for identifying ap-
plications from given traffic in real-time by deep machine
learning using reliable training data generated by supervis-
ing smartphones. We use a small number of customized
smartphones as supervising smartphones to generate train-
ing data where packets are tagged with the information of
the application transmitting them. Then we apply deep
learning on given flow and extract the useful features in a
train of packets contained in the flow, without looking into
the payload of packets.

Compared with conventional work on identifying ap-
plications from the traffic trace relies on DPI of the user
data, our method has two benefits: (1) we don’t need to in-
spect packet payload of both training and test data so that we
may not risk privacy violation, and (2) our training data are
generated in real-time with low-cost at 100% accuracy be-
cause of packet tagging even when the packet payload data
is encrypted.

5.2 Preliminary Study: Analysis of Mobile Traffic

We have distributed over 60 smartphones to the volunteers
(including university students/staffs, company/government
employees, and media people) and get them connected to
the MVNO experimental network. We have been capturing
the traffic at the FLARE node for more than 500 days since
2014/11/20, where the total traffic includes over 500 kinds
of mobile applications and the total amount of the collected
data is more than 2.1 terabytes.

We first analyze the traffic characteristics of differ-
ent mobile applications. We believe that detailed study of
MVNO network not only help the current MVNOs improve
their services but also benefit the 5G research and develop-
ment in terms of network slicing, especially for allocating
isolated resources for different applications and services.

Figures 4 and 5 show the distributions of traffic vol-
ume and user interaction time by popular applications sepa-

Fig. 4 Distributions of traffic volume by popular applications.

Fig. 5 Distributions of user interaction time by popular applications.

rately [18]. We observe that about 43% of traffic volume is
occupied by video streaming applications although only 5%
of user time is spent on them.

As a comparison, about 22% of user time is spent on
social network applications, but only 4.8% of traffic volume
is occupied on them. Web browsing applications occupy
about 14% traffic volume and 22% of user time.

Besides video streaming applications that account for a
large fraction of traffic volume in the long-term observation,
we also observe that Tethering traffic dominates in certain
days although Tethering occupies 7.8% of traffic volume
in the long-term observation.
Tethering allows a smartphone to share its cellular

(e.g., 3G/LTE) data connection with other devices using a
WiFi hotspot or direct cable connection. Usually, a teth-
ering device can generate much more traffic than a smart-
phone. ISPs would like to devise different charging schemes
for their tethering traffic on top of the regular subscription
cost.

Figure 6 shows the traffic patterns (average TCP flow
size, average flow duration, and average flow rate) of some
popular applications. The average flow rate is calculated
with normalized flow duration. The flow rate of YouTube
traffic (396Kbps) is much higher than the other applica-
tions (<100Kbps). We observe that the average rate of each
Tethering flow is only about 48Kbps, almost the same as
those of other mobile applications.

Surprisingly, the flow rate of Facebook is only 3Kbps,
which is even smaller than that of Gmail. This is because
Facebook application tends to hold persistent TCP sessions
to transmit multiple text or media objects while Gmail ap-
plication prefers to terminate TCP sessions when idle.
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Fig. 6 Flow characteristics of popular applications.

Fig. 7 An example of application identification with deep neural net-
works with extracted features.

These results give us insight into tackling the prob-
lem of application identification by deep machine learning.
There are popular applications with a large volume of data
exchanged, but on the other hand, the other application traf-
fic may not be significant in volume. It is probably hard to
achieve machine learning using a small amount of sample
traffic.

5.3 Application Identification with Deep Neural Network

As shown in Fig. 7, our training model is defined based on
deep neutral networks (DNN) with an input layer, multi-
ple fully connected hidden layers and an output layer. Each
layer is a feed-forward neural network.

The input layer provides training data from outside and
feed the training data X into the training network. There
is no computation in the input layer, which just passes the
received information to hidden layer.

Each hidden layer consists of (1) taking the previous
layer output Ŷ as input X and having weight matrices W and
bias vector b associated to those inputs (Ŷ = W · X + b),
(2) passing the responses through a rectified linear function
(relu(Ŷ) = max(Ŷ, 0))

The output layer is built with a softmax regression
mode and its output is a probability vector Ŷ over the top
M (e.g., 200 in our experiment) popular applications.

We train these models using a large set of N tagged
flows {X, Y}, where label Y is one-hot vector indicating the
true application. A cross-entropy loss function is used to
compare the target Y and the softmax activation function ap-
plied to the model’s prediction Ŷ. The parameters of the

network (weight matrices in the fully-connected layers and
biases) are trained by back-propagating the derivative of the
loss with respect to the parameters throughout the network,
and updating the parameters via stochastic gradient descent.

Basically, training a network is to guide the parameters
to the point that the softmax loss is minimized, which means
to maximize the corresponding column of the true class in
the output vector. Each hidden layer is also told to change
their parameters so that their contribution to the prediction
error is minimized. Therefore, each hidden layer is also an
optimized classifier in its own plane.

5.4 Flow Features Extraction with Deep Neural Network

On the other hand, our training model also works as a feature
extractor because the output value is discriminative to not
only network parameters but also input features. Usually, a
feature with big relevance to the output is considered as a
useful feature.

It is straightforward that server ip, server port,
and proto could be the features to identify applications.

We set feature Vector 1 = [server ip, server port,
proto] as the base feature vector and try to find other use-
ful features with our training model. In our training process,
besides a set of traffic data as training data, we also set an-
other small set of traffic data as validation data to validate
the training model during training process.

As shown in Fig. 8(a), we first check the impact of
[client ip, client port]. Our finding is that there is no
obvious appearance pattern in [client ip, client port]
that affects the validation accuracy. So we take [client ip,
client port] as not useful patterns in future train model.

In Fig. 8(b), we set feature Vector 3 = [Vector 1,
TTL] and check impact of TTL. We find TTL is in fact useful
in application identification. We believe this is because TTL
is a metric of the distance from the application server to the
FLARE node located near P-Gateway, which is highly de-
pendent on application type. Then we add TTL to our feature
vector and check the impact of packet size in Fig. 8(c).

We also find that packet size is a useful feature. This
is because client and server need to exchange information
during connection establishment. The size of exchange in-
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Fig. 8 Impact of features in application identification.

Fig. 9 Architecture of multi-GPU deep neural networks.

formation is usually application specific. Therefore, we add
sizes of the first few packets of each flow as a useful feature
to our training model.

5.5 Multi-GPU Acceleration Framework

As shown in Fig. 9, we begin with a brief introduction of
our multi-GPU DNN platform, consisting of one Intel 8-
core Xeon E5-2670 2.60 GHz processor and four NVIDIA
GTX1080 cards, each of which has 8GB GDDR5X memory
and 20 Streaming Multiprocessors (SMs). Each SM con-
tains 128 CUDA cores, resulting in 2560 CUDA cores per
GPU in total. The processing power of GPU comes from its
hundreds of cores.

According to our test, at the peak performance one
GTX1080 GPU is comparable to about ten E5-2670 pro-
cessors. So we offload all training tasks to GPUs while use
CPU to preprocess and slice training data into GPUs and
coordinate training parameters during training.

A multi-GPU system has two performance issues: (i)
whether GPU is fully utilized and (ii) linear performance
scalability with additional cores. After careful profiling, our
finding is that GPUs can be starved for data due to the short-
age of the bandwidth from main memory to GPU memory.

To address these issues, we propose two optimization
strategies: batching and prefetching. With batching, we can
combine the training data from a set of small log files into a
large file and transfer it from main memory to GPU as a unit.
With prefetching, we can preload training data into GPU as
much as possible so that GPU can reduce the starving time
during training.

Figure 10 compares the performance of training speed
when without or with batching and prefetching. The test re-
sults show that after we apply batching and prefetching, not

Fig. 10 Training performance of multi-GPU system.

Fig. 11 Accuracy of App Identification over 39-day traffic [avg. 93.5%].

only the training performance of single GPU is speeded up
obviously but also the performance of multi-GPU training
system is linear to the number of GPUs.

5.6 Preliminary Experimental Results

We use two-week MVNO data as training data, where each
day of traffic consists of about 40000 flows. Besides training
and test, we use one-day of traffic as validation in training.
The distribution of 200 applications is shown in Fig. 4 and
Fig. 5.

As shown in Fig. 11, by using a tuple of <dst ip,
dst port, protocol, ttl, packet size> as the features
of application traffic captured at an MVNO, we can success-
fully identify 200 mobile applications with about 93.5% ac-
curacy over 39-day traffic using a 8-layer Deep Neural Net-
work with TensorFlow [29], where each hidden layer con-
sists of 40000 (200x200) neurons.

An immediate question is how to improve the accuracy
of application identification. According to our preliminary
experimental results, an efficient way to improve the perfor-
mance is to increase the volume of training data. Figure 12
shows the effect of increase in data volume. The test results



1542
IEICE TRANS. COMMUN., VOL.E101–B, NO.7 JULY 2018

Fig. 12 Impact of training data volume in application identification.

show that the accuracy is increasing gradually with the vol-
ume of training data. However, we believe further study is
necessary, as this is only our first endeavor to improve the
accuracy of application identification.

6. Speculative Data Collection

In this section, we discuss a method called “speculative data
collection” we have defined as one of the important chal-
lenges for in-network deep machine learning. We have dis-
covered its importance during the course of conducting our
experiments described in previous sections.

Traditionally, in most network data science research ef-
forts, we passively collect all the traffic data and analyze
them later in large computation facilities, so called, big data
analysis, or with limited computational resources perform
random sampling to reduce the size of the volume.

However, for a certain research problem, such as appli-
cation identification, the diversity of data is more useful than
its volume. In fact, the analysis of duplicated, similar data
often incurs additional cost for computation without adding
much value to the accuracy, especially for deep neural net-
work processing.

Therefore, we need intelligent sampling of data to be
analyzed for this type of data analysis. That is, if data source
is not adding much value to the accuracy, we may not want
to use the data source producing such kind of data, but rather
choose the data source producing diverse data.

For our project described in this paper, it is useful to
speculatively identify smartphones producing a wide variety
of application data, especially constantly installing newly
emerging applications that will possibly gain popularity.

As shown in Fig. 13, in our proposed method of in-
network deep machine learning for application identifica-
tion, we selectively annotate data from data sources that are
considered useful for generating supervising data in real-
time. Since we perform online supervising data collection
and training at the same time, we can adapt to the changes
in data characteristics, thus minimizing the turn around time
between data collection and application of the result of ma-
chine learning.

We currently manually select data sources for achiev-
ing speculative data collection. However, in future, it would
be desirable to perform it automatically, possibly by another
level of machine learning.

Fig. 13 Speculative data collection.

7. Conclusion

In this paper, we posit that, in future mobile network, net-
work softwarization will be prevalent, and it becomes im-
portant to utilize deep machine learning within network to
classify mobile traffic into fine grained slices, by identify-
ing application types and devices so that we can apply QoS
control, mobile edge/multi-access computing, and various
network function per application and per device. This paper
reports our initial attempt to apply deep machine learning
for identifying application types from actual mobile network
traffic captured from an MVNO, mobile virtual network op-
erator and to design the system for classifying it to applica-
tion specific slices.
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