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SUMMARY  The potential transmission capacity of a standard single-
mode fiber peaks at around 100 Tb/s owing to fiber nonlinearity and the
bandwidth limitation of amplifiers. As the last frontier of multiplexing,
space-division multiplexing (SDM) has been studied intensively in recent
years. Although there is still time to deploy such a novel fiber communica-
tion infrastructure; basic research on SDM has been carried out. Therefore,
a comprehensive review is worthwhile at this time toward further practical
investigations.
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1. Introduction

Optical fiber communication systems can carry enormous
volumes of aggregated traffic because of their broad avail-
able bandwidth and extreme low propagation loss, which en-
abled large capacity and long-distance communications. The
phenomenon of internet explosion was accelerated because
of the increasing capacity of the core network. However,
recently, traffic demands have reached the capacity limit of
fiber communications [1]. In order to satisfy further capac-
ity demands, a new technology is indispensable in the near
future. This turning point is recognized as “capacity exhaus-
tion” or “capacity crunch”. The main technical reasons are
fiber nonlinearity in standard single-mode fiber (SSMF) [2]
(Fig. 1) and bandwidth limitation of available optical ampli-
fiers [1] (Fig.2).

Before the capacity crunch, several multiplexing meth-
ods were utilized (e.g., wavelength-division multiplexing
(WDM) and high spectral efficiency coding [3]) to increase
the transmission capacity per fiber. For example, coherent
modulation using optical phases was suggested to increase
spectral efficiency and total capacity; however, such a trans-
mission system would significantly suffer from fiber nonlin-
earity. The limit capacity of SSMF is generally considered
to be 100 Tb/s [4]-[6]. Because it is a potential candidate of
breakthrough technology against the capacity crunch, space-
division multiplexing (SDM) was investigated (Fig. 3).

Spatial utilization in SSMFs is quite poor because a
thick cladding width is used to accommodate only one prop-
agation mode whereas the density of optical power and the
capacity of payload reached to the limit of one core. Since
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Fig.1  Nonlinear Shannon limit [2]. ASE: Amplified spontaneous emis-
sion, OF: Optical filter.
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Fig.2  Transmission window of fused-silica fibers showing standard op-
tical amplification bands [1].
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Fig.3  Evolution of transmission capacity in optical fibers as evidenced
by state-of-the-art laboratory transmission demonstrations [3].

this was inefficient, SDM was introduced to utilize the un-
used area of the fiber. The primary candidate of SDM is a
multi-core fiber (MCF). An increase in the number of cores
can simply achieve higher capacity; however, several related
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issues must be considered. Inter-core crosstalk (XT) is the
most important parameter of MCF that is caused by mode-
coupling/power-coupling between cores, and therefore, cores
should be appropriately separated. Unfortunately, increas-
ing the cladding diameter degrades the fiber’s mechanical
strength. Moreover, the adjustment of the propagation con-
stant, effective area, cut-off wavelength, and bending loss
should be considered.

Another major candidate is a few-mode/multi-mode
fiber (FMF/MMF). By adopting optical discrimination or
digital signal processing (DSP), higher order propagation
modes can be determined, which can accommodate high bit
rate modulated signals independently regardless of the fiber’s
modal dispersion.

2. Fibers for SDM

The early concept of MCF for transmission was created in
1979 [7], before the capacity crunch, when cost and com-
pactness were greater issues.

The recent progress of fabrication technology enabled
the MCF, which supports large capacity and long-distance
transmission by adopting holey construction [8], [9].

The solid core is much easier to realize while mode
confinement is rather weak. The reduction of XT is the major
issue in MCF. Several methods were developed to reduce
crosstalk by heterogeneous core layout [10], probable quasi-
homogeneous result [11], and trench-assisted construction
[12], [13] (Fig.4). A different core pitch can adjust the
crosstalk of inner core [14].

It has been previously reported that the behavior of XT
is quite random/statistical and power-coupling is dominant
than mode-coupling for practical fibers because of random
fabrication errors [15]-[18].

The number of core/spatial channel counts is also an
important factor for SDM fibers. A larger number of spatial
channels is beneficial not only for total capacity but also for
independently available optical paths for more granularity of
network. There are two types of fibers with 10 or more spa-
tial channels: single-mode MCF (SM-MCF) and few-mode
MCF (FM-MCF). Such an increase of spatial channels is sim-
ply achieved by increasing the cladding diameter; however,
it will decrease mechanical strength and long-term reliabil-
ity. Therefore, a practical and optimal solution is still being
pursued.

SM-MCEF is much easier to achieve large capacity/long-
distance transmission because single-mode propagation is
stable and the increase in the core number directly reflects
on the total capacity [19]-[23]. FM-MCEF has a considerable
potential of providing ultimate capacity and spatial channel
counts [24]-[29]; however, the transmission system tends to
be complex. In particular, the extension of fiber length and
transmission distance is a severe issue.

As another candidate of SDM fiber, single-core FMF
is also investigated for a practical transmission system. The
key issues are number of modes, inter-modal crosstalk, and
differential mode delay (DMD), which affects the complexity
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Fig.4 Reduction of inter-core crosstalk in MCF: (a)—(d) Heterogeneous
layout [10], (e) Quasi-homogeneous result [11], (f) Trench-assisted [12],
[13], and (g) Variation of core pitch [14].
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of DSP. A step index (SI) profile and a graded index (GI)
profile are two major groups of the core. In general, the
SI profile presents a larger DMD and is difficult to control
inter-modal crosstalk, independently [30].

Figure 5 shows the representative core profiles, SI [31],
multi-step index profile [32], GI [33], and trench-assisted
GI [34], [35]. Other important parameters that affect the
performance of transmission are mode coupling [36], [37]
and mode-dependent loss (MDL) [38]. In order to increase
the scalability of FMF capacity, investigations for precise
optimization [39] or mitigation of DSP [40] are undergoing.

3. MCF Transmission

As the candidate for breakthrough technology against the
capacity crunch, the primal and remarkable interest was in
exceeding the capacity limit of 100 Tb/s.

The first record was 109 Tb/s achieved by using a 7-
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Fig.6 SDM MUX/DEMUX [41]. (a) Schematic drawing, (b) Illustration
of beam propagation, (c) Definition of SDM channels in this work, (d) SDM
channel loss, and (¢) SDM channel crosstalk.

core MCF [41], [42]. Two major enabling technologies were
the design and fabrication of MCF [12], [13] and SDM-
MUX/DEMUX device, which is the connection between
SMFs and MCF. Free space optics (FSO) was adopted be-
cause of high power capability, adjustability, low insertion
loss, and low crosstalk, as shown in Fig. 6.

The total length of the MCF was 16.8 km. The trans-
mitted signal was 86 Gb/s QPSK multiplexed by 7 cores, 97
WDM, pol-mux, and the total capacity reached 109 Tb/s, af-
ter subtracting 7% of the FEC overhead. This demonstration
was followed by another research group [43] that achieved
112Tb/s in the same year. After these demonstrations, an
international race of capacity record challenge started.

The next update of capacity record was 305 Tb/s
[19], [20]; however, that was much more important as a chal-
lenge to increase the core number than the achievement of
total capacity. 19 cores were accommodated within 200 ym
diameter cladding as shown in Fig. 7. The total MCF length
was 10.1 km.

FSO-based SDM MUX/DEMUX was also adopted.
Upgrading from 7 cores to 19 cores was achieved by adding
one core layer. The aggregated collimated-beams from MCF
were steered by prisms as shown in Fig. 8. The total insertion
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Fig.7  19-core MCF [20]. (a) Cross section of MCF and (b) Attenuation
spectra.

SMF Fiber
Prism Collimator

\Q}? 7:-‘../.)%

i Top Layer [iii

[Middle Layer
 E— N

- =

Slider

Beam
Monitoring
Mirrors MCF

MCF holder

Bottom Layer

(©)

Fig.8 SDM MUX/DEMUX for 19-core [20]. Schematic, (b) Top view
of the six-prism array, and (c) Aggregated collimated-beam.

loss was 1.3 = 0.2 dB across all 19 channels.

Because of dense cores within same cladding, XT was
severer than that for the 7-core case. As the worst case, the
average crosstalk of center core was —32dB for 10.1km;
however, the inner core suffered aggregated crosstalk about
—23dB at 1550 nm and —17dB at 1610 nm.

The transmitter/receiver configuration was almost same
with previous 109 Tb/s experiment. An 86 Gb/s QPSK signal



was multiplexed by 19 cores, 100 WDM, pol-mux, and the
total capacity reached 305 Tb/s after subtracting 7% of the
FEC overhead. Even with the worse crosstalk condition, the
BER for every channel was measured as under the FEC limit
of 1 x 1072

One significant milestone was 1 Pb/s per fiber. The
previous SDM transmission still had a margin of capacity
because the spectral efficiency and WDM bandwidth were
not maximized compared with the available technologies at
that time. After the realization of MCF with 10 or more core
numbers, achieving 1 Pb/s was only a matter of time. It was
reported in same year as the 305 Tb/s record.

A transmission rate of 1.01 Pb/s was achieved with the
12-core MCF [21]. In fact, the 12-core MCF was realized by
omitting the inner cores from the 19-core layout in order to
avoid aggregated crosstalk in inner cores as shown in Fig. 9.

SDM MUX/DEMUX was fabricated from small diam-
eter single-core fibers which were placed into a V-groove
substrate and connected with MCF by fusion-splicing. The
cladding diameter and span length of 12-core MCF were
225 um and 52 km, respectively. Attenuation at 1550 nm and
1625 nm are 0.199 dB/km and 0.207 dB/km, respectively.

The average XT including MCF and SDM
MUX/DEMUX was —38 to —32 dB at the wavelength range
of 1526-1620 nm. The losses of SDM MUX/DEMUX in-
cluding the fusion splice losses were 0.7-2.9dB and 0.7-
2.0dB, respectively. The total losses between the SDM
MUX/DEMUX including the 52km of MCF ranged from
12.4-14.8 dB.

As shown in Fig.10, a 32 QAM single-carrier
frequency-division multiplexed (SC-FDM) signal with pol-
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Fig.9  12-core MCF and SDM MUX/DEMUX. As a courtesy of NTT.
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mux was generated as a456 Gb/s line rate for 222 wavelength
channels. The total capacity multiplied by 12 core and 222
WDM was 1.01 Pb/s, subtracting 20% of the FEC overhead.

Just after this achievement, another research group suc-
cessfully achieved 1.05Pb/s transmission by using a 14-
core hybrid MCF [24] which has 12 single-mode cores
and 2 three-mode cores. The MCF length was 3km. 385
WDM channels of 19 Gbaud, DP-32QAM-OFDM signals
for single-mode cores, and 354 WDM channels of DP-QPSK
signals for three-mode cores were submitted. The SDM
MUX/DEMUX was realized with FSO technique. The us-
age of FEC was rather complicated that 7% FEC in the
L-band and 20% FEC in the C-band were used, respec-
tively. These experiments used almost the full C+L band
and 32 QAM, which has a much higher spectral efficiency
than previous large capacity transmission. That is to say,
additional resource margin brought by SDM were fully uti-
lized. Therefore, it is indispensable to upgrade MCF itself
to achieve higher capacity.

The next milestone was 2 Pb/s. There were two reports
at same time.

The first one used a 22-core MCF [22] and optical
frequency comb (OFC) light source in order to introduce
the 64 QAM as a modulation format.

The homogeneous, 22-core MCF was based on a new
3-layer design with a two-pitch layout and total cladding
diameter of 260 um, as shown in the inset of Fig. 11. The
31.4 km span was spliced from 5 separately drawn sub-spans,
giving rise to a total link crosstalk of —37.5 dB at the comb
seed wavelength of 1559 nm. SDM MUX/DEMUX was the
3-D waveguide [44]. The dynamic skew between several
core pairs of the fiber was measured which vary over only
a few picoseconds range in 24h in a lab condition. Such
low variation in propagation delays between SDM channels
is expected to be advantageous with respect to sharing of
both transmitter hardware and DSP resources for which spa-
tial super channels (SSC) can be realized [45]. In the SSC
transmission scheme, groups of same-wavelength subchan-
nels are transmitted through parallel spatial channels sharing
the same light source and local oscillator. As a result, the
DSP load will be reduced by exploiting information about
common-mode impairments.

The frequency comb source consisted of a narrow
linewidth (5kHz) seed laser modulated with a low noise
25 GHz oscillator resulting with 25 GHz spaced comb spec-
trally broadened in a dispersion-engineered fiber mixer. 399

Loss with FUFO: 12.4-14.8dB

50GHz-spacing
222ch. WDM

Fig.10  Experimental setup for 1 Pb/s transmission. As a courtesy of NTT.
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comb lines for the C+L band acted as 22-sub-channels of
an SSC, each carrying 64 QAM modulation at 24.5 Gbaud
(> 10THz bandwidth) to transmit a total data rate of
2.15Pb/s, subtracting 20% of the FEC overhead confirmed
by BER measurements shown in the inset of Fig. 11.

Figure 11 also shows the schematic of how a transmitter
and MCF could be integrated with such a joint-core recep-
tion and SSC coding. The BER plot shows that the uncoded
channel has strong wavelength dependence with individual
sub-channel BERs varying by over three orders of magni-
tude. Such variation can be problematic for choosing the
most efficient outer FEC per channel because the overhead
is usually determined by the pre-FEC and required post-FEC
BER [46]. The option shown in Fig. 11 is to use some cod-
ing overhead on groups of channels, such as across SSCs,
to reduce the variation of the pre-FEC BERs as shown by
the lower variance in the average SSC BER (black squares).
Furthermore, depending on the quality of each SSC, specific
codes may be used to reach the target pre-FEC BER with the
smallest possible overhead. Although not necessarily opti-
mum grouping strategy, in this example, SSCs allow short
optical codes of 100s bits to condition the pre-FEC BERs of
serially coded electronic FEC using 1000s bits to attempt to
maximize the overall throughput.

Another 2 Pb/s transmission used 6-mode 19-core MCF
[47] as shown in Fig. 12. This MCF has 114 spatial channels

Experimental setup for 2.05 Pb/s transmission through 6-mode 19-core MCF [47].

that has the potential of 10 Pb/s capacity if all spatial channel
ensure good isolation and both of C and L band were used.
However, in this experiment, only the C-band was used for
generating 360 wavelengths super-Nyquist WDM of 60 Gb/s
DP-QPSK signals multiplexed by 114 spatial channels; the
total capacity reached 2.05 Pb/s, subtracting 20% of the FEC
overhead. This MCF sustained four mode groups of LPO1,
LP1la, LP11b, LP21a, LP21b, and LP02. The cladding
diameter was 318 um and the span length was 9.8 km, re-
spectively. The core index profile was a graded index, which
was designed to keep the coupling between the mode group
small. The attenuation of LPO1 was less than 0.5 dB/km.
SDM MUX was the combination of FSO and multi-plane
light converter, which generates the higher order mode from
SMF input and their mode-multiplexed signal simultane-
ously [48]. Atthe receiver side, a half-symbol spaced 12x12
multiple-input and multiple-output (MIMO) equalizer was
used for mode DEMUX regarding DMD dependency on the
optical carrier frequencies of WDM channels. In the same
manner, 10.16 Pb/s transmission was recently achieved [49].

On the other hand, the transmission distance is also
an important benchmark. In such long-haul transmissions,
a recirculation loop is indispensable whose configuration
is distinguishing. A 2688-km transmission distance was
achieved by using 7-fold, 76.8 km of 7-core MCF [50], [51].
In every loop, the source signal was launched to every core



in sync through an optical switch, and simultaneously, core
assignment was rotated in a cyclic fashion to average the
variation of each core. The total net capacity was 7.50 Tb/s
and the capacity-distance product reached 20.2 Pb/s-km.

In a simpler configuration, a 6160-km transmission dis-
tance was achieved by using 7-fold, 55 km of 7-core MCF
[52], [53]. Aloop was configured simply by connecting each
core in series. The total net capacity was 28.9 Tb/s and the
capacity-distance product reached 177 Pb/s-km.

In order to achieve a long-haul, large capacity transmis-
sion, core interleaving was proposed [54]. A double-ring
structured, 12-core MCF was used as shown in Fig. 13. 12
cores were separated into 6 pairs and each neighboring pair
was dedicated to counter direction in order to reduce XT.
A 450km transmission distance was achieved by using 12-
fold, 50km of 12-core MCF. In both directions, 409 Tb/s
was transmitted: a total of 818 Tb/s and capacity-distance
product reached 368 Pb/s-km.

A remarkable milestone of capacity-distance product

Core
1,2 =F———\% core
1 4 3,4
5,6 4
3 7.8
9,10

:
i

12 core MCF

Fig.13  Double-ring structure 12-core fiber with propagation-direction
interleaving [54].
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was 1 Eb/s-km and two achievements were reported simulta-
neously.

In the first report [55], [56], as shown in Fig. 14, a
7326-km transmission distance was achieved by using 7-
fold, 45.5km of 7-core MCF. The total net capacity was
140.7 Tb/s with super-Nyquist WDM and capacity-distance
product reached 1.03 Eb/s-km, subtracting 20% FEC over-
head. The configuration of the recirculation loop was
similar to Refs. [50], [51] with an optical switch in every
fold that made synchronous 7-loops in a cyclic fashion.
30 Gbaud duobinary-pulse-shaped DP-QPSK signals were
directly generated from 25 GHz spaced 201 WDM tones
ranging from 191.2625 THz to 196.2875 THz.

As shown in Fig. 15, the second report [57], [58]
achieved a 1500-km transmission distance by using 12-fold,
propagation-direction interleaved 50km of 12-core MCF
same as [54]. The total net capacity was 2 x 344 Tb/s
and capacity-distance product also reached 1.03 Eb/s-km
subtracting 20% FEC overhead. 11.5-Gbaud Nyquist-
pulse-shaped 16QAM signals were generated from 374
WDM tones for C+L (1533.28-1560.62, and 1567.68—
1618.76 nm).

Recently, further achievement were reported as
1.51 Eb/s-km [59], [60], 4.59 Eb/s-km [61], respectively by
using 12 fold, 46 km of 12-core MCF.

The summary of MCF transmission experiments are
listed in Table 1.
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Table 1

Summary of MCF transmission experiments.

Aggregated
capacity
[Tb/s]

109 112 305 1012 1048 2151

Number of 12
Cores 7 Z B L2 +2(x3) 2
Cladding
diameter 150 186.5 200 225 216 260
[um]
Fiber length
(Distances) 16.8 76.8 10.1 52 3 31

[km]

4. Spatial Super Channel Techniques/Self-Homodyne
Detection

Another derivation of MCF technology is the usage of re-
dundant spatial channels to enable new MCF-based optical
transmission schemes that may be advantageous in terms of
DSP resources and energy consumption.

SSC exploits the fact that the several cores of an MCF
exhibit statistical correlation among different cores for some
impairments, referred to as common-mode impairments. In
SSC, one transmitter laser is split and shared among all
channels, and at the receiver, one local oscillator (LO) is
split and shared for all receivers. The fundamental idea of
SSC was introduced in [46]. In addition, this relates to
the self-homodyne detection (SHD) described below in the
sense that the core-to-core signal coherence of SHD in MCF
can also be exploited to realize core-joint DSP, and thus, to
reduce the total cost per bit compared to an equivalent SMF
or ribbon-fiber transmission system.

Previously, a transmitted pilot-tone (PT) originat-
ing from the transmitter laser, is space- or polarization-
multiplexed [62] with the data signal and used as LO for
coherent reception. Phase coherency between the data sig-
nal and the PT yields phase noise cancellation (PNC) after
coherent detection, which can be exploited to reduce the im-
pact of laser phase noise, and subsequently be used to enable
spectrally efficient high-order modulation formats. Further,
PNC in SHD can relax the required rate carrier-phase re-
covery by several orders of magnitude as demonstrated with
shared carrier reception schemes in MCFs where both signal
and PT are received with intradyne detection (ID) receivers
[63]. SHD with a PT transmitted on an orthogonal polariza-
tion to the data suffers from a reduction of spectral efficiency
(SE) of up to 50% compared to PDM transmission. On the
other hand, the SE reduction due to PT transmission com-
pared to an equivalent ID scheme is inversely proportional to
the number of SDM channels. As an additional impairment
in all SHD systems, the impact of the accumulation of noise
on the PT during transmission was evaluated [64], [65].

The prospect of employing SHD in multi-mode fiber
systems was investigated numerically [66] and implemented
for an access network scenario in [67].

SHD demonstration in MCFs were achieved for
linewidth sensitive 5 GBaud QPSK signals using low-cost
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Fig.16 15 mode optics [77]. (a) Properties of the 22.8km 15 mode
fiber supporting 30 spatial and polarization modes. (b) 15 mode photonic
lantern.

DEFB lasers with MHz linewidth [68], 105 Tb/s transmission
[69], and 210 Tb/s WDM-SDM-PDM transmission with the
use of PDM-QPSK signals. This transmission rate, assum-
ing a 7% overhead for forward-error correction (FEC) gave
an SE of 33.4 b/s/Hz [70]. A long distance SHD transmission
for 6800 km was also investigated [71].

5. Mode-Division Multiplexing Transmission

The advantages of mode-division multiplexing (MDM)
transmission system based on FMF are larger effective area
with relatively simpler fabrication than MCF. Further, chan-
nel scalability can be expected with increasing performance
of DSP. A combination of optical discriminator and MIMO
signal processing can distinguish higher order LP-modes
that accommodate high data-rate coherent modulation. In
an early trial, 2 x2 MIMO with 100 Gb/s [72], [73] and 6 X 6
MIMO with 56 Gb/s [74], [75] were demonstrated. As a
SDM-MUX/DEMUX, FSO is proposed in an early report.
However, a photonic lantern (PL) is dominant in many pa-
pers. PL has a tapered structure and optical signals were
converted adiabatically from single-modes to multi-mode.
SDM-MUX of PL illuminates appropriate spots in the multi-
mode core, and the combination of the spots generate indi-
vidual higher order modes. By using SDM-DEMUX with
the same configuration, representative spots were divided to
single-mode cores, which were fed to MIMO processing.
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c) Time Multiplexed Coherent Receiver
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tiplexing. (c) Device layout. (d) Selective excitation of each LP mode using the PIC. (e) 2D grating
couplers and arrangement that collects light from a FMF and simultaneously acts as a polarization

splitter.

The proposal to reduce MIMO complexity by the combi-
nation of several MIMO sets was also demonstrated [76].
Recently, available MIMO complexity has increased up to
30 x 30 [77] for 15 mode MDM transmissions, as shown in
Figs. 16 and 17. Since it was quite difficult to prepare enough
numbers of electronics, a kind of emulation technique, which
included 3 multiplexing schemes consisting of five coherent
receivers, was conducted in this experiment. 33 GHz spaced
12WDM of 30 Gbaud PDM-QPSK signal in 15 mode were
transmitted.

In such MDM transmission demonstrations, MIMO
complexity according to increase of the number of spatial
channels (modes) was a serious problem. As an alternative
candidate, all-optical MIMO was investigated.

In the first demonstration, all-optical MIMO was fabri-
cated in photonic integrated circuit (PIC) [78] as shown in
Fig. 18. In fact, it was an optical circuit that had tapping
and re-construction of coupled signals in optical waveguide
and components with the support of computer. Even though
the computational load was not mitigated drastically, it could
realize partial implementation of MIMO in optical manner,
at least. In the experiment, PIC-based all-optical MIMO
successfully demultiplexed MDM signals after 30 km differ-
ential group delay (DGD) compensated FMF.

The derivation of MDM transmission media is coupled
multi-core fiber (CC-MCF), which supports spatial super-
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»'annpul

All-optical MIMO configuration [78]. (a) SDM mode coupler. (b) Optical MIMO demul-

(c) Device Layout
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Fig.19  Coupled multi-core fiber [79]. (a) Cross section, (b) Linearly
polarized super-modes (upper row) and corresponding far-fields (bottom
Tow).

mode consisting of each propagation modes in single-mode
core as shown in Fig. 19 [79]. In previous review of MCF, XT
was a serious issue in order to receive signals accommodated
in each core independently with small amount of bit errors.
CC-MCEF transmission system presupposes the use of MIMO
and increase XT by reducing core pitch intentionally. It can
be treated the same as multi-mode with the help of MIMO
and can achieve long-haul transmission.

In the same manner, the transmission distance increased
to 4200 km with 3 cores [80], 1705 km with 6 cores [81], and
recently 5500 km with 4 cores was achieved [82].

On the other hand, the increase of total capacity in
MDM is rather difficult compared with MCF transmissions.

The total capacity challenge in MDM transmissions
were conducted as 57.6Tb/s [83], [84] and recently at
115.2Tb/s [85].
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6. SDM Amplifiers and Connectors

For practical transmission systems, amplifiers and connec-
tors for SDM are indispensable. Because one of advantage
of SDM is integration, these components are expected to
contribute significantly to enhance integration.

Optical amplifiers need a combiner for signal lights
and pumping light, an isolator, and a gain equalizer. In the
case of multi-core amplifier, there are two derivations of the
pumping scheme of core- and cladding-pumping, because
of more complex waveguiding than a single-core fiber. The
first 7-core EDFA demonstrated simply combined signal and
pumping light, which is the same as conventional EDFA;
then, 7 mixed lights were introduced to the individual cores
of the 7-core EDF, as shown in Fig. 20 [86]. No integration
other than the EDF was conducted. A similar configuration
in a 7-core remotely pumped optical amplifier (ROPA) is
also reported [87], [88].

A shared core-pumping scheme was demonstrated in
a 19-core EDFA whose WDM coupler was configured by
FSO, as shown in Fig.21 [89]. The output of 10 pumping
LDs (Laser diode) were split to 19 beams and combined with
19 signal beams by one dichroic mirror. The FSO coupling
system for MCF to MCF was a key technology. A 19-core
isolator was also realized in the same manner. Thereby, the
WDM coupler and isolator were integrated.

Such sharing of pump LD is also applicable for Raman
amplifier [90].

For further integration, cladding-pumping was pro-
posed, as shown in Fig. 22 [91].

A multi-mode LD was used for pumping because it
has higher energy efficiency and good coupling with inner
cladding of EDF. A well-integrated WDM coupler was also
realized by FSO. However, such end-pumping has the prob-
lem of thermal effect caused by uncoupled pump light.

Better performance can be expected by a side-pumping
scheme, as shown in Fig. 23 [92].

The MMF carrying the pumping light was tapered while
a short section of the MC-EDF (Multi-core Erbium doped
fiber) was stripped off its low-index coating. A tapered MMF
was wound by 1.5 turns around the stripped section of the
MC-EDF. 4.7 W pumping power was successfully coupled
to the EDF by launching 7W from the pumping LD. By
this configuration, a small signal gain of > 20dB for a full
C-band was achieved.

Recently, a side-pumping scheme and a GRIN-lens
based isolator realized 32-core fully integrated MC-EYDFA
(Multi-core Erbium Ytterbium doped fiber amplifier) [93],
[94].

An amplifier for MC-FMF (Multi-core few mode fiber)
was also realized by using an annular cladding fiber design,
as shown in Fig. 24 [95], [96].

The side-pumping scheme was used and the pumping
power was concentrated within the annular cladding to im-
prove the power efficiency. As shown in Fig. 24, the pump
intensity in the ring is 1.4X brighter than the central cladding.

PumpLD

0B0H 550
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Fig.20  7-core EDFA, individual core pumping [86]. TFB: Tapered fiber
bundle.
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Gain equalization is another important requirement of
optical amplifiers. For MC-EDFA, LCoS (Liquid crystal on
Silicon)-based SDM gain equalizer was proposed as shown
in Fig.25 [97]. Core distribution was steered by TE/TM
splitter and FSO while the WDM signals were dispersed by
grating. Both de-multiplexed components in free-space were
attenuated by a single LCoS and re-combined in the same
optical paths. Thus, a programmable gain equalization was
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realized.

On the other hand, amplifiers for MDM transmission
were investigated. The configuration of multi-mode (MM)
amplifier is much simpler than that of multi-core (MC) am-
plifier in principle because spatial channels co-exist in the
same core. However, gain equalization is significantly im-
portant to reduce mode-dependent gain (MDG), because
each mode has a different optical distribution in the core.
This is different from the usage of an equalizer in the MC
amplifier because every mode of the MM-amplifier is cou-
pled with each other.

The first trials were conducted for 3-mode EDFAs [98]-
[101] and Raman amplifier [102]. The WDM coupler was
fabricated with FSO by using dichroic mirrors. In order
to equalize the gain difference between the modes, several
techniques were utilized, such as pump light adjustment of
pumping power, mode conversion of pump light.

Different ring profiles for the refractive index and er-
bium doping of the MM-EDF can amplify LPO1, LP11, and

(a)

Spatial modes
in each core

Cladding LPn LPu

Low Index
Inner Cladding

-100-50 0 50 100
X pm
Fig.24  3-mode, 6-core EDFA with annular cladding [95], [96]. (a) Facet

image of amplifier with dimensions, (b) Refractive index profile. (c) Pump
light distribution at 980 nm.
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LP21 — a total of 6 modes. After this report, a ring doping
profile become a major candidate for gain equalization [103].

The shaping of the launched pump light is also effective
to equalize the MDG [104].

However, according to the increase in the mode number,
the MM-amplifier also faces the issue of integration and
scalability. One of proposed solution is cladding pumping,
similar to that in the MC-amplifier [105].

The latest report of the MM-amplifier achieving 10-
mode amplification, which adopted side-pump coupling with
the cladding pumping scheme, is shown in Fig. 26 [106]. The
amplifiers for both the types of SDM exhibit similar evolution
scenarios.

Along with the amplifier, the SDM fiber connection
progresses; the connection between the same SDM fibers can
be realized by fusion-splicing [107] or detachable connector
[108]-[110]. In the same manner, physical contact up to 19
cores was realized [111].

As described in the MCF transmission section, FSOis a
good candidate to realize SDM-MUX/DEMUX between the
MCF and SMF [112]-[114], which can also accommodate
a functional optical device within the setup. Other tech-
nologies for MCF-SMF connection are tapered fiber bundle
[43], [115], GRIN, and micro-lens array [116].

For the SDM-MUX/DEMUX between the FMF and
SMEF, PL is a major candidate [117], [118]; however, multi-
plane phase plate also presents ideal mode conversion up to
10 modes, as shown in Fig. 27 [119]-[121]

A PIC based on silicon photonics can also realize mode-
multiplexing to ring-core MMF [122]. Thus, the investiga-
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tion of technologies for SDM connection is progressing.
7. Toward SDM Network

In addition to a point-to-point transmission demonstration,
the experiments of switching and networking by architecture-
on-demand (AoD) nodes have been proposed and also
demonstrated to incorporate SDM links [123]-[127].

On the other hand, as a switch fabric for SDM, re-
configurable add-and-drop-multiplexers (ROADM) designs
in the MCFs have also been proposed as shown in Fig. 28
[128], [129].

Commercial 1 x 20 wavelength-selective switches
(WSS) were used to realize 1 x 2 switching for 7-core MCF.
MC-ROADM comprised two WSSs in tandem in a switch-
and-select configuration. Forty 50-GHz spaced PDM-QPSK
at 128 Gb/s were introduced to MC-ROADM to support the
SSC.

Almost in the same principle, WSS with MMF interface
was also demonstrated, as shown in Fig. 29 [130], [131].

Both the switch fabrics have similar configurations with
the ROADM for WDM switching based on LCoS. Hence, the
fabrication technologies were easily used for commercial
products.

11

Butt-coupling 2-D detactor array

Fig.30  VCSEL/PD array coupled with 7-core MCF [134].

Fig.31 Linear array MCFs for computer-compatibility [136], [137].

Summarizing these techniques, SDM joint switching
between the SMF, FMF, and CC-MCF was conducted [132].

8. Short Reach/Datacom

It will take a little bit longer time that new SDM fiber is
deployed in telecom infrastructure regarding the past time-
frame that current SMF network was deployed. Pursuing
earlier commercialization, short-reach communication was
investigated. In such a case, the requirement for inter-core
crosstalk will mitigate drastically as compared to long-haul
applications.

Because VCSEL (Vertical Cavity Surface Emitting
LASER) can provide an array layout by separating several
tens of micrometers, multiple signal coupling to a MCF
is much easier than that in pigtailed lasers. The first at-
tempt to transport VCSEL light through 4-core MCF was
demonstrated in 1999 [133]. 7-core MCF transmission was
demonstrated with high-speed data modulation of the VC-
SELs [134], [135], as shown in Fig. 30.

In Datacom application, the core number and layout
should take computer-compatibility into account. Four or
eight cores with linear-array-structure MCFs were proposed
as shown in Fig. 31 [136], [137].

Further specialization for high-performance comput-
ing (HPC) required much simpler commodity. Dual-core
MCEF and detachable connector, which support bi-directional
transmission in one fiber, were demonstrated for datacenter
applications, as shown in Fig. 32 [138].

In addition, an 8-core MCF for O-band short-reach ap-
plication was also proposed [139], [140]. This MCF main-
tained a cladding diameter of 125 yum, which is the same
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Fig. 32

Dual-core MCF and connector [139].

as that in a conventional SMF, to reduce the overhead of
manufacturing equipment.

In order to explore practical application in Datacom,
the SDM datacenter network was demonstrated [141] using
a multi-element fiber, which accommodates three thin fibers
with the same prime-coating.

9. Conclusion

SDM technology is attractive to achieve significant capacity
and granularity in optical networks. However, the cost per
bit in communication has to be considered carefully during
the first commercial deployment. Many types of SDM fibers
with different properties were investigated. The design of
commercial SDM fiber has not to be unique. Variation in
the SDM fiber can be acceptable in different applications that
involve different requirements of capacity, distance, wave-
length, environment, and so on.
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