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SUMMARY This paper presents an overview of the advance of the
China millimeter-wave multiple gigabit (CMMG) wireless local area net-
work (WLAN) system which operates in the 45 GHz frequency band. The
CMMG WLAN system adopts the multiple antennas technologies to sup-
port data rate up to 15 Gbps. During the progress of CMMG WLAN
standardization, some new key technologies were introduced to adapt the
millimeter-wave characteristic, including the usage of the zero correlation
zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-
based packet encoding, and multiple input multiple output (MIMO) single
carrier transmission. Extensive numerical results and system prototype test
are also given to validate the performance of the technologies adopted by
CMMG WLAN system.
key words: millimeter wave communications, wireless local area network
(WLAN), zero correlation zone, single carrier, MIMO

1. Introduction

Since the world’s first 4G (LTE: Long Term Evolution) pre-
commercial network was launched by the Swedish mobile
network operator (MNO) Telia on May 27, 2009, the de-
ployment of 4G networks has been accelerated all over the
world. Meanwhile, the rapid adoption of smart phones has
triggered the Internet paradigm shift, from desktop to hand-
hold. As a result, the mobile data traffic also increases ex-
plosively with conservative estimates ranging from 40% to
70% year-by-year [1]–[3]. The incredible growth implies
that the wireless network in 2020 should be capable of pro-
viding 1000 times more capacity and 10 ∼ 100 times more
connections compared with the current network.

To meet these requirements, there has been growing in-
terest in millimeter wave (mmWave) communications due
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to the huge bandwidth in the mmWave band from 30 GHz
to 300 GHz [4]–[11]. The available spectrum at these
higher frequencies can be easily 200 times greater than all
cellular allocations with sub-6 GHz. Moreover, the very
small wavelengths of mmWave signals combined with the
rapid advances of low-power complementary metal-oxide-
semiconductor (CMOS) radio frequency integration circuit
(IC) solutions enable large numbers of miniaturized an-
tennas and mmWave front-ends to be placed in a small
space [12]–[16]. As a consequence, mmWave wireless com-
munication becomes one of the most promising candidates
for future wireless communication networks [17]–[28].

Recently, many communication technology standards
on mmWave wireless communications have been formu-
lated, including the IEEE 802.15.3c [29] wireless per-
sonal area network (WPAN), wireless high definition
(WiHD) [30], European computer manufacturers associa-
tion (ECMA) [31], IEEE 802.11ad wireless local area net-
work (WLAN) [32], and China millimeter-wave multiple
gigabit (CMMG) wireless local area networks [33]. The
emergence of these new standards have further validated the
feasibility of indoor implementation of mmWave wireless
communications [34], [35].

IEEE 802.15.3 Task Group 3c (TG3c) was formed in
March 2005 with aiming to developing an mmWave-based
alternative physical layer (PHY) for the existing 802.15.3
WPAN Standard 802.15.3-2003. This mmWave WPAN
standard is defined to operate in the 57 − 66 GHz range.
IEEE 802.15.3c-2009, which was published on September
11, 2009, allows very high data rate, short range (10 m) for
applications including high speed internet access, streaming
content download (video on demand, HDTV, home theater,
etc.), real time streaming and wireless data bus for cable re-
placement. A total of three PHY modes were defined in the
standard [29]:

• Single carrier (SC) mode (up to 5.3 Gbit/s)
• High speed interface (HSI) mode (single carrier, up to

5 Gbit/s)
• Audio/visual (AV) mode (OFDM, up to 3.8 Gbit/s).

The WiHD specification is a high definition digital in-
terface operating in the 60 GHz frequency radio band [30].
It allows either lightly compressed or uncompressed digital
transmission of high-definition video and audio and data sig-
nals. The standard ECMA specifies a PHY, a media access
control (MAC), and an High Definition Multimedia Inter-

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



HONG et al.: AN OVERVIEW OF CHINA MILLIMETER-WAVE MULTIPLE GIGABIT WIRELESS LOCAL AREA NETWORK SYSTEM
263

face (HDMI) protocol adaptation layer (PAL) [31].
The IEEE 802.11 standard for wireless LANs

(WLANs) has many versions including 11b, 11a, 11g, 11n,
11ac, and 11ad. The 11b/g/n standards operate in the 2.4-
GHz band. The 11a/ac/n standards operate in the 5-GHz
band, and the 11ad standard targets the 60-GHz band. All
share a similar MAC layer to provide interoperability. The
IEEE 802.11ad working group developed the 11ad standard
with input from the Wireless Gigabit Alliance (WiGig). The
11ad standard divides the 60-GHz band into four 2.16-GHz
wide channels and supports data rates up to 8.085 Gbps [36].

The purpose of this paper is to review the recent ad-
vances and results on the China millimeter-wave multi-
ple gigabit (CMMG) WLAN system and standardization,
which is named as IEEE 802.11aj. IEEE 802.11aj is a
wireless networking standard in the 802.11 family, devel-
oped in the IEEE Standards Association process, provid-
ing high-throughput WLANs [37]. IEEE 802.11aj system
operates in the 45-GHz frequency band named as CMMG
WLAN standard and in the 60-GHz frequency band called
as China directional multiple gigabit (CDMG) WLAN stan-
dard, respectively. CMMG adopts (digital-analog hybrid)
MIMO structure to simultaneously achieve the diversity-
multiplexing gain with theoretical peak throughput up
to 15 Gbps via transmitting more spatial streams (up to
four) [38]. Except for exploiting the antenna array gain to
compensate the large path-loss, a novel robust low density
parity checking (LDPC) codes based packet encoding was
adopted to improve the code gain with up to 0.2-0.5 dB in
CMMG [39].

The rest of this paper is organized as follows. The
progress of CMMG WLAN standard is briefly introduced
in Sect. 2. Sect. 3 introduces the channelization of CMMG
WLAN standard, followed by the introduction of the pream-
ble in Sect. 4. A novel LDPC-based packet encoding scheme
is introduced in Sect. 5. Section 6 introduces the detail of
the basic architecture of the CMMG WLAN standard and
the corresponding key technologies. The performance eval-
uation is given in Sect. 7.

2. Progress of CMMG WLAN Standard

A new study group SG5 with the aim to researching the fea-
sibility of 45 GHz frequency band for WLAN application
was setup in Chinese Wireless Personal Access Network
(CWPAN) Standard Working group in 2010. The first au-
thor from Southeast University was the chair of the SG5.

In January 2012, a new study group (SG) IEEE 802.11
cmmw was setup [37], [40], [41] in IEEE 802.11 work-
ing group. The main task of this group is to investigate
the possibility of using the mmWave frequency bands in-
cluding the 59 − 64 GHz and the 45 GHz frequency band to
achieve multi-Gbps wireless transmission with lower power
in China. The task group TGaj was formally established in
September 2012. Figure 1 illustrates the progress of CMMG
WLAN standard, which operates on the 45 GHz frequency
band. Up to now, the letter ballots of CMMG WLAN stan-

Fig. 1 Progress of CMMG WLAN standardization.

dard has basically finished. According to the time line of
the CMMG WLAN standard, in March 2017, the task group
will launch the sponsor ballots of CMMG WLAN stan-
dard. The task group plans to formally publish the CMMG
WLAN standard in July 2017.

In what follows, we focus on introducing the key tech-
nologies adopted in CMMG WLAN standard. Due to the
fact that the 45 GHz frequency band is a whole new fre-
quency band for IEEE 802.11 standardization organization,
coexistence problem need not to be considered. Accord-
ing to the project authorization request (PAR), a new phys-
ical (PHY) and an amendment of the media access control
(MAC) should be defined to adopt the advantage of this new
45 GHz frequency band.

3. Channelization of CMMG WLAN Standard

In 2011, a series of application documents of the mmWave,
especially for the 45 GHz, frequency band were submitted
to the Radio Management Bureau of the Ministry of the In-
dustry and Information Technology (MIIT) of the People’s
Re-public of China for the usage of the 45 GHz frequency
band [41]. After multiple rounds of modification, the docu-
ment named as “The usage of 40 − 50 GHz frequency band
for mobile services in broadband wireless access systems”
was published in the MIIT website [42], which was intended
to ask for suggestions and comments in September 2013.
The authorized frequency band that can be used for CMMG
WLAN standard is 42.3 GHz to 47.0 GHz and 47.2 GHz to
48.4 GHz.

Taking the spectrum efficiency, the required peak rate,
and the implementation complexity into account, IEEE
802.11aj CMMG task group, designed two kinds of channel
bandwidth, i.e., 540 MHz and 1080 MHz, for the CMMG
WLAN standard. Figure 2 illustrates the spectrum alloca-
tion and the channelization of the CMMG WLAN standard
to adapt to different data rate requirements and hardware im-
plementations. There are ten 540 MHz channels and five
1080 MHz channels. Note that there is 200 MHz frequency
gap between 47.0 GHz and 47.2 GHz, which has been allo-
cated for the amateur radio application. Compared to the
frequency allocation at the 60 GHz for IEEE 802.11ad in
China [32], as illustrated in Fig. 3 and Fig. 4, there are more
separable channels in the CMMG WLAN standard, which
facilitates the formation of mutually interference free ba-
sic service set (BBS) networks and enhance the user ex-
periences. The main parameters of frequency band of the
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Fig. 2 Channelization for CMMG WLAN communication standard.

Fig. 3 Frequency allocation at 60 GHz frequency band for IEEE
802.11ad [43].

Fig. 4 Frequency allocation at 60 GHz frequency band for IEEE
802.11ad [43].

CMMG WLAN standard are listed in Table 1, where EIRP
is the abbreviation of Equivalent Isotropic Radiated Power
(EIRP).

Three different application scenarios including confer-

Table 1 Main regulation parameters of CMMG WLAN communication
system.

Item Value
Frequency band (GHz) 42.3-47.0, 47.2-48.4

Bandwidth (MHz) 540, 1080
Frequency tolerance 100 ppm

Maximum transmit power at antenna port 20 dBm
Maximum EIRP 36 dBm

Fig. 5 Matrix factorized weighted construction method of ZCZ se-
quence.

ence room, cubicle office, and living room, are defined
in the usage scenarios document for CMMG WLAN stan-
dard [48]. A general structure of a channel model that takes
account of the important properties of 45 GHz electromag-
netic wave propagation was proposed in [47], [49].

4. Preamble Sequence of CMMG WLAN Standard

As we all know that in wireless communication systems,
timing/frequency synchronization and channel estimation
are two main tasks achieved by training signal in the re-
ceiver. Furthermore, accurate synchronization and channel
estimation play important roles in improving the overall sys-
tem performance. It also means that the design of the train-
ing sequence set, which is known to both transmitter and
receiver, is a crucial problem. The zero correlation zone
(ZCZ) sequence that is firstly introduced to enhance the ro-
bustness of synchronization in code division multiple access
(CDMA) system [50], is adopted to be the short training
field (STF) sequence and the channel estimation field (CEF)
sequence in CMMG WLAN standard. CMMG task group
adopted the matrix factorized weighted construction method
to generate the ZCZ sequence set based on a base ZCZ se-
quence set, which has the shortest length with interleaving
techniques [45], [46]. Figure 5 illustrates the details of the
generation of the adopted ZCZ sequence.

In Fig. 5, Ã
(0)

, Ã
(k)

and B̃
(k)

are defined as follows, re-
spectively.

Ã
(0)

=


ã(0)

1,1 · · · ã(0)
1,Q

...
. . .

...

ã(0)
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Fig. 6 Fast correlator of ZCZ.

B(k) =


w1,k IQk−1L · · · 0Qk−1L

...
. . .

...
0Qk−1L · · · wQ,k IQk−1L

 Ã
(k−1)

Ã
(k)

= D
(
1 ⊗ B(k)

)
D =


f1,1IQk−1L · · · 0Qk−1L

...
. . .

...
0Qk−1L · · · fQ,QIQk−1L


where L is the length of the initial sequence ã(0)

i, j , i, j =

1, · · · ,Q. Q denotes the number of the ZCZ sequences.
wi, j ∈

{
±1,±

√
−1

}
, i = 1, · · · ,Q, j = 1, · · · ,K are ele-

ments of the weight matrix W of size Q × K. K ≥ 2 denotes
the number of the iterations. IQk−1L and 0Qk−1L denote an
Qk−1L × Qk−1L identity matrix and an Qk−1L × Qk−1L zero
matrix, respectively. QK L is the length of the ZCZ sequence.
fi, j, i = 1, · · · ,Q, j = 1, · · · ,Q are elements of the Discrete
Fourier Transform (DFT) matrix FQ of size Q×Q. 1 denotes
all one column vector. ⊗ denotes Kronecker product.

The main advantage of the matrix factorized weighted
construction of ZCZ sequence is that a fast correlator can be
designed which only needs phase rotation operations. Fig-
ure 6 illustrates an example of a fast correlator for the ZCZ

sequence generated by the method developed by CMMG
WLAN standard task group, where the length of the ZCZ
sequence, the number of the ZCZ sequences, and the length
of the zero correlation zone are 8, 2, and 2, respectively.
In Fig. 6, R = [r1, · · · , r8] is a receiving sequence that is
correlated with each ZCZ sequence in the set of the ZCZ
sequences. wi, j, i, j = 1, 2 denote the weight coefficients.
CR,Zi , i = 1, 2 denotes the correlation coefficient between the
receiving sequence R and the ZCZ sequence Zi, i = 1, 2. αi
and βi is the initial sequence, i = 1, 2. “*” denotes the con-
jugate operation.

5. LDPC-Based Packet Encoding for CMMG WLAN
Standard

Low density parity check code (LDPC) was shown to
achieve reliable transmission at a signal-to-noise ratio
(SNR) extremely close to the Shannon limit for memoryless
binary-input unfaded Gaussian channels [44]. LDPC code is
a kind of block Forward Error Correction (FEC) code. Ac-
cording to the knowledge of information theory on coding,
it is easy to see that the better coding performance can be
achieved with a longer code length of FEC. In practical com-
munication systems, the transmission data packet is divided
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Fig. 7 Flowchart of the LDPC-based packet encoding scheme [39].

into some sub-blocks where each sub-block is encoded sep-
arately with incurring a certain coding performance loss.
It also means that achieving the best coding performance
needs to make the coding length as large as possible. As a
result, the coding complexity also increases with the coding
length.

To further improve the FEC performance and speed up
the decoding of the LDPC code, CMMG task group de-
signed a novel LDPC-based packet encoding scheme for
CMMG WLAN standard [33]. Figure 7 shows the flowchart
of the LDPC-based packet encoding scheme. The details of
the LDPC-based packet encoding scheme are described in
CMMG WLAN standard [33]. It is easy to see that different
from the traditional LDPC encoder, a new cyclic redundancy
check subblock is appended for each block of coding infor-
mation bits. A new packet encoding codeword is generated
with bit-wise addition module 2 for all encoded codewords.
Furthermore, a puncture operation is adopted via the bit se-
lection operation to avoid introducing additional bits with
the packet encoding codeword.

Figure 8 illustrates the performance comparison be-
tween the LDPC-based packet encoding scheme and the tra-
ditional LDPC encoding scheme [32] for additive Gaussian
white noise (AWGN) channel where R denotes the code
rate. Simulation results show that compared to the tradi-
tional LDPC coding scheme, the LDPC-based packet en-
coding scheme obtains 0.2 ∼ 0.6 dB performance gain in
terms of the packet error rate (PER) criterion. The cost of
obtaining the improvement of the PER performance is the
increasing of two additional operations, i.e., the cyclic re-
dundancy check (CRC) and the bits selection modules. For-
tunately, these modules are easily implemented via existing
technologies with very lower cost.

6. Transmission Mode of CMMG WLAN Standard

CMMG WLAN standard defined three kinds of transmit
modes, i.e., the robust Control mode used to guarantee the
coverage, the SC mode, and the OFDM mode, to satisfy var-
ious requirements in different environments. The latter two
modes have the ability to support diversity and multiplexing
transmission via MIMO transmission mechanism.

Fig. 8 Flowchart of the LDPC-based coding scheme [39].

Fig. 9 Format of physical protocol data unit for CMMG WLAN stan-
dard.

Figure 9 shows the format of physical protocol data
unit (PPDU) for CMMG WLAN standard where “+” and “-
” denote respectively the positive sign and minus sign. The
CMMG physical (PHY) preamble including the short train-
ing field (STF) and the channel estimation field (CEF) is
a part of the PHY PPDU and is used for packet detection,
automatic gain control (AGC), frequency offset estimation,
synchronization, indication of transmission mode (Control
mode, SC mode, or OFDM mode), indication of transmis-
sion bandwidth (540 MHz or 1080 MHz), and channel esti-
mation. The format of the preamble is common to both SC
packets and OFDM packets and consists of a STF followed
by a CEF. The content of the STF is the same between SC
and OFDM packets, but the content of the CEF is not the
same between such packets. In Fig. 9, the pattern of the
CEF is used to determine the channel bandwidth, the car-
rier modulation and the transmission mode [52]. The beam
training field (BTF) is used to track the transmitting beam
and refine the transmitting or receiving beam. Note that
when the channel width is 1080 MHz for SC mode, to effec-
tively estimate the channel state information, an additional
SC channel estimation field (SCEF) is inserted between the
signaling (SIG) field and the data field. Otherwise, one can-
not obtain the channel coefficient for the 1080 MHz channel
for SC mode transmission.
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Table 2 The Barker sequences.

Length Barker Sequence
4 +1, +1, -1, +1
7 +1, +1, +1, -1, -1,+1, -1

13 +1, +1, +1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1

Fig. 10 Transmitter block diagram for control mode.

6.1 Control Mode

The role of the Control mode is to transmit the control in-
formation which is used to guarantee the synchronization
between the access point (AP) and the user terminal (sta-
tions) and the coverage radius of the basic service set. In
Control mode, to enhance the robustness of the transmit-
ted signal, the most robust modulation and coding scheme
(MCS0), i.e., binary phase shift keying (BPSK) modulation
with lowest coding rate, is adopted. Support for MCS0 is
mandatory.

The robustness of the control physical layer is evidently
from its use of differential encoding, Barker sequence based
code spreading and BPSK. The Barker sequence which is
used in CMMG WLAN standard is listed in Table 2 [51].
Different from IEEE 802.11ad [32], CMMG WLAN stan-
dard supports link adaptation code spreading according to
the change of the environments [33].

Figure 10 illustrates the transmission block diagram
of the encoding and modulation steps for Control mode
where x7 + x4 + 1 denotes the generation polynomial of
the scrambler and 4x, 7x, and 13x denotes respectively the
4, 7, and 13 times spread spectrum operation. In CMMG
WLAN standard, the control message transmitted on the 540
MHZ bandwidth with beamforming style is mandatory. If
the channel bandwidth is 1080 MHz, the modulated control
mode SIG and data field symbols are transmitted with du-
plicated style to ensure that all stations can receive control
message.

6.2 SC Mode

To achieve low peak-to-average power ratio (PAPR) of
transmit signal and high transmit data rate, SC mode was
introduced for CMMG WLAN standard [33]. Simultane-
ously, in order to obtain the multiplexing gains, CMMG
WLAN standard also supports SC multi-streams transmis-
sion mechanism with using a unique words (UW) as guard
interval (GI) to avoid the inter-symbol interference (ISI) oc-
curred by the multiple paths. Furthermore, the length of
the UW is larger than that of the channel taps for remov-
ing inter-block interference. Figure 11 shows the transmis-

Fig. 11 Transmitter block diagram for the SIG field of SC mode.

Fig. 12 Transmitter block diagram for data fields of SC mode PPDUs.

sion block diagram for the SIG field of SC mode. When the
transmitter is equipped with multiple transmit antennas, the
classical cyclic shift diversity technology is used to extend-
ing the SIG field to the multiple transmit antennas.

As shown in Fig. 12, the SC format transmission
adopted UW-based space time blocking code for support-
ing MIMO operation can be generated using a transmitter
consisting of the following blocks:

• Scrambler: The scrambling of the Data field continues
the scrambling of the SC mode SIG with no reset for
SC mode transmission.

• LDPC encoding: The scrambled bits are encoded by
using LDPC-based packet encoding scheme introduced
in Sect. 5.

• Block padding zero: To guarantee the number of coded
bits is the integer times of the NCBPB, where NCBPB is
the number of coded bits included in each block and is
defined in Table 3.

• Stream parser: Rearrange the output of the LDPC en-
coders and block padding zeros into blocks.

• Constellation mapper: Mapping the bit sequence in
each spatial stream to π/2-BPSK, π/2-QPSK, π/2-
16QAM, or π/2-64QAM constellation.

• Spatial expansion: Spreading constellation points from
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Fig. 13 Spatial expansion mechanism of SC mode.
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Table 3 Values of NCBPB.

Mapper 540 MHz 1080 MHz
Long GI Short GI Long GI Short GI

π/2-BPSK 192 224 384 448
π/2-QPSK 384 448 768 896
π/2-16QAM 768 896 1536 1792
π/2-64QAM 1152 1344 2304 2688

Nss spatial streams into NS TS space time streams using
a specific spatial expansion mechanism.

• Pulse shaping filter: Filtering the signal to shape trans-
mit signal spectrum.

• Analog and RF: Up-converting the resulting com-
plex baseband waveform associated with each transmit
chain to an RF signal according to the center frequency
of the desired channel and transmit.

In practical communication implementation, the num-
ber of the spatial streams may different from that of the
transmitting antennas. Thus, the question arises of how to
map fewer spatial streams to more transmit antenna chains
without causing unintentional beamforming and making the
best use of the available power amplifiers and transmit
chains. To reduce the feedback overhead, an open loop spa-
tial expansion mechanism, i.e., UW-based space time block
coding spatial expansion, is proposed for SC mode with
MIMO transmission. Note that the UW in every block is the
same for mth transmit antenna, thus fulfilling the theorem
of circular convolution. To reduce the correlation between
the streams transmitted by different transmitting antennas,
a conjunction operation and a permutation operation are in-
troduced in the spatial expansion mechanism. Figure 13 de-
fines the spatial expansion mechanism of different spatial
stream for SC mode with MIMO transmission systems.

In Fig. 13, d̃i, j denotes jth data block of the ith spatial
stream. x̃i, j denotes the jth data block of the ith transmit
antenna. ũi denotes the UW transmitted at the ith transmit
antenna. QNBLS

is an NBLS × NBLS spatial expansion matrix,
where NBLS is the number of symbols in each transmit block
for SC mode, and is given by

QNBLS
=

(
Q1 Q2
Q3 Q4

)
where Q2 = 0NDSPB×NUWPB , Q3 = 0NUWPB×NDSPB , and

Q3 =



0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

. . .
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0


NDSPB×NDSPB

Q3 =



0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

. . .
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0


NUWPB×NUWPB

The values of NDS PB and NUWPB are given in Table 4. The

Table 4 Values of NDS PB and NUWPB

540 MHz 1080 MHz
Long GI Short GI Long GI Short GI

NDS PB 192 224 384 448
NUWPB 64 32 128 64

Fig. 14 Block transmission structure of SC mode PPDUs.

Fig. 15 Physical protocol data unit format of OFDM mode.

Table 5 Comparison of PAPR

PAPR
Length of 256 Length of 512

11ac LTF 8.6 dB 11.6 dB
CMMG OCEF 3.2 dB 3.6 dB

UW is composed of the ZCZ sequence of length 32, 62, or
128 generated by the matrix factorized weighted construc-
tion method introduced in Sect. 4.

Figure 14 illustrates the structure of the physical pro-
tocol data unit of SC mode. After the transmission block
generation is finished, an additional UW which is the same
with that of the data block needs to be prepended to the first
block transmitted.

In summary, the SC mode in CMMG WLAN stan-
dard can obtain simultaneously the transmission diversity
and multiplex gains via the spatial multiplexing mechanism
and the array antennas technology.

6.3 OFDM Mode

OFDM mode is an optional transmission mechanism for
CMMG WLAN standard. With regard to the choice of SC
mode or OFDM mode, the generally accepted reason for
favouring one over the other is the relative importance, in a
given application, of power consumption (i.e., maximizing
battery life) compared with maximizing data throughput.

Similarly, OFDM mode simultaneously supports diver-
sity transmission and diversity-multiplexing transmission.
Different from SC mode, in OFDM mode, the spatial ex-
pansion mechanism can be designed based on the feedback
of the channel state information subject to certain perfor-
mance criterion. Figure 15 illustrates the PPDU format of
the OFDM mode for CMMG WLAN standard. An obvi-
ous difference between SC mode and OFDM mode is that
CMMG WLAN task group designed a new short training
field (OSTF) and channel estimation field (OCEF) to adapt
the estimation of an effective channel state information. The
specific definition of the OSTF sequence and the OCEF se-
quence are given in Sect. 8. The comparison of PAPR be-
tween the OCEF in CMMG WLAN standard and the long
train field in IEEE 802.11ac is listed in Table 5.
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7. Performance Evaluation

In this section, the performance of the CMMG WLAN sys-
tem is evaluated via numerical results and the test of the
prototype. Table 6 lists the modulation and coding schemes
used in the CMMG WLAN standard, includes the BPSK,
quadrature phase shift keying (QPSK), and quadrature am-
plitude modulation (QAM). In our simulation, the CMMG

Table 6 Modulation and coding schemes (MCS) for CMMG WLAN
standard.

MCS Index 0 1 2 3 4 5 6 7
Modulation BPSK QPSK 16QAM 64QAM
Code Rate 1/2 1/2 3/4 1/2 3/4 5/8 3/4 15/16

Fig. 16 Performance comparison of SC mode for the additive Gaussian
white noise (AWGN) channel.

Fig. 17 Performance comparison of SC mode for the CMMG channel.

channel is generated according to the methods described
in [53], [54].

7.1 Numerical Results

Figure 16 and Fig. 17 illustrate the performance compari-
son of SC mode between the additive Gaussian white noise
(AWGN) channel and CMMG WLAN fading channel with-
out taking any hardware impairment into account for sin-
gle input single output system. Numerical results show that
the performance in CMMG WLAN fading channel is much
lower than that in AWGN channel due to the impact of
the fading characteristic of the millimeter wave propagation
channel. When PER= 10−1, the performance deterioration

Fig. 18 Performance comparison of SC mode for the CMMG channel
with cycle shift diversity spatial expansion mechanism.

Fig. 19 Performance comparison of SC mode for the CMMG channel
with space time block coding spatial expansion mechanism.
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Fig. 20 Performance comparison of SC mode for the CMMG channel
with space time block coding spatial expansion mechanism IQ: 1 dB, 2o,
PA backoff: 3 dB, Carrier frequency offset: 615 kHz.

of high-order MCS is about 10 dB, so we need to consider
using multiple antennas technology to compensate the path
loss incurred by the mmWave propagation channel.

Figure 18 and Fig. 19 illustrate the performance com-
parison of the two spatial streams transmitted by SC mode
with different spatial expansion mechanism. Numerical re-
sults show that the space time block coding spatial expan-
sion mechanism outperforms the cyclic shift diversity spa-
tial expansion mechanism in terms of the packet error rate
with a steeper slope.

Figure 20 illustrates the performance of SC mode for
the CMMG WLAN fading channel with space time block
coding spatial expansion mechanism with taking the im-
paction of the hardware impairment account. Numerical re-
sults illustrate that when the impaction of the hardware im-
pairment, such as I/Q imbalance, power amplifier backoff,
phase noise, etc, cannot be ignored, the performance of SC
mode become worse with 2 − 9 dB. It also implies that in
practice, we need to design hardware impairment compen-
sation algorithm to reduce the impaction of the hardware
impairment on the performance of the communication sys-
tems.

7.2 System Prototype

In this subsection, we briefly describe the prototype test plat-
form for CMMG WLAN standard. Figure 21 shows the pro-
totype test platform and the related parameters of the system
prototype. The transmitter is equipped with 2 transmitting
antennas and the receiver is equipped with 4 receiving an-
tennas.

To evaluate the practical performance of the wire-
less transmission of the developed scheme for the CMMG
WLAN standard, a field test is carried in two scenarios,

Fig. 21 Prototype machine of CMMG WLAN standard.

Fig. 22 Test environment of CMMG WLAN standard.

Fig. 23 Test performance of CMMG WLAN standard.

i.e., the laboratory and the corridor in a building, illus-
trated in Fig. 22. The performance of the field test of
the prototype is shown in Fig. 23. Field test results show
that the designed scheme for the CMMG WLAN standard
can achieves 4.085 Gbps data rate by transmitting two spa-
tial streams with 3

4 code rate, 64 QAM modulation, and
540 MHz transmission bandwidth. Field test results also
validate that the mmWave frequency bands have the ability
to achieve spatial multiplexing transmission and to achieve
small cell hot-spot coverage.
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8. Conclusion

This paper provided an overview of the key technologies
adopted in the CMMG WLAN standard and the progress of
CMMG WLAN standardization. CMMG WLAN standard
supports three transmission modes, i.e., Control mode, SC
mode, and OFDM mode. The first two transmission modes
are mandatory and the third transmission mode is optional.
The zero correlation zone sequence was adopted as the train-
ing sequence. To enhance the robustness of the transmitted
data, a novel LDPC-based packet encoding scheme was de-
veloped for CMMG WLAN standard. Extensive numerical
results and field test results of a system prototype are pro-
vided to verify the effectiveness of the key technologies de-
veloped for the CMMG WLAN standard.
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Appendix

The OSTF sequence is given by

1 + j
√

2
{0, a, a, b, a, a, a, b, b, a, b, b, b, a, a, b, a, b, b, a, b, a,

a, 0, 0, 0, 0, b, b, b, b, a, b, b, b, a, a, a, a, b, a, a, a, b, a, b, a,

a, 0, 0}

for 540 MHz channel where a = [1, 0, 0, 0] and b =

[−1, 0, 0, 0], and

1 + j
√

2
{0, b, a, a, a, b, b, b, a, a, b, a, a, a, a, b, b, b, b, a, b, a,

b, b, b, a, b, b, a, b, a, b, a, a, b, b, a, a, b, a, a, a, b, a, b, 0, 0,

0, 0, a, a, b, b, b, b, b, b, b, a, a, b, b, a, a, a, a, a, a, b, a, a, a,

a, a, b, a, a, a, b, a, b, a, a, a, a, a, a, a, a, a, b, b,−1, 0}

for 1080 MHz channel. For 540 MHz channel, the value on
the subcarrier with the index from −89 to 89 of the OCEF
field is given by

1,−1,−1, 1, 1,−1,−1, 1, 1,−1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1, 1,

−1, 1, 1, 1,−1, 1, 1,−1, 1,−1,−1, 1, 1,−1,−1, 1,−1, 1, 1, 1, 1,

1, 1, 1,−1,−1, 1, 1, 1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1, 1,−1,

−1,−1,−1, 1, 1,−1,−1,−1,−1,−1,−1, 1,−1,−1,−1, 1, 1, 1,

1,−1,−1, 1, 1,−1, 1, 1, 0, 0, 0,−1, 1,−1, 1, 1,−1, 1,−1,−1,

−1, 1, 1, 1, 1, 1,−1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,

−1, 1,−1, 1,−1, 1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1,−1, 1, 1,

−1, 1, 1,−1, 1, 1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1,−1, 1,−1, 1,

−1, 1, 1, 1, 1,−1, 1,−1, 1,−1,−1, 1, 1, 1,−1, 1, 1,−1,−1,−1, 1.

For 1080 MHz channel, the value on the subcarrier with the
index from −177 to 177 of the OCEF field is given by

1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1,−1,−1,

−1,−1, 1,−1, 1,−1, 1, 1, 1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1, 1, 1,

−1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1, 1, 1,−1,−1, 1,−1,−1,

−1,−1,−1, 1, 1,−1,−1,−1,−1,−1, 1,−1, 1, 1, 1,−1,−1,−1,

−1, 1, 1, 1,−1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1, 1, 0, 0, 0, 1, 1, 1,

−1,−1,−1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1,

−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1,−1,−1,−1, 1,−1,

1, 1,−1, 1, 1, 1,−1,−1, 1,−1, 1, 1, 1, 1,−1, 1, 1, 1,−1, 1, 1, 1,

1,−1, 1,−1,−1,−1, 1,−1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 1.
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