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SUMMARY This paper proposes a novel environmental monitoring
strategy, incremental environmental monitoring, that enables scientists to
reveal the ecology of wild animals in the field. We applied this strategy to
the habitat of endangered freshwater fish. Specifically, we designed and im-
plemented a network-based system using distributed sensors to continuously
monitor and record the habitat of endangered fish. Moreover, we developed
a set of analytical tools to exploit a variety of sensor data, including envi-
ronmental time-series data such as amount of dissolved oxygen, as well as
underwater video capturing the interaction of fish and their environment.
We also describe the current state of monitoring the behavior and habitat
of endangered fish and discuss solutions for making such environmental
monitoring more efficient in the field.
key words: environmental monitoring, sensor networks, annotation tools,
computational ethology

1. Introduction

Advances in the technologies of sensing devices and net-
works have allowed scientists to more effectively monitor an-
imals in the field. Such improved monitoring of animals and
their habitats has enabled scientists to quantitatively analyze
the relevant natural ecologies. Several ecological research
works [1], [2] havemonitored animals under controlled labo-
ratory conditions; however, ecological systems are naturally
embedded within various environmental landscapes, such as
streams, coral reefs, and the forest floor, that are considerably
more complex than environments replicated in a laboratory
[3]. The ability to carry out tracking in the field is critical
because environmental drivers in the natural context— such
as light, temperature, physical habitat, and spatial dimen-
sionality—have a profound influence on behavior and thus
ecosystem organization [3].

To reveal the ecology of wild animals in the field, sci-
entists need to monitor both the target animal’s behavior and
environmental factors in the habitat. We define the former
type of monitoring as “target behavior monitoring” and the
latter type as “habitat monitoring” in this paper. Investigat-
ing the animal’s ecology, such as the relationship between the
season of starting propagation and cumulative temperature
or that between the frequency of spawning and temperature,
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becomes possible only after conducting both target behav-
ior monitoring and habitat monitoring. Such investigations
in the field have been actively conducted in the ecological
research community, while several investigation processes
in conventional approach, such as counting certain animals
and measuring environmental factors, are not automated [4].
Current environmental monitoring and image-based behav-
ioral analysis technologies can help automate such process
to investigate the animal’s ecology more quantitatively.

However, monitoring systems that can satisfy the re-
quirements of both types of environmental monitoring tend
to be so complex and large that an excessively long time is
needed from design to deployment. Moreover, the obtained
data might not be useful for revealing the animal’s ecology,
since the appropriate factors for revealing certain character-
istics of animals are not known in advance. For example,
even scientists do not fully understand which environmental
factor, such as temperature, humidity, or light, may trigger
the egg-laying behaviors of certain species, or where and
how the target animals prefer to lay eggs in the habitat.

We argue that rapidly deploying an improvisedmonitor-
ing system in the field, gathering the data, and providing the
data to scientists are important stages in revealing an animal’s
ecology. Aswe experienced in several efforts at environmen-
tal monitoring, professionals (e.g. scientists studying certain
animals) can find interesting insights through monitoring
data and evaluating analytical results that are not yet refined.
Based on these insights, we could set our next monitoring
aims, including what kinds of data should be monitored in
which location and how, toward understanding the animal
more deeply.

The purpose of this paper is to share our experiences
in conducting a practical environmental monitoring experi-
ment and to address the issues involved with the design and
development of systems for monitoring habitat and target
behaviors. We conducted environmental monitoring of a
biotope and a fish farm, habitats of endangered fish, located
at Kindai University, Nara Prefecture, Japan [5]. The moni-
toring project aims to reveal the ecology of endangered fish
in a natural context. To achieve this, we decided to moni-
tor both the habitat factors and the behaviors of endangered
fish. However, we implemented the project in stages by first
launching only habitat monitoring to measure such environ-
mental factors as water temperature and amount of dissolved
oxygen (DO). Next, we began monitoring target behavior by
recording underwater video to better understand the behav-

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers



SHIRAI et al.: INCREMENTAL ENVIRONMENTAL MONITORING FOR REVEALING THE ECOLOGY OF ENDANGERED FISH
2071

iors of endangered fish in the field. Currently, we are testing
new sensor nodes that automatically detect fish behaviors
and transmit only behavioral data to the remote server. By
incrementally building our evolving monitoring system, we
can develop it more efficiently and enable scientists to un-
derstand the ecology of endangered fish in a step-by-step
manner.

The contributions of the paper are as follows:

• an incremental environmental monitoring strategy for
efficiently constructing a system that monitors both en-
vironmental factors and target behaviors;

• practical experiments on incremental environmental
monitoring;

• monitoring support tools and a method of efficiently
constructing training data for detecting target behaviors;

• a thorough discussion on the effectiveness and novelty
of our approach to incremental environmental monitor-
ing.

The rest of the paper is organized as follows. Section 2
introduces the characteristics of endangered fish and their
habitat. Section 3 describes the design of our incrementally
phased strategy for constructing a complex environmental
monitoring system that can reveal the ecology of endan-
gered fish. This strategy consists of three phases, and their
conditions of environmental monitoring are overviewed in
Sects. 4, 5, and 6, respectively. We discuss the effectiveness
of our strategy in Sect. 7, present related work in Sect. 8, and
give our conclusions in Sect. 9.

2. Endangered Fish and Their Habitat

We started environmental monitoring aimed at clarifying the
ecology of Japanese rosy bitterling, an endangered fish, in
2013. Japanese rosy bitterling is a species endemic to Japan.
It has widely dwelled in rivers and reservoirs in western
Japan. However, recent agricultural modernization has be-
gun to destroy its habitat, and hybridization with continental
rosy bitterling has also reduced the population of Japanese
rosy bitterling.

In order to protect this species, it is necessary to pre-
serve its existing habitat and to expand this habitat by im-
proving the environmental quality of the ponds where no
bitterling yet lives. However, our understanding of the ecol-
ogy of rosy bittering is still insufficient, especially for work
in the field.

This section describes the characteristics of Japanese
rosy bitterling and the habitat where we conducted environ-
mental monitoring.

2.1 Japanese Rosy Bitterling

Japanese rosy bitterling is a small freshwater fish, with a
length of about 5 cm. The fish reproduces within a specific
ecology: It lays its eggs inside a particular kind of mussel.
However, since this mussel is susceptible to low levels of
dissolved oxygen and high temperatures, propagation of both

the mussels and the fish is difficult. Consequently, we must
protect this entire ecological system in order to save the
Japanese rosy bitterling from extinction.

2.2 Monitoring Field

At Kindai University, two reservoirs are provided as con-
trolled habitats for the bitterling. First, the biotope is a pond
with dimensions of about 10 x 20m. Its depth is mostly
continuous but varies from 0 to 1m, depending on the point
in the pond. A wide variety of species, such as killifish, cru-
cian carp and crayfish, live in the biotope. The temperature
variation is extreme, with temperatures sometimes falling
below freezing point in winter.

The fish farm, the university’s second bitterling habitat,
is a small artificial pond with dimensions of about 2 x 4m.
The depth varies from30 to 50 cm, depending on theweather.
Some other species, such as killifish, live in the fish farm,
but the number of species is few compared to the biotope.

A hut is constructed about 15m away from the fish farm,
and it houses a power supply for the monitoring systems. On
the other hand, no power supply is available in the area
surrounding the biotope.

2.3 Requirements for Monitoring Systems

In environmental monitoring for investigating wild animal’s
ecology, it is quite important to stably keep collecting sensor
data over a long period of time. Thus, monitoring systems
should stably keep supplying power to all sensors and sensor
nodes and maintain stable wireless connection throughout
the year. When the monitoring system supplies the power
to sensors and sensor nodes by batteries, the capacity of the
batteries should be determined in light of the maintenance
schedule. For instance, if maintenance staff can replace bat-
teries only once every three months, it is necessary to select
batteries that can continuously supply the power for more
than three months. The system designer should also decide
the wireless communication method, the type of antenna,
and its installation site so that stable data transmission can
be maintained throughout the year.

In our project, our monitoring system’s maintenance
(e.g. battery replacement) should not have to be more fre-
quent than monthly. As it happens, students of Kindai
University normally conduct monthly maintenance in these
reservoirs, making it possible for them to easily handle our
experimental system’s maintenance. Looking toward the fu-
ture, the ideal maintenance schedule would be only once
a year in winter, considering the rosy bitterling’s spring-
autumn spawning cycle.

The monitoring equipment, such as sensor nodes, can
be placed on the bank around the reservoirs. Taking the
size of these reservoirs into consideration, an IEEE802.15.4
link is adequate for communication between the two ends of
the pond. Note that weeds grow high on the banks of the
reservoirs in summer and thus sometimes interfere with the
wireless communication. In that case, it is necessary to use



2072
IEICE TRANS. COMMUN., VOL.E101–B, NO.10 OCTOBER 2018

a long-range wireless module and/or to install the antenna at
a high position.

3. Designing Environmental Monitoring to Reveal
Japanese Rosy Bitterling’s Ecology

Monitoring systems that can successfully monitor both the
habitat and the behavior of endangered fish are too com-
plex to design, develop and deploy in a practical timeframe.
Moreover, if a great deal of time were needed for monitor-
ing, it would be difficult to clarify the biological findings.
Therefore, we first started environmental monitoring with a
simple monitoring system and then incrementally expanded
it to obtain useful data in a step-by-step manner. This section
describes our incremental strategy of environmental moni-
toring.

3.1 Difference between Habitat Monitoring and Target Be-
havior Monitoring

One of our interests in the ecology of the bitterling is de-
termining what environmental factors influence its propa-
gation behaviors in the wild. Consequently, we decided
to measure temperature, humidity, light, water temperature,
and dissolved oxygen (DO) amount as environmental fac-
tors of the bitterling’s habitat. We also decided to monitor
propagation-related behaviors such as approaching mussels
and spawning.

While existing sensors are able to directly measure the
values of environmental factors (e.g. water temperature sen-
sors), sensors that can measure values of bitterling behav-
iors are not currently available. Therefore, we decided to
record underwater video of the pond with an underwater
camera, extract instances of target bitterling behaviors from
the recorded video, and count these behaviors.

Table 1 compares the sensors used for our habitat mon-
itoring and target behavior monitoring. The size of the data
measured by habitat monitoring sensors is small enough to
send via wireless sensor networks (WSN). A sensing device
typically consumes little energy, and thus small, low-power-
consuming sensor nodes can measure the environmental val-
ues and transmit them. On the other hand, the size of the
data captured by an underwater camera is quite large be-
cause high-resolution sequential images (e.g. video recorded
at 1280 x 720, 30 fps in our project) are required to capture
the propagation-related behaviors. Regarding power con-
sumption, underwater cameras consume considerably more
energy, needed for capturing images, than do habitat mon-

Table 1 Comparison of sensors for habitatmonitoring and target behavior
monitoring.

Sensors Data size Power con-
sumption

Habitat Monitor-
ing

temp., humidity, light,
water temp., DO

Small Low

Target Behavior
Monitoring

underwater camera Large High

itoring sensors. That is, higher-performance sensor nodes
are required for capturing images and transmitting them to a
remote storage device.

We assume that a monitoring system capable of satis-
fying the requirements of both types of monitoring would be
too complex to design, develop and deploy all at once. Based
on the comparisons discussed above, sensor nodes with dif-
ferent specifications are required for habitat monitoring and
for target behavior monitoring. Moreover, it is necessary to
design purpose-specific communication and power supply
methods. However, if the envisaged dual-purpose monitor-
ing system required an extraordinarily long time from design
to deployment, our efforts to better understand the ecology
under study would be delayed accordingly. Furthermore,
excessive delays in deployment create difficulties for ongo-
ing improvement of the monitoring system. Therefore, a
phased-in deployment of prototype monitoring systems in
the field would enable developers to collect suitable data for
understanding how to improve the system [6].

In order to deploymonitoring systems at amore produc-
tive pace, we decided to start habitat monitoring in advance
of launching target behavior monitoring. This approach was
taken because the constraints of power supply and data trans-
mission in habitat monitoring are looser than those in target
behaviormonitoring, thusmaking it relatively easy to design,
develop and deploy the monitoring system. It is also impor-
tant to grasp the environmental factors of ponds where the
bitterling actually live, since such data is useful in promoting
conservation.

3.2 Target Behavior Detection

All of the habitat monitoring sensors we selected for use
are able to return numerical values related to a particular
environmental factor. These values can be used for statis-
tical analysis without complex preprocessing. In contrast,
camera-based target behavior monitoring requires prepro-
cessing before analysis. That is, we have to isolate bitterling
behaviors such as approaching mussels and spawning in the
images captured by the underwater camera before conduct-
ing statistical analysis.

In real-world investigation of the relationship between
egg-laying behavior and various environmental factors, the
sensor node connected to the underwater camera does not
actually need to send all of the captured images to the remote
server. Images of egg-laying behavior and/or the events
that indicate the occurrence of egg-laying are sufficient to
examine the relationship between egg-laying behavior and
environmental factors. Rather than transmitting the entire
collection of captured images, gathering only images with
relevant information (i.e. target behavioral data) contributes
to reducing the communication traffic.

Nevertheless, we assume that the target behavior mon-
itoring system should gather all images at the beginning.
First, our understanding of how the bitterling behaves in re-
lation to egg-laying is still insufficient, especially in the field.
To explore and clarify the bitterling’s behavior in the field,
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watching video and confirming the kinds of characteristic
behaviors the bitterling performs is crucial.

Second, automated image-based detection of the bitter-
ling’s behavior is needed to selectively transmit only egg-
laying images/events. Deep neural networks (DNN) show
significant accuracy and speed for general purpose object
detection from images, and they are potentially useful as
a way to detect the bitterling’s behaviors. However, such
frameworks require a large dataset of training images, which
must be gathered in the field.

Consequently, we decided to first construct a target be-
havior monitoring system that continuously records under-
water images to understand the bitterling’s behavior in the
field and to prepare a training dataset for the automated de-
tection of bitterling behavior.

3.3 Incremental EnvironmentalMonitoring Framework for
Revealing the Ecology of Endangered Fish

Based on the above considerations, we have designed an
incremental environmental monitoring strategy for revealing
the ecology of endangered fish. The strategy is carried out
in three phases:

Phase 1 Rapidly Launching Habitat Monitoring
Habitat monitoring is deployed prior to the target be-
havior monitoring. Constraints on power supply and
data transmission are relatively loose, so users can flex-
ibly explore which place is appropriate for deploying
the sensor node by trial and error. This experience
also helps users to design, develop and deploy the tar-
get behavior monitoring. For clarifying the ecology of
endangered fish, scientists can investigate the environ-
mental factors of the ponds in which Japanese rosy bit-
terling actually live, bodies of water that form a unique
environment.

Phase 2 Starting Target Behavior Monitoring in parallel
with Habitat Monitoring
Target behavior monitoring is deployed in the habitat
after setting a design plan through the lessons learned
in the habitat monitoring experience. A target behavior
monitoring system in this phase continuously captures
high-resolution images. In order to accumulate such
images stably, sensor nodes connected to an underwater
camera send images via wired cables, or images are
even gathered manually. Capturing images requires
much power, so an external power source is needed to
feed power to the sensor nodes.
For understanding the bitterling’s behaviors, scientists
canwatch these sequential images and confirm the kinds
of characteristic behaviors the bitterling performs. In
addition, the captured images can be used to construct
the training dataset for a DNN used to detect the bitter-
ling’s behavior.

Phase 3 Integrating Target Behavior Monitoring and
Habitat Monitoring
After automated bitterling-behavior detection becomes

possible, the sensor nodes are made to act as target
behavior sensors within the habitat monitoring setup.
Specifically, sensor nodes connected to underwater
cameras do not send all of the captured images but
only the target behavioral data (e.g. egg-laying occur-
rences) to the remote server. The target behavioral data
are detected by the sensor nodes using a discriminative
model of a DNN trained by the training dataset (i.e. ‘la-
beling images’ discussed below) constructed in Phase
2.
Accordingly, the amount of target behavioral data de-
tected is small enough to send via a cellular network.
This implies that the remote server can receive the be-
havioral data as quickly as other environmental data
monitored by habitat monitoring and that scientists can
immediately utilize these data. In this phase, the bitter-
ling’s behavior is automatically detected so that scien-
tists can analyze the relationship between this behavior
and the environmental values quantitatively. Further-
more, if scientistswant to confirmother behavioral data,
they can prepare another discriminative model and use
it to replace the one in the sensor node.

Figure 1 depicts the transition of the sensor network used
in our incremental environmental monitoring strategy. In
Phase 1, the sensor nodes connected to the habitat sensor
collect environmental values such as water temperature and
DO and transmit them to the remote server via the gate-
way. A wireless sensor network with small sensor nodes is
sufficient to operate the monitoring process. In Phase 2, sen-
sor nodes connected to the underwater cameras are installed
in the habitat. Here, the sensor network for target behav-
ior monitoring is separated from that for habitat monitoring,
since an external power source and a wired cable are required
for sensor nodes used to monitor target behavior. In Phase 3,
sensor nodes for target behavior monitoring detect the bitter-
ling’s behavior and send only behavioral data to the server.
The amount of behavioral data is small enough to send via
WSN. Thus, both habitat values and target behavior values
are accumulated usingWSN.Although the sensor nodes con-
nected to the underwater cameras still consume much power,
operating them without an external power source is the ideal
condition.

Our environmental monitoring system for revealing the
ecology of endangered fish has been conducted by follow-
ing an incremental environmental monitoring strategy. The
habitat monitoring began in 2013. The recording of under-
water images at the fish farm started in 2016. Themonitoring
system for Phase 3 is still being tested in our laboratory, but
we plan to deploy it in the habitat in 2018 to construct the
sensor network. Sections 4, 5, and 6 describe each phase in
detail.

4. Phase 1: Endangered Fish Habitat Monitoring

Based on the incremental environmentalmonitoring strategy,
we started habitatmonitoring in 2013. This section describes
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Fig. 1 Incremental environmental monitoring strategy for revealing ecology in the field.

habitat monitoring in the biotope, where the endangered fish
live.

4.1 Overview of Endangered Fish Habitat Monitoring

We used multipurpose sensor node hardware and CILIX,
a virtual machine for small sensor devices, to develop the
endangered fish habitat monitoring system. The hardware
we developed enables us to rapidly start several environ-
mental monitoring projects [7]. We embedded tempera-
ture, humidity, and light sensors in the sensor node hard-
ware because these sensors are frequently used in environ-
mental monitoring [7]. The multipurpose I/O ports on our
sensor node include digital I/O, analog-to-digital converter
(ADC), inter-integrated circuit (I2C), inter-IC sound (I2S),
serial peripheral interface (SPI), and universal asynchronous
receiver/transmitter (UART). These ports handle a wide va-
riety of environmental sensors. The sensor node hardware is
fed by various electrical power supplies and adopts 2.4-GHz
wireless communication.

CILIX is a common intermediate language virtual ma-
chine (CILVM) that only requires an 8-16-bit CPU, 4-KB
RAM, and 32-KB program memory [7]. CILIX allows sen-
sor node software programmers to quickly develop a mini-
mum set of software using familiar programming language
(e.g. C#) with popular IDEs (e.g. Microsoft Visual Studio).
The abstraction of smart devices by CILIX provides pro-
gram portability and frees developers from the complicated
memory management and register control required for cer-
tain devices. Thus, developers can easily relocate programs

to virtual machines, since the programs have become smaller
and are separated from the hardware. More details are given
in a previous work [8]. We quickly developed sensing soft-
ware bymodifying a greenhousemonitoring program, which
was also used in the outdoor environmental monitoring we
conducted in Nagano Prefecture, Japan [7]. As a result, we
started preliminary sensing about a week after the project
had launched.

Specifications of the sensor node are shown in Fig. 2.
Endangered fish habitat monitoring initially involved sensors
of only air temperature, water temperature, humidity and
light. Then, we increased the number of sensor nodes and
the kinds of sensors, such as DO and water-level, in a step-
wise manner. Moreover, we frequently updated the sensor
node programs to adjust the nodes’ behaviors depending on
the surrounding situation and the maintenance requirements,
such as adjusting the sensitivities of sensors, changing the
interval of monitoring, and adding a sleep function to reduce
the frequency of battery replacement. Relocating such pro-
grams is quickly done using the CILIX functions after the
need for adjustment arises.

Figure 3 shows an overview of the current sensor net-
work installed in the studied biotope. We installed three
sensor nodes on the banks of the biotope. Two water tem-
perature and dissolved oxygen (DO) sensors are connected
to each sensor node. In addition, one sensor node with air
temperature, light, and humidity sensors is installed near the
biotope.

Each sensor node sends readings to the gateway approx-
imately every 15 seconds via an IEEE 802.15.4 link. The
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Fig. 2 Multipurpose sensor node hardware with CILIX.

Fig. 3 Overview of sensor network in biotope.

gateway sends them to a remote server via cellular-phone
networks approximately once an hour. All sensor nodes
installed in the environment are fed by small rechargeable
lithium polymer (LiPo) batteries (3200 mAh). Currently, we
need to replace batteries about once every 40 days. A solar
panel feeds power to the gateway’s rechargeable battery, so
we do not need to replace it.

The states of accumulating sensor data can be checked
with a visualization tool called PondlogViewer (Fig. 3). This
shows the status of each sensor node, such as power (on/off),
warnings about outliers, latest measurement times, and read-
ings. PondlogViewer also charts the transitions in the read-
ings of each sensor at the bottom. While this tool normally
shows the latest information, it can also provide previous
information through a playback function. These functions
allow users to monitor trouble with sensors as well as the
states of endangered fish habitat in both current and past
timeframes.

4.2 Findings of Endangered Fish Habitat Monitoring

By analyzing the data accumulated in the biotope, we learned

Fig. 4 Sensor data in habitat monitoring.

the characteristics of the endangered fish habitat. Figure 4
shows sensor data obtained in August 2013. The value of DO
repeats a rise-and-fall cycle every day due to phytoplankton
photosynthesis. Although the DO values were manually
measured once a week to check the pond’s water quality,
such characteristics of the biotope were not revealed until
we conducted the habitat monitoring.

We also used water-proof interval cameras to take pic-
tures around the mussel and manually counted the number
of fish to roughly investigate the relationship between fish
count and the environmental factors. In comparing fish-
count data with illuminance sensor data, we found that the
rosy bitterling is active in the morning and in the evening,
while the illuminance value is highest at noon. This suggests
that the rosy bitterling lays its eggs while avoiding the peak
of illuminance [5].
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5. Phase 2: Endangered Fish Habitat and Behavior
Monitoring

Since the bitterling lays its eggs inside a mussel, we decided
to take recordings around the mussel. We put the mussel
into a small planter to restrict its movement and recorded
it with two underwater cameras: one located on top of the
planter and the other located in front of the planter. We
explored the optimum location for installing the underwater
camera by examining the value of water temperature andDO,
andwe ensured photographic reliability by usingwater-proof
cameras. As a result, the captured images were unfortunately
not clear and insufficient for behavioral analysis due to the
low transparency of the water. Consequently, we installed
the system in a fish farm, another habitat of Japanese rosy
bitterling at Kindai University. The recording of underwater
images in the fish farm started from the beginning of 2016.

5.1 Overview of Endangered Fish Habitat and Behavior
Monitoring

Figure 5 shows an overview of the system installed in the
fish farm. Images captured by the underwater cameras are
received by two gateway PCs via a 15-m HDMI cable. The
system recorded the image around the mussel every day from
4:00 am to 8:00 pm. To investigate the relationship between
propagation behaviors and environmental factors, we also in-
stalled two sensor nodes, one for monitoring air temperature,
light, and humidity and the other for monitoring water tem-
perature and DO. As with the sensor networks of the biotope,
readings were accumulated via IEEE802.15.4 and cellular
networks. Broadband networks are unavailable around the
fish farm, so we manually brought captured images to our
server approximately once a month.

In terms of power supply, we fed power to the system
using an external power source installed in a hut located about
15m away from the fish farm, since the underwater camera
we installed there consumes a great amount of electric power.
The sensor nodes use this power source as well.

Fig. 5 Overview of sensor network in a fish farm.

As of November 2017, approximately 8,500 hours
(6.9 TB) of underwater video had been recorded into our
HDD. To help scientists analyze the ecology of endangered
fish and their habitat characteristics, we have developed anal-
ysis support tools. PondSync enables users to synchronously
play video frames and readings from the habitat. VideoAn-
notator allows users to freely annotate descriptions on por-
tions of the video. Consequently, scientists can intensively
label videos with VideoAnnotator by, for instance, annotat-
ing memos on the video frames in which distinctive behav-
iors occur. Then, PondSync can be used to determine the
natural context before and after such behaviors.

5.2 Incremental Training Data Generation

We have tried to detect the bitterling’s behaviors using deep
neural networks (DNN). DNN such as YOLO9000 [9] and
Single Shot Multibox Detector (SSD) [10] show significant
accuracy and speed for general purpose object detection.
Such detection frameworks are available for position and
attribute detection for a variety of specific animals, as long as
the users prepare labeling images for training them. Since the
number of labeling images (i.e. training data) the frameworks
require is quite huge, we have designed tools that help users
construct the labeling images efficiently.

TrajectoryMaker enables users to generate trajectories
of objects that appear in sequential images. Users can man-
ually modify bounding boxes of object candidates and their
trajectories with the tool to generate accurate trajectories of
objects. The object candidates are detected by background
subtraction in each video frame. The tool links them across
frames to form trajectories.

RACRA enables professionals to annotate labels on the
trajectories of objects generated by TrajectoryMaker. To
allow professionals to quickly check a large number of object
trajectories, it plays a video composed ofmultiple trajectories
of objects. A professional can tag trajectories by selecting
a certain object on the video and choosing a label he/she
previously defined. A certain key is assigned to each label
such as name, attribute, and action of the species so that the
user can quickly tag the target object’s trajectory by simply
pushing a key. The tool does not require users to perform
video-seeking operations such as fast-forward and rewind.
Trajectories are iteratively played, and the next trajectory is
automatically composed after completing the tagging for a
certain trajectory of the object.

The two tools allow users to incrementally generate
training data for detecting the behaviors of species, as well
as to analyze monitoring data (Fig. 6). Trajectories labeled
by RACRA can be used as training data for DNN-based de-
tection frameworks. Figure 6(d) shows the results of detec-
tion by SSD. Japanese killifish and Japanese rosy bitterling
are detected in the video. Professionals can use detection
results for analyses of ecology, such as investigating the re-
lationship between the number of times the rosy bitterling
approaches the mussel and the DO value. Detection results
can also be used as object candidates in TrajectoryMaker.
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Fig. 6 Incremental labeling and detection cycle.

Users can use such detection results instead of those by
background subtraction to increase the number of accurate
object trajectories, which improves the accuracy of detection
and reduces the operations needed to modify the positions of
object candidates and their trajectories. Therefore, the more
users execute the cycles of labeling and detecting, the faster
the users increase the amount of accurate training data for
image-based behavioral analysis.

5.3 Findings on Egg-Laying Behavior

Figure 7 shows the number of egg-laying behaviors for three
days each in late spring and mid-summer. The graph implies
that fish will start spawning as the water temperature rises.
While the bitterling does not perform egg-laying behavior
until 10:00 am in late spring, they frequently do it from early
morning in mid-summer.

It is also interesting that the time of intensively laying
eggs is different on 5/9 and on 5/20. While water tempera-
ture did not rise all day and egg-laying behaviors were not
performed until evening on 5/9, on 5/20 fish started spawning
at 10:00 am as the water temperature rose. This also implies
that there is a relationship between egg-laying behaviors and
water temperature values.

Although more quantitative analysis is required to con-
firm the relationship between egg-laying behaviors andwater
temperature, the recorded video provides valuable informa-
tion to scientists.

Aside from such qualitative analysis, scientists can gain
interesting viewpoints for analysis through watching the
video. For instance, a male bitterling sometimes releases
sperm when no female is around, but females do not release
eggs when no male is around. Scientists became interested
in the difference in such behaviors through observation of
the images. Such findings have not yet been sufficiently
confirmed but still provide valuable insights for future mon-
itoring and analysis.

Fig. 7 Number of egg-laying behaviors in late spring and midsummer.
The line graph shows the water temperature. In order to count behav-
iors accurately, we selected three days in each season when the water was
particularly clear.

6. Phase 3: Seamless Integration of Target Behavior
Monitoring and Habitat Monitoring

To accelerate the clarification of ecologies in the field, we
have been trying to sensorize the sensor node connected to
the underwater camera as a sensor for detecting rosy bit-
terling behavior. Specifically, sensor node software detects
the rosy bitterling through images and sends the position of
rosy bitterling if detected. Implementing the detection pro-
cess in sensor nodes allows professionals to rapidly confirm
the preliminary results of behavioral analysis. Currently, we
have to regularly replace the HDDs in which the underwater
images are stored because the captured images are too large
to send to our remote server via cellular networks. A similar
situation often happens in field monitoring, and this delays
analysis. Sending the detection results instead of the image
data is one solution to this. If the sensor nodes detect several
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Table 2 Conditions in each phase of incremental environmental monitoring.
Phase Sensors Sensor nodes Power sup-

ply for sen-
sor nodes

Communication
to gateway

Gateway Power supply
for gateway

Communication
to server

Phase 1 Temp., Humid-
ity, Light, Water
temp., DO

TWE-001, TWE-
STRONG

LiPo IEEE 802.15.4 Mbed LiPo, Solar panel Cellular net-
work

Phase 2 Temp., Humid-
ity, Light, Water
temp., DO

TWE-001 LiPo IEEE 802.15.4 PC AC Cellular net-
work

Camera - - HDMI cable PC AC Manual copy
Phase 3
(planned)

Temp., Humid-
ity, Light, Water
temp., DO

TWE-001 LiPo IEEE 802.15.4 FPGAsensor node
(sensor node for
camera/gateway)

AC (LiPo if
possible)

Cellular net-
work

Camera - - -

behaviors of the target, such as rosy bitterling approaching
the mussel and laying eggs inside the mussel, the behavioral
data are useful for a preliminary examination of the animal’s
ecology and can be sent even via narrow-band networks.

To integrate detection mechanisms into the sensor
nodes, we have been developing and testing FPGA-based
sensor nodes. These sensor nodes contain common HDMI
and 4ch analog audio interfaces. Although we still do not
deploy the sensor node in the endangered fish habitat, we
plan to implement a discriminative model for rosy bitterling
behavior detection in the sensor nodes and deploy them in
the field of endangered fish behavior monitoring.

7. Discussion

7.1 Effectiveness of Incremental Environmental Monitor-
ing

Table 2 summarizes our endangered fish habitat and behavior
monitoring experiments in each phase. We believe that our
incremental monitoring strategy is effective for monitoring
both endangered fish behavior and their habitat in terms of
an incremental understanding of the ecology and an efficient
evolution of the monitoring system.

• incremental understanding of the ecology
One of the advantages of incremental environmental
monitoring is that scientists can reveal the ecology step
by step in accordance with the current phase of the strat-
egy. As mentioned in Sects. 4.2 and 5.3, monitoring in
each phase provides useful data to scientists. Although
the monitoring in Phase 3 has not yet been conducted,
we believe that the monitoring data from Phase 3 will
enable scientists to quantitatively confirm the hypothe-
sis derived in Phase 2.

• efficient evolution of monitoring systems
In terms of improving the monitoring system, each
phase contributes to constructing the monitoring sys-
tems in the next phase. The trial-and-error experience
in Phase 1 provides useful information for deciding how
to install underwater cameras. For instance, some DO
sensors become buried under sludge as time passes in
habitat monitoring. Furthermore, the value of the wa-

ter temperature sensor varied with the occurrence of
direct sunlight. These experiences helped us to un-
derstand how to install the underwater camera and at
which locations. In Phase 2, our labeling tools help sci-
entists understand the bitterling’s behaviors, and at the
same time, labels annotated by the scientists are used
as training data for automated detection of the bitter-
ling’s behavior. This reduces the cost of creating the
discriminative models used in Phase 3.

Although it is difficult to compare it with other approaches,
we argue that our three-phase strategy is effective for evolv-
ing an environmental monitoring system, at least for the task
of revealing the ecology of endangered fish.

7.2 TowardMaking EnvironmentalMonitoringMore Scal-
able

There remains the important issue of reducing the power
consumption of the FPGA sensor node, which consumes
much less power than a PC but still requires an external
power source. If the FPGA sensor node did not require an
external power source, laying down cables for the power
supply would no longer be needed and scientists would have
more flexibility in choosing where to install cameras.

In reality, sustainably feeding adequate power to a sen-
sor node embedded in the field is quite difficult. This is a
major issue in designing systems for monitoring wild ani-
mals. Although the movement range of the rosy bitterling is
here restricted within the biotope and the fish farm, in nature
sea fish, insects, and other animals move freely through their
relatively large habitats. In such cases, monitoring requires
a large number of sensor nodes installed in the field, where
replacing batteries is an infeasible burden.

While we have also studied efficient data gathering for
wireless sensor networks [11], there is demand for technolo-
gies that allow wireless distributed networks (WDN) to op-
erate in the field with reduced power consumption. A typical
scenario would be efficiently accumulating data and reduc-
ing the amount of transmitted data by deploying cooperative
sensor nodes. WDN technologies such as dynamic cluster-
ing protocols for reducing total energy consumption of the
sensor networks [12], [13] and transmission cost minimiza-
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tion algorithms utilizing the correlation structure of the data
gathered by sensors [14], [15] are strongly recommended to
implement the system for monitoring wild animals which
move around in relatively large habitats. Reducing power
consumption by taking into account the known behaviors
of a target animal might be also useful for monitoring wild
animals. For example, some sensor nodes/gateways could
reduce the frequency of monitoring in a specific time period
depending on the activity rhythms of the target animal.

8. Related Work

8.1 Wildlife Monitoring

Several environmental monitoring schemes have been con-
ducted to reveal wildlife ecology. As for habitat monitoring,
a variety of environmental factors have been accumulated,
including temperature [6], [16], humidity [6], [16] and light
[16]. As for target behavior monitoring, the several be-
haviors studied and captured by camera have included the
existence of the target animal [17], its movements [18]–[20],
and specific actions [1].

In target behavior monitoring in the field, monitor-
ing approaches can be classified into two types. The bio-
logging/telemetry approach [21] enables scientists to track
target animals by attaching small tags (e.g. RFID tag) or de-
vices (e.g. GPS) to them. The second approach accumulates
the target behavioral data by capturing them with sensors
(e.g. Radar, Geophones, Cameras) installed in certain loca-
tions.

The former approach is designed to retrieve specific
spatio-temporal data types at high quality [22]. However,
there are constraints in terms of the physiological properties,
size, and weight of the animal, which make marking and
tagging hardly possible for some species [22]. For instance,
there is a rule-of-thumb that a device attached to a bird should
weigh 3-5% or less of the animal’s mass [23]. Consequently,
the bio-logging/telemetry approach is difficult to apply to the
monitoring of smaller animals’ behavior.

The latter approach has no such restrictions and can be
applied to small-animal behavior monitoring, although it is
more difficult to extract behavioral data than with the bio-
logging/telemetry approach. Several types of sensors have
been used, such as radar, geophones, microphones, thermal
cameras, and image cameras [22].

The target behavior monitoring in our incremental en-
vironmental monitoring strategy takes the latter approach,
especially when using cameras as behavior monitoring sen-
sors. Cameras are convenient in that the restrictions on the
installation location and the target animal are relatively low.
For instance, thermal cameras are unsuitable for monitor-
ing poikilothermic reptiles and animals in the water, micro-
phones are unsuitable for animals that do not make calls, etc.
In addition, images captured by camera provide information
on not only animals’ presence, identity, species type, and
location but also animals’ activities, behavior and mutual
interaction [22]. Therefore, cameras have been widely used

for target behavior monitoring [17], [24], [25].
As with our monitoring project, some research works

have conducted both habitat monitoring and target behav-
ior monitoring simultaneously to further investigate wildlife
ecology. Naumowicz et al. monitored the temperature and
humidity inside and outside a burrow of Manx Shearwater,
a highly pelagic seabird on Skomer Island [18]. They also
used RFID tags to monitor the identity of individual birds
and passive infrared sensors to monitor their movements at
the entrance of the burrow. Dyo et al. attached active RFID
tags embedded within a small lightweight collar on Eurasian
badgers to monitor their activities [6]. They also deployed
temperature and humidity sensors in the badgers’ habitat.

While these research works monitored target behav-
ior using the bio-telemetry approach, few have reported a
system that conducts both habitat monitoring and target be-
havior monitoring, in which the latter is done using cameras
installed at specific locations. We assume that monitoring
systems that satisfy the requirements of both habitat moni-
toring and camera-based target behavior monitoring tend to
be so complex that such dual-purpose monitoring becomes
infeasibly difficult.

Our incremental environmental monitoring approach
enables users to construct monitoring systems in a stepwise
way and thus overcome such difficulties. Incremental en-
vironmental monitoring is suitable for revealing relatively
small animals’ ecology, and it is particularly suitable at loca-
tions where the target animals’ characteristic behaviors are
limited but frequently occurring. For example, it is generally
easy to use fixed cameras to capture sea fish that use corals
as a hideaway, birds that make and live in fixed nests, and
insects that intensively gather at the source of a specific sap.

Recent work by Elias et al. constructed wildlife mon-
itoring systems using motion-triggered cameras [17]. To
reduce the amount of data transmitted to a remote site, their
system performs classification of wildlife images near IoT
sensing devices (cameras). They also devised a technique
for automatically constructing a training dataset for auto-
mated wildlife detection by combining a small number of
empty images from camera traps with images of animals of
interest taken from Google Images. Their approach is also
effective in reducing some of the obstacles to constructing
systems for monitoring both habitat and target behaviors.

8.2 Rapid Deployment and Incremental Evolution

Zhang et al. [19] and Naumowicz et al. [18] made a wildlife
monitoring system that evolved multiple times to improve
the reliability of data collection, thus reducing energy con-
sumption and noise. Dyo et al. first developed a prototype
monitoring system for Eurasian badgers and then incremen-
tally improved their software and hardware to reduce main-
tenance costs [6]. Based on their long-term environmental
monitoring experiences, they argued that rapid prototyping
allowed them to collect suitable data to understand how they
could improve the system as a whole. No amount of simula-
tion or laboratory testing is equivalent to problem solving in
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real deployments [6]. We agree with the rationale of these
efforts. Rapidly deploying a monitoring system and incre-
mentally expanding it will eventually result in more efficient
improvement of the system. In addition, our incremental
strategy helps scientists to understand, in a stepwise way,
the target animal’s ecology in synchrony with the system’s
evolution.

9. Conclusion

This paper introduced the design and current status of the
system to monitor simultaneously endangered fish habitat
and target behavior. Incremental environmental monitor-
ing strategy helps users to gradually construct systems for
studying both wildlife behavior and habitat, although such
monitoring systems normally tend to be complex and large.
For our aim of monitoring endangered fish habitat and fish
behavior, we designed and implemented a network-based
system of distributed sensors to continuously monitor and
record the habitat of endangered fish as well as a set of an-
alytical tools that exploit a variety of sensor data, including
time-series environmental data such as amounts of dissolved
oxygen, and underwater video capturing the interaction of
fish and their surrounding environment. Currently, we are
also conducting environmental monitoring of the nests of
Japanese honey bees [26]. Future work will involve con-
firming the effectiveness of our strategy through several such
environmental monitoring studies to reveal the ecologies of
wild animals.
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