
604
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

INVITED PAPER Special Section on Network Resource Control and Management for IoT Services and Applications

Mobile Edge Computing Empowers Internet of Things∗

Nirwan ANSARI†a) and Xiang SUN†b), Nonmembers

SUMMARY In this paper, we propose aMobile Edge Internet of Things
(MEIoT) architecture by leveraging the fiber-wireless access technology,
the cloudlet concept, and the software defined networking framework. The
MEIoT architecture brings computing and storage resources close to Internet
of Things (IoT) devices in order to speed up IoT data sharing and analytics.
Specifically, the IoT devices (belonging to the same user) are associated to
a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy
VM stores and analyzes the IoT data (generated by its IoT devices) in real-
time. Moreover, we introduce the semantic and social IoT technology in
the context of MEIoT to solve the interoperability and inefficient access
control problem in the IoT system. In addition, we propose two dynamic
proxy VM migration methods to minimize the end-to-end delay between
proxy VMs and their IoT devices and to minimize the total on-grid energy
consumption of the cloudlets, respectively. Performance of the proposed
methods is validated via extensive simulations.
key words: Internet of Things, mobile edge computing, cloudlet, semantics,
social network, green energy

1. Introduction

Internet of Things (IoTs) is enabling interconnections among
a tremendous number of things such that different things can
share their observations of the physical world. According
to a new Gartner forecast, 26 billion things (excluding PCs,
tablets, and smartphones) will be installed in 2020 [1]. Cisco
predicted that 50 billion devices will be connected to the In-
ternet by 2020 [2]. These connected things will generate
a humongous volume of data, which digitally represent the
states of the physical world. However, owing to the resource
constrained nature, many IoT devices cannot always guar-
antee the interconnections, i.e., some IoT devices cannot be
reachable owing to their periodical sleep schemes and inter-
mittent wireless connections. Thus, it is important to design
an efficient mechanism to facilitate resource constrained IoT
devices in sharing their data over the network. Also, the re-
source constrained IoT devices cannot feasibly conduct com-
plicated data access management, thus sharing IoT data over
the network poses serious security challenges, i.e., unautho-

Manuscript received May 2, 2017.
Manuscript revised June 21, 2017.
Manuscript publicized September 19, 2017.
†The authors are with Advanced Networking Lab., Helen and

John C. Hartmann Department of Electrical & Computer Engi-
neering, New Jersey Institute of Technology, Newark, NJ 07102,
USA.
∗This workwas supported in part byUSNational Science Foun-

dation (NSF) under Grant Division of Computer and Network Sys-
tems (CNS)-1320468 and Grant CNS-1647170.

a) E-mail: nirwan.ansari@njit.edu
b) E-mail: xs47@njit.edu (Corresponding author)
DOI: 10.1587/transcom.2017NRI0001

rized users/devices may easily access and misuse the shared
IoT data, which may contain personal information. There-
fore, designing an efficient access control mechanism tai-
lored for IoT devices is critical to empowering the current
IoT system. In addition, only providing interconnections to
share raw data among IoT devices is not enough to gain the
insight behind the big IoT data; the insight is more valuable
for the society as a whole. Thus, it is beneficial to provision
the IoT system with a comprehensive cognitive capability
such that high-level knowledge can be extracted from the
big IoT raw data streams by applying various types of data
mining and machine learning methods [3]. The data center
infrastructure has been demonstrated to provision resources
flexibly and efficiently [4]; meanwhile, various parallel com-
puting architectures and distributed storage frameworks have
been designed based on a data center (e.g., MapReduce [5]
and Spark [6]). Thus, it is desirable to transmit the big IoT
data from the IoT devices to remote data centers via the In-
ternet for further data analysis. Yet, this would place a heavy
burden on the network to conduct data aggregation from IoT
devices to a centralized data center, and thus exponentially
increase the network delay for transmitting big IoT data to
remote data centers, especially during the peak time. Note
that delay is a key performance metric in provisioning the
Quality of Service (QoS) for many IoT applications. For
instance, smart grid applications have stringent requirement
on latency up to 20ms; processing automation applications
(i.e., monitoring and diagnosing of industrial elements and
processes) imposes latency requirements ranging from50ms
to 100ms [7].

The Mobile Edge Computing (MEC) concept [8] is es-
sentially bringing the computing and storage capability from
remote data centers to the mobile edge in order to reduce
the network delay between end devices and computing re-
sources. Specifically, various computing resources, attached
to edge routers, wireless access points (WAPs), and smart
gateways, are available for nearbymobile devices; thus, these
devices can offload their workloads to computing resources
at the edge, thus potentially reducing the energy consump-
tion of the devices and accelerating the computing processes
[9]. Empowering IoT with MEC can essentially improve
the QoS for IoT applications. Basically, IoT applications,
which try to obtain the corresponding data from different
types of IoT devices and generate high-level knowledge by
analyzing the acquired data based on data analytic models,
would be deployed at the mobile edge, and thus the data
streams generated by the IoT devices would be uploaded to

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
605

the IoT applications without traversing the mobile core net-
work. This can significantly alleviate the traffic load in the
core network and potentially speed up the IoT applications
in processing big IoT data streams.

In this paper, we will design a novel Mobile Edge
IoT (MEIoT) architecture by leveraging the Fiber-Wireless
(FiWi) access technology, the mobile network, the cloudlet
concept, and the Software Defined Networking (SDN)
framework to efficiently share and analyze the big IoT data
at the mobile edge. The rest of the paper is organized as
follows. In Sect. 2, we describe the proposed MEIoT archi-
tecture. In Sec. 3, we illustrate the four challenges of the
current IoT system and propose four potential solutions tai-
lored for the MEIoT architecture. In Sect. 4, we evaluate the
performance of the proposed solutions via simulations. We
briefly delineate the future work in Sect.. 5, and present the
conclusion in Sect. 6.

2. MEIoT Architecture

In order to facilitate IoT data sharing and analytics, we pro-
pose theMEIoT architecture, as shown in Fig. 1. TheMEIoT
architecture comprises five parts, i.e., multi-interface wire-
less access network, heterogeneous backhauling, distributed
cloudlets, hierarchical structure of a cloudlet, and the SDN
based mobile core network. We will next detail these five
parts.

2.1 Multi-Interface Wireless Access Network

VariousWAPs, such asWiFi access points, static Small Cells
(SC) (e.g., pico cell, femto cell, etc.), dynamic SCs (e.g.,
drone mounted SCs), and Macro BSs (MBSs), have already
been deployed in the mobile network and provide high radio
coverage and network capacity. Thus, distributedWAPs have
the potential to connect all IoT devices whether they aremov-
ing or static. Yet, different IoT devices have different com-
munications requirements; that is, some energy-sensitive IoT
devices (e.g., smart meters) require very low transmission
date rate and some energy-insensitive devices (e.g., surveil-
lance devices and mobile phones) need high-speed transmis-
sion to meet their embedded application requirements. The
heterogeneous data transmission requirements among IoT
devices effectuate different devices to adopt different wire-
less technologies (e.g., D2D communications, NarrowBand
IoT communications, LTE communications, etc.) to share
their sensed data. Thus, WAPs are equipped with multiple
wireless access interfaces such that they can communicate
with IoT devices by applying different wireless technologies.

2.2 Heterogeneous Backhauling

The mobile backhaul is used to carry the traffic from WAPs
to the mobile core network [10]. Owing to different re-
quirements (such as low latency, long distance transmission,
mobility, and high reliability), various backhaul technolo-
gies have been proposed. The current backhaul technologies

can mainly be divided into two categories, i.e., wired and
wireless backhaul solutions.

2.2.1 Wired Backhaul Solutions

Wired backhaul provides the advantages of high reliabil-
ity, high data rate, and high availability. A WAP (such as
MBS-1 in Fig. 1) can communicate with the mobile core
network based on a wired connection (e.g., xDSL), which
traverses an access switch. The access switch is connected
to a cloudlet and conducts L2/L3 switching among theWAP,
the cloudlet, and the mobile core network. A cloudlet [11],
which comprises a number of interconnected Physical Ma-
chines (PMs), provides computing and storage resources to
IoT devices with low latency.

Passive optical networks (PONs) can potentially provi-
sion cloud computing [12], and thus a WAP can also utilize
the optical backhaul to achieve extra low communications de-
lay. For example, MBS-2 in Fig. 1 is connected to an Optical
Network Unit (ONU), which is further connected to an Op-
tical Line Terminal (OLT) via an optical splitter/combiner.
The function of an ONU is to aggregate the traffic from its
connected WAPs and communicate with its connected OLT
based on the assigned wavelength channels. The function
of an OLT is to provide L2/L3 switching between mobile
core network and its connected ONUs. Note that there are
two different types of ONUs in the MEIoT architecture, tra-
ditional ONU and ONU-Cloudlet (ONU-C). Different from
traditional ONUs, an ONU-C, which is normally connected
to a local cloudlet, can not only relay the traffic between
its connected OLT and WAPs but also provide the switch-
ing function to enable the local communications between its
WAPs and its connected cloudlet [13]. Thus, the commu-
nications between the local WAPs and the cloudlet can be
offloaded from the OLT and the mobile core network. This
can significantly reduce the traffic load of the mobile core
network and the OLT.

2.2.2 Wireless Backhaul Solutions

Wireless backhual technologies present the advantages of
flexible deployment and low cost. Currently, many SCs (es-
pecially for mobile SCs, such as drone mounted SCs [14])
apply the wireless backhaul solutions to facilitate the com-
munications betweenMBSs and SCs. The wireless backhaul
solutions can be divided into two categories: in-band and
out-band wireless backhaul.

In-band wireless backhaul means that the wireless
bands being applied to the communications between an SC
and its mobile users are the same as those being applied to
the wireless backhaul between the SC and its MBS [15].
For instance, SC-1 in Fig. 1 uses the same band of f1 to
communicate with both the MBS and the mobile users. The
in-band wireless backhaul achieves high frequency utiliza-
tion, but it requires efficient scheduling to reduce the interfer-
ence between the wireless backhaul channels and the down-
link/uplink channels between an SC and its mobile users.

606
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

Fig. 1 The MEIoT architecture.

Out-band wireless backhaul implies that the wireless
backhaul of an SC applies bands different from those used
for the communications between the SC and its mobile users.
For instance, SC-2 in Fig. 1 applies f2 band to communicate
with the MBS and uses f1 band to communicate with its
mobile users. Currently, two technologies have been pro-
posed for the out-band wireless backhaul, i.e., millimeter
wave (mmWave) [16] and sub-6 GHz wireless backhaul.
mmWave offers high capacity and reliability based on line-
of-sight communications between an MBS and an SC, and
sub-6 GHz wireless backhaul provides high data rate based
on non-line-of-sight communications between an MBS and
an SC [17].

2.3 Distributed Cloudlets

Cloudlets are deployed at the mobile edge to provision com-
puting and storage resources to IoT devices with low latency.
The data generated by various IoT devices can be stored and
analyzed in the corresponding cloudlets in real time. The de-
ployment of cloudlets is flexible, i.e., a cloudlet can connect
to an ONU-C/access switch such that the IoT devices, which
are associated with the WAPs (which are directly connected
to the ONU-C/access switch), can utilize the computing and
storage resources of the cloudlet without traversingOLTs and
the mobile core network. Also, a cloudlet can be deployed at
the edge of the mobile core network or connected to an OLT
such that more WAPs can share the computing and storage
resources in the same cloudlet. Note that geographical dis-
tributed cloudlets can share their resources with each other
via the mobile core network.

Remote data centers are located at remote sites (which
are mostly directly connected to the core network) to provide
the scalability and availability of the system. Specifically,
the computing and storage capacities of the local cloudlets
are limited, and thus they may not have enough capacities to

efficiently store and analyze IoT data streams. Data centers,
which supply sufficient and flexible resource provisioning,
can be considered as backup units to store and analyze IoT
data streams.

It is possible that either mobile network operators or
cloud vendors are willing to deploy cloudlets in the net-
work to facilitate their business. For instance, Nokia has
established a Multi-access Computing platform to attach a
cloudlet to an LTE MBS. Based on the platform, a use case
named “connected cars” has been developed, where each
local cloudlet analyzes the data at the point of capture and
feeds back the insights to the vehicles within the cloudlet’s
coverage with extremely low latency (less than 20ms) in or-
der to improve road safety [18]. Also, Microsoft has shown
great interest in deploying cloudlets at the network edge to
reduce the latency of mobile devices in accessing computing
resources and improve the battery life of mobile devices. It
has also suggested to build an extensive infrastructure of mi-
cro data centers (i.e., cloudlets) including 1-10 servers with
several terabytes of storage (whichmay cost $20K-$200Kper
cloudlet) and place them everywhere [19]. Building a large
number of cloudlets at the mobile edge may incur a huge
capital expenditure; however, it would potentially generate
huge revenue by renting out local computing and storage
resources to users and application providers.

Different cloudlet providers may own different
cloudlets, and sharing computing and storage resources
among cloudlets (which are owned by different providers)
can facilitate the resource provisioning to IoT devices. Thus,
a fair pricing model needs to be established to achieve re-
source sharing among different cloudlet providers.

2.4 Hierarchical Structure of a Cloudlet

As shown in Fig. 2, there are two logical layers in a cloudlet,
i.e., Proxy VM layer and Application VM layer. Proxy VM

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
607

Fig. 2 The hierarchical structure within a cloudlet.

layer comprises a number of the proxy VMs. A proxy VM is
considered as a private VM associated with the IoT devices,
which belong to the same user†. Specifically, IoT devices
of a user would be registered to the user’s proxy VM. Af-
ter the registration, these IoT devices would upload their
sensed data to the proxy VM periodically or upon requests.
The proxy VM converts these raw data into structured data,
stores them in the local storage space, conducts the access
control policies to protect stored data, and/or pre-processes
the structured data upon requests. The application VM layer
comprises a number of application VMs, which are deployed
by the application providers, to retrieve metadata from proxy
VMs, analyze the received data to generate high-level knowl-
edge, and provide the corresponding service to users.

Here, we provide the terrorist detection application to
illustrate how the hierarchical cloudlet architecture works.
First, if some users are interested in the service provided by
the terrorist detection application, they can install the cor-
responding app (e.g., App1 in Fig. 2) in their proxy VMs.
Local devices upload their captured photos/videos to their
proxy VMs over time. If the terrorist detecting application
VM tries to locate a specific terrorist by conducting face
matching over the captured photos/videos, instead of hav-
ing each proxy VM transmit its captured photos/videos to
the application VM, the terrorist detecting application VM
would send a metadata retrieval request containing the ter-
rorist’s photo to the proxy VMs (which have installed the
corresponding app) among all the cloudlets. After receiving
the request, the installed app in the proxy VM would re-
trieve the videos/photos in the local storage, and conduct the
face matching algorithm by comparing these videos/photos
with the received terrorist’s photo. If a match is detected,
the proxy VM would respond to the application VM with
the related metadata, i.e., the location information and time
stamps of the corresponding photos/videos.

†A user can be a person who owns various private IoT devices,
an entity/company that deploys a set of IoT devices in the area
(such as the surveillance cameras), or a group of users who trust
each other and share the same proxy VM.

The hierarchical cloudlet architecture can also facilitate
other applications, such as ParkNet [20] and FaceDate [21].

• ParkNet helps users locate available parking spots in the
urban area. Specifically, the proxy VMs collect the sensed
data streams from their smart cars, which are considered as
IoT devices and are registered to the corresponding proxy
VMs. Note that each smart car is equipped with a GPS re-
ceiver and a passenger-side-facing ultrasonic rangefinder
to generate the location and parking spot occupancy in-
formation. Each proxy VM analyzes the information and
generates the metadata, which identify the available park-
ing spots, and forwards the metadata to the application
VM. The application VMwill inform and assign the avail-
able parking spots to the smart cars upon requests.

• FaceDate is to find and date nearby people based on their
face preference in real-time. Specifically, each user up-
loads a profile photo and provides basic information (such
as date of birth, gender, and a brief write-up) about him-
self/herself into its proxy VM. In addition, each user up-
loads a set of preference photos (i.e., the photos of a
boy/girl whom she/he wants to date. For instance, if a
man wants to date a woman who resembles Marilyn Mon-
roe, he would upload the photos of Marilyn Monroe into
its proxy VM) to identify his dream date partner. If a
man tries to find a nearby date partner, his proxy VM (i.e.,
request proxy VM) would send a request, which contains
its preference photos, to the application VM. The applica-
tion VM forwards the request to other proxy VMs, which
conduct the face recognition algorithm by comparing the
preference photos in the request with their users’ profile
photos. If the photos are highly matched, the proxy VMs
(i.e., response proxy VMs) would respond to the appli-
cation VM with the metadata (similarity of the photos)
as well as the preference photos in these response proxy
VMs. The application VM would forward these prefer-
ence photos (from the response proxy VMs) to the request
proxy VM, which conducts the face recognition algorithm
by comparing the received preference photos with its pro-

608
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

file photo and responds to the application VM with the
metadata (similarity of the photos). Finally, the applica-
tion VMwould pick the best matched candidate and enable
the chatting accordingly.

The proposed hierarchical cloudlet architecture exhibits
the following advantages:

• Simplified IoT devices: Each IoT device only needs to sense
the environment and upload the sensed data to its proxy
VM, which converts the raw data into structured data,
stores them into local storage, shares the local structured
data by responding to data retrieval requests from other
devices, conducts the access control, and pre-processes the
structured data by converting them into metadata. Thus,
associating IoT devices to their proxy VM is essentially
moving most of the functionalities, which are originally
executed at the IoT devices, to their proxy VM. This can
significantly reduce the energy consumption of IoT devices
and speed up the IoT data sharing/analytics process.

• Accessibility of IoT data: Cloudlets are connected with
each other via wired links, implying that IoT data stored
in the cloudlets are always accessible. This resolves the
weak accessibility problem in the traditional IoT system,
where IoT data are stored in the IoT devices and application
VMs cannot retrieve IoT data from IoT devices which may
periodically sleep and suffer from intermittent wireless
connections.

• Privacy preserving: IoT data, which are generated by IoT
devices of a user, are basically stored in the user’s proxy
VM, which is considered as a private VM to facilitate
resource isolation and access control. Moreover, the proxy
VM can pre-process the IoT data to share metadata (rather
than raw data) by removing the user’s personal information
from raw data. For instance, in the terrorist detection
application, each proxy VM only provides the locations
and the time stamps of the matched photos/videos rather
than the photos/videos.

• Efficient distributed computing: Each proxy VM becomes
a worker node of an application VM, which acts as a mas-
ter node to distribute workloads to proxy VMs, aggregate
metadata from proxy VMs, and provide services to users.
This distributed computing structure can fully utilize the
distributed computing resources in the proxy VMs and
significantly reduce the traffic load of the network as com-
pared to the current way in which the application VM
retrieves the raw data from IoT devices, analyzes them and
provides services to users.

2.5 SDN Based Mobile Core Network

Instead of applying the traditional cellular core network ar-
chitecture, which leads to inefficient, inflexible, and unscal-
able packet forwarding, the SDN based mobile core network
[22]–[28] is adopted in MEIoT. The SDN based mobile core
network is essentially decoupling the control plane from the

switches, which only run data plane functionalities. The
control plane is offloaded to a logical central controller,
which transmits the control information (e.g., flow tables)
to the OpenFlow switches by applying the OpenFlow pro-
tocol [29], monitors the traffic statistics of the network, and
provides Application Programming Interfaces (APIs) to net-
workmanagement operators so that different mobile network
functionalities, such as mobility management, user authenti-
cation, authorization and accounting, network virtualization,
and QoS control, can be added, removed, and modified flex-
ibly.

3. Challenges and Solutions in MEIoT

In this section, we will discuss some challenges in realiz-
ing real-time IoT data sharing/analytics and provide some
potential solutions in the context of MEIoT.

3.1 Challenge 1: Interoperability Problem during IoT Data
Sharing

Sharing IoT data among devices is the basic objective in
the IoT system. Traditionally, if a client (i.e., an IoT device
requests data from another IoT device) tries to obtain the
data from a server (i.e., an IoT device generates IoT data),
the client would send a request to the server, which would
respond to the client with the corresponding data. In the
MEIoT architecture, proxy VMs are considered as the gate-
ways to store and manage the IoT data streams from their
registered IoT devices. Normally, all the clients would send
the requests to the corresponding proxy VMs (rather than the
original devices, which generate IoT data) in order to retrieve
their IoT data. Proxy VMs receive the raw data streams from
their registered IoT devices, convert them into structured
data, and respond to the data retrieval requests. Figure 3
just provides one example to illustrate the structured data
provided by a temperature sensor.

However, sharing the structured data among devices
provides weak interoperability because different proxy VMs
and IoT devices may apply different data models and vocab-

Fig. 3 One example of structured data.

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
609

Fig. 4 Semantic data.

ularies to annotate and structurize IoT data. For example,
as shown in Fig. 3, the proxy VM applies “DataValue” to
annotate a temperature value†. However, a client (who tries
to retrieve the current temperature value) uses “TempValue”
to annotate a temperature value, and thus the client would
request to obtain the “TempValue” of the temperature sen-
sor. Obviously, the proxy VM cannot understand the request
from the client. This interoperability problem hampers the
IoT data from being shared among different devices.

3.2 Solution 1: Semantic Interoperability in MEIoT

3.2.1 Basic Concept of Semantics

Semantics is a method to provide a common format for an-
notating data such that the new semantic data can be easily
found, shared, reused, and combined by machines [30]. In-
troducing semantics into the IoT system can improve the
interoperability among different IoT devices. In this section,
we will illustrate how to leverage semantics in the MEIoT
architecture.

All the vocabularies applied in the semantic IoT are
defined in different ontologies. An ontology can be consid-
ered as a dictionary, which defines the concepts of all the
vocabularies used in a specific domain as well as the rela-
tionships among different concepts. The ontologies are nor-
mally predefined and available for inference and reference.
Based on these ontologies, IoT data can be represented as
the machine-readable metadata format, such as RDF (Re-
source Description Framework) triples [31]. An RDF triple
contains three components: subject, predicate, and object.
Figure 4(a) shows one example of semantic data (corre-
sponding to the structured data shown in Fig. 3) represented
by RDF triples. The first two lines define two ontologies
(whose URIs are “http://example.org” and “http://rdf.org”,
respectively) that have been applied by the following se-
mantic data and Line#3–Line#11 are the semantic data rep-
resented by RDF triples. For instance, the RDF triple in

†Normally, a proxy VM would use the same vocabularies that
are applied by its registered devices. For example, if the temperature
sensor uses “DataValue” to annotate its captured temperature value,
the proxy VM would apply the same vocabulary to annotate the
temperature value.

Line#3 depicts that the device type is a “TemperatureSen-
sor”. Note that “TemperatureSensor” is defined in the ontol-
ogy, whose URI is “http://example.org”, and thus the con-
cept of “TemperatureSensor” can be retrieved from the URI
of “http://example.org/TemperatureSensor”. Similarly, the
concept of “Type” in Line#3 can be obtained from the URI
of “http://rdf.org/Type”. Therefore, if a device cannot un-
derstand the vocabularies applied in the semantic data, it can
retrieve the corresponding concepts from related ontologies.

It is worth to note that RDF triples are normally stored
as RDF graphs, where the edges represent the “predicate” of
RDF triples and the nodes represent “subject” and/or “ob-
ject” of RDF triples. Figure 4(b) shows a RDF graph related
to the semantic data in Fig. 4(a). The reason for applying
RDF graphs to store semantic data is to speed up the search
over a large volume of semantic data. SPARQL Protocol and
RDF Query Language (SPARQL) is a query language and
protocol for RDF graphs. The syntax of SPARQL is detailed
in [32]. Figure 5 shows an example that a device (which could
be a proxyVM, an applicationVM, or a smart user equipment
with semantic capability) sends a query to the proxy VM
(which contains the RDF graph shown in Fig. 4(b)) in finding
the reading of a temperature device in geolocation <40.7128o
N, 74.0059o W> at 20:00††. The procedure is specified as
follows: 1) The device would send a SPARQL query re-
quest to the proxy VM. Note that the device may not apply
the same vocabularies used by the proxy VM, and thus the
proxy VM may not understand the SPARQL query from the
device. For instance, as shown in Fig. 5, “TemperatureMe-
ter” and “geographicalLocation” are not applied by the proxy
VM, which uses “TemperatureSensor” and ”geoLocation” to
annotate the corresponding context of IoT data. 2) After re-
ceiving the SPARQL query, the proxy VM would send a
concept retrieval request to the remote ontology base††† in
††Note that a device can broadcast the query to a set of proxy

VMs (e.g., all the proxy VMs within a cloudlet) to search for
the requested content. Alternatively, before sending the query, a
device can first discover a specific proxy VM (that may contain
the requested content) by sending a proxy VM discovery request
to a Resource Directory (RD) [33], which acts like a DNS server
containing the IDs (e.g., URIs or IP addresses) and the context
information of proxy VMs. The RD would respond to the device
with the ID(s) of the qualified proxy VM(s) accordingly.
†††The ontology base is considered as a repository to store on-

610
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

Fig. 5 One example to illustrate how a proxy VM conducts SPARQL query.

order to obtain the concepts of those vocabularies. In this
example, the proxy VM would sent the concept retrieval re-
quest to the URIs of “http://example.org/TemperatureMeter”
and “http://example.org/geographicalLocation”. 3) The re-
mote ontology base would respond to the proxy VM with
the concepts of the vocabularies. In this example, the re-
sponse message could be “TemperatureMeter isSameAs
TemperatureSensor” and “geographicalLocation is-
SameAs geoLocation”. 4) After receiving the concept re-
trieval response, the proxy VM would conduct the search
over its local RDF graph store and return back the results in
response to the SPARQL query from the device.

3.2.2 Hierarchical Ontology Base in MEIoT

Normally, the ontology base contains all the common vocab-
ularies that are applied in the IoT system and is placed in the
remote data center for global access. Proxy VMs need to fre-
quently interact with the ontology base via the mobile core
network in order to convert the raw IoT data into semantic
data and respond to SPARQLqueries. Thismay significantly
increase the traffic load of the mobile core network and the
response time in conducting SPARQL queries.

To reduce the traffic load of the mobile core network,
we propose to construct a hierarchical ontology base struc-
ture in MEIoT by placing redundant ontologies at the mobile
network edge. Specifically, there are three levels of ontology
bases: proxy VM ontology base, cloudlet ontology base, and
global ontology base. A proxy VM ontology base is placed
in each proxy VM. It stores the concepts of all the vocabular-
ies that are used by the proxy VM’s registered IoT devices.
For example, if a temperature sensor is registered to a proxy
VM, then the proxy VM should download the concepts of
all the vocabularies related to the temperature sensor from

tologies and provides APIs for different devices to access these
ontologies.

the global ontology base and store them in its proxy VM
ontology base. A cloudlet ontology base is deployed in each
cloudlet. It stores the concepts of vocabularies related to
some applications, which are mainly determined by the lo-
cation of the cloudlet. For instance, if a cloudlet is deployed
in the residential area, its ontology base should store the
concepts of the vocabularies related to the smart home ap-
plication. A global ontology base contains all the common
vocabularies and is normally located in a remote data center.

3.3 Challenge 2: Inefficient Access Control in IoT

IoT data streams normally contain users’ personal informa-
tion (such as users’ location traces, health status, etc.), and
thus it is important to provide an efficient privacy-preserving
solution for the system to identify a device’s permission to
access the corresponding data. One of the most common
Access Control (AC) models that has been applied in the IoT
system is the AC list [34], [35], where access rights/policies
are listed in IoT devices. For example, if a mobile phone tries
to access the data provided by a temperature sensor node, the
mobile phone should send a data access request containing its
identification and/or contextual information (e.g., IP address
and/or geolocation of the mobile phone) to the temperature
sensor, which checks its AC policies to see if the requested
device has the privileges to manipulate (i.e., retrieve, update,
delete, observe, etc.) the corresponding data.

The AC list method is, however, not efficient and scal-
able. 1) Different devices may use different identification
strategies; for instance, a smart TV may use its manufac-
turer model number, a laptop may apply a product key of
its operating system, and a temperature sensor may use its
IP/MAC address to identify themselves. It is difficult to
build and maintain a complete AC list to enable/disable au-
thorized/unauthorized devices (which may adopt different
identification strategies) in accessing the corresponding data.

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
611

Fig. 6 One example to illustrate an access control policy in social IoT.

2) An AC list is not automatically generated, i.e., an IoT de-
vice owner may need to manually setup/update an AC list. 3)
IoT devices are mostly resource constrained, and thus cannot
store and maintain a huge volume of AC lists. Hence, it is
necessary to design an efficient and scalable AC mechanism
to automatically generate AC policies for each device with
the consideration of the resource constrained features of IoT
devices.

3.4 Solution 2: EfficientAccessControlMechanismBased
on Semantic Social IoT

Social IoT (SIoT) [36], [37] is to combine the IoT systemwith
the concept of “human social network” such that IoT devices
are capable of building social relationships with other IoT
devices without human involvement. It is worth to note
that the relationships among IoT devices do not just only
rely on the human relationships, but also depend on the
contextual information of those IoT devices. Farris et al.
[38] summarized the relationships among IoT devices as
follows: 1) parental relationship: devices produced by the
same manufacturer; 2) co-location relationship: devices are
located in the same places; 3) co-work relationship: devices
collaborate together to implement the same IoT service; 4)
ownership relationship: devices belong to the same user; 5)
social relationship: devices communicate with each other
because of the relationships among their owners.

It is thus efficient to set up the AC policies based on
the social relationships among different IoT devices. For
instance, if the temperature sensor in Bob’s smart home can
be accessed by the devices, which are owned by Bob’s fam-
ily members, then we can build an AC policy based on the
ownership relationship. The corresponding AC policy can
be specified as shown in Fig. 6, where the AC policies are
represented by RDF triples. Here, Line#1–Line#3 define
the applied ontologies; Line#4–Line#6 imply the type, URI,
and ownership of the temperature sensor; Line#7–Line#12
depict an access control policy, i.e., policy1, associated to
the device. An access control policy should define two com-
ponents. 1) What operations can/cannot be performed on
the device. In this example, Line#11–Line#12 describe the
retrieve operation that can be conducted. 2) Who can/cannot
perform these operations. In this example, Line#7–Line#10

define the family members of Bob (the owner of the device)
that can retrieve the temperature value of the device. Note
that applying semantics to annotate access control policies is
to improve the interoperability among IoT devices and social
networks.

Since most of IoT devices are resource constrained, it is
not efficient to enable IoT devices to conduct access control.
Instead, the access control functionalities are outsourced to
proxy VMs, i.e., proxy VMs would maintain their regis-
tered devices’ AC policies and handle data access requests
from devices to determine whether they have the privileges
to access (i.e., retrieve, update, delete, observe, etc.) the
corresponding data. To better illustrate the procedure of a
proxy VM in conducting access control, we provide a simple
scenario in which Alice’s mobile phone tries to retrieve the
temperature value sensed by the temperature sensor (whose
AC policy is specified in Fig. 6) located in Bob’s smart home.
The whole procedure comprises the following five steps.

(1) A client (i.e., Alice’s mobile phone) sends a data access
request to the proxyVM (which is associated to the tem-
perature sensor). The request should contain the infor-
mation on which operation is requested to be performed
onwhich device as well as the contextual information of
the client (e.g., the ownership and location of the client).
For example, as shown in Fig. 7, the client sends a data
access request to the proxy VM in retrieving the data
provided by the temperature sensor (which is identi-
fied by the URI of “./bob/smart_home/tempSensor”).
The request contains the contextual information of the
client (e.g., the ownership) to identify itself. Note that
the client could be any device (e.g., a mobile phone, a
proxy VM, an application VM, etc.) and the data access
request could be sent directly to the temperature sen-
sor (rather than the proxy VM), which then relays this
request to its proxy VM for conducting access control.

(2) After the proxy VM receives the request, the Policy De-
cision Maker (PDM) in the proxy VM’s authorization
module would try to obtain the corresponding AC poli-
cies related to the temperature sensor by performing a
semantic query over its local graph store. After obtain-
ing the AC policies, PDM would check if the client has
the privilege to access the data provided by the temper-

612
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

Fig. 7 The procedure of a proxy VM in conducting access control.

ature sensor. PDM could immediately allow/deny the
request if the contextual information of the client satis-
fies/does not satisfy the AC policy. Also, PDM could
ask the client to provide more contextual information
to identify itself. In this example, the AC policy (as
shown in Fig. 7) specifies that the data can be retrieved
by the devices owned by Bob’s family members. Thus,
the proxy VM needs to check the relationship between
Alice and Bob.

(3) PDM sends a social relationship query to the social
network to identify the social relationship between the
owner of the temperature sensor and the owner of the
client. In this example, the family membership between
Alice and Bob† should be confirmed in the Bob’s so-
cial network. As a response, the social network would
return a positive/negative message to confirm/deny the
relationship.

(4) If the social relationship is confirmed, PDM would
ask the token manager in the proxy VM’s authoriza-
tion module to issue a token to the client. A token
is considered as a permission that allows its holder to
access the data within a valid time interval [39]. A
token should contain the hasTokenID, hasExpTime,
hasLocal_accessibilit y , and hasaccessible_U RI at-
tributes, where hasTokenID implies the ID of the is-
sued token; hasExpTime indicates the expiration time
of this token. After the expiration, the client can-
not use this token to access the corresponding data
and the identity of the client should be reevaluated
by PDM. hasLocal_accessibilit y indicates whether
the client can access the data in the temperature sensor
†Note that the identities of owners, i.e., “Alice” and “Bob”, are

encrypted at the device side and will be decrypted and identified at
the social network side

(rather than the data stored in the temperature sensor’s
proxy VM). If hasLocal_accessibilit y = ”true”, the
proxy VM should send the token ID to the tempera-
ture sensor such that the client can access the data in
the temperature sensor by applying the same token ID.
hasaccessible_U RI provides a list of URIs of other
devices, which share the same access control policy,
that could be accessed by the client. For example, if the
client can retrieve the data of the temperature sensor, it
can also retrieve the data of the humidity sensor in the
smart home.

(5) After receiving the token, the client can retrieve the
data by sending a data retrieval request containing the
corresponding token_ID to the proxy VM. The token
verifier in the proxy VM’s authorization module would
verify the token_ID and respond to the client with
the temperature value (which is retrieved from the local
graph store) if the token_ID has the privilege to retrieve
the data from the server.

The proposed Semantic SIoT provides a flexible and
efficient access control mechanism, which is to enforce ac-
cess control policies based on social relationships among
different devices. Also, devices, which outsource their ac-
cess control functionalities to their proxy VMs, may reduce
their energy consumption and accelerate the access control
precess.

3.5 Challenge 3: Mobility Problem in MEIoT

In the MEIoT architecture, each IoT device is associated to
a specific proxy VM located in the nearby cloudlet. The
proxy VM helps its registered IoT devices to share, store,
and process their generated data with low End-to-End (E2E)
delay. This can substantially reduce the energy consumption

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
613

Fig. 8 Dynamic proxy VM migration among different cloudlets.

of IoT devices and accelerate the process of IoT data sharing
and analysis. However, some of the IoT devices (e.g., smart
phones) are mobile and statically placing their proxy VMs
in the original cloudlets may not benefit the process of IoT
data sharing and analytics, i.e., mobile devices need to up-
load their generated data streams to their proxy VMs via the
mobile core network; this may increase the traffic load of the
mobile core network as well as the E2E delay between mo-
bile devices and their proxy VMs. Note that, as mentioned
in Sect. 1, delay is a critical factor that affects the QoS of
many IoT applications. Thus, it is important to keep the E2E
delays between mobile devices and their proxy VMs low in
order to satisfy the stringent delay requirement of these IoT
applications.

3.6 Solution 3: Latency Aware Proxy VM Migration
among Cloudlets in MEIoT

In order to keep the E2E delays between mobile devices
and their proxy VMs low, the location proxy VMs can be
dynamically changed based on the locations of the mobile
devices [24]. As shown in Fig. 8, if a mobile device roams
from BS-1’s coverage area into BS-2’s coverage area, its
proxy VM can be migrated to cloudlet-2. Definitely, the
E2E delay between the mobile device and its proxy VM in
cloudlet-2 is lower than that between the mobile device and
its proxy VM in cloudlet-1. However, each cloudlet has the
limitation to accommodate the number of proxy VMs, i.e.,
a cloudlet may not have enough space to host all the proxy
VMs of the local mobile devices of the cloudlet. Thus,
it is nontrivial to determine the locations of proxy VMs
to minimize the total average E2E delay between mobile
devices and their proxy VMs while jointly considering the
capacity limitation of each cloudlet.

Denote I , J andK as the set of mobile devices, BSs,
and cloudlets, respectively. Denote xik as the binary variable
to indicate whether mobile device i’s proxyVM is in cloudlet
k (i.e., xik = 1) or not (i.e., xik = 0), where i ∈ I and
k ∈ K . Meanwhile, let τjk be the average E2E delay between
BS j and cloudlet k, where j ∈ J . Note that the value
of τjk can be measured by the SDN controller periodically
[40], [41]. We consider the E2E delay between a mobile
device and its proxyVMas the E2E delay between themobile
device’s associated BS and the cloudlet (which hosts the
mobile device’s proxy VM)†. Moreover, denote ψi j as the
location indicator to imply whether mobile device i is in

BS j’s coverage area (i.e., ψi j = 1) or not (i.e., ψi j = 0).
Suppose each proxy VM has the same configuration (i.e.,
the same amount of CPU, memory, and hard disk resource
reservations) and denote φk as the capacity of cloudlet k,
i.e., the maximum number of proxy VMs that cloudlet k can
accommodate. Then, we formulate the latency aware proxy
VM migration problem as follows:

arg min
X

∑
i∈I

∑
j∈J

∑
k∈K

ψi jτjk xik, (1)

s.t .
∑
k∈K

xik = 1, ∀i ∈ I , (2)∑
i∈I

xik ≤ φk, ∀k ∈ K, (3)

∀k ∈ K, xik ∈ {0, 1} , ∀i ∈ I . (4)

The objective is to minimize the total E2E delay between
all the mobile devices and their proxy VMs, where X =
{xik |i ∈ I , k ∈ K }. Constraint (2) imposes each mobile
device’s proxy VM to be placed in one cloudlet. Constraint
(3) imposes the number of proxy VMs hosted by a cloudlet
not to exceed the capacity of the cloudlet. Constraint (4)
means xik is a binary variable. Note that the latency aware
proxy VM migration problem is an integer binary program-
ming problem, and thus we can apply the commercial solver,
i.e., CLPEX, to solve the problem.

3.7 Challenge 4: Energy Inefficiency in MEIoT

Maintaining a large number of cloudlets incurs a huge op-
erational expenditure to the cloudlet provider by paying an
expensive energy bill to the on-grid energy suppliers. Green
energy can be leveraged to reduce the operational expendi-
ture. Specifically, each cloudlet is powered by both green
energy and on-grid energy. Green energy is generated from
renewal resources (e.q., solar, wind, geothermal, etc.) and
is considered as a “free” energy supply for the cloudlet
provider; on-grid energy is pulled from the smart grid and
is considered as a backup energy supply for each cloudlet
(i.e., a cloudlet would consume on-grid energy only if there
is no residual green energy to power the cloudlet). Detailed
descriptions of the green cloudlet system can be found in
[26]. It is worth to note that green energy is discouraged to
be “banked” since many disadvantages have been proved in
storing the superfluous green energy in batteries [42]. There-
fore, if green energy is not fully utilized by cloudlets in the

†The E2E delay between a mobile device and its proxy VM
comprises the E2E delay between the mobile device and its associ-
ated BS, the E2E delay between the associated BS and the cloudlet
(which hosts the mobile device’s proxy VM), and the E2E delay
within the cloudlet. Yet, optimizing the location of the proxy VM
cannot change the E2E delay between themobile device and the BS;
meanwhile, the E2E delay within the cloudlet is negligible. Hence,
we consider the E2E delay between the mobile device and its proxy
VM as the E2E delay between the mobile device’s associated BS
and the cloudlet for the rest of the paper.

614
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

current time slot, it will be wasted.
Green energy generation exhibits spatial dynamics, i.e.,

green energy generated in different cloudlets may vary [43].
Also, different cloudlets may host different number of proxy
VMs, and thus the energy demand exhibits spatial dynamics
as well, i.e., different cloudlets may have different energy de-
mands. The spatial dynamics of green energy generation and
energy demands invoke the problem of unbalanced energy
gap† among cloudlets, thus resulting in inefficient energy uti-
lization and increasing the operational costs for the cloudlet
provider.

3.8 Solution 4: Energy Driven Proxy VM Migration
among Cloudlets in MEIoT

In order to balance the energy gap among cloudlets, we pro-
pose to migrate proxy VMs from the cloudlets with negative
energy gap into the cloudlets with positive energy gap [25].
Specifically, the energy demand of cloudlet k equals to the
sum of the energy consumption of working PMs††. The
energy consumption of each working PM is modeled as

pPM = ∆T
(
ρs + αµ

)
, (5)

where ∆T is the duration of one time slot, ρs is the static
power consumption of a PM (the power consumption of a
PM when it is in the standby mode), and αµ is the dynamic
power consumption of a PM. Here, µ is the CPU utilization
of a PM, which equals to the sum of the CPU utilization
of its hosted proxy VMs and α is the power coefficient that
maps the CPU utilization into power consumption. If there
are Nk working PMs in cloudlet k, we can derive the energy
demand of cloudlet k as

pk = ∆T *
,

Nk ρ
s + α

∑
i∈I

µi xik+
-
, (6)

where Nk ρ
s and α

∑
i∈I

µi xik are total static and dynamic

power consumption of all the working PMs in cloudlet k, re-
spectively. Here, µi indicates the CPU utilization of mobile
device i’s proxy VM. Note that the value of Nk is deter-
mined by the number of proxy VMs in cloudlet k. If each
PM in a cloudlet can host ε number of proxy VMs, then

Nk =

⌈ ∑
i∈I

xik

ε

⌉
, where d•e is the ceiling function. By approx-

imating Nk ≈

∑
i∈I

xik

ε , we have

pk = ∆T
∑
i∈I

(
ρs

ε
+ αµi

)
xik . (7)

†Energy gap of a cloudlet is defined as the difference between
the energy demand and the green energy generation of the cloudlet.
Positive energy gap means the generated green energy cannot sat-
isfy the energy demand of the cloudlet and negative energy gap
implies the cloudlet has superfluous green energy to meet its en-
ergy demand.
††A PM is said to be a working PM if it hosts at least one proxy

VM.

Thus, the energy driven proxy VM migration problem can
be formulated as follows:

arg min
X

∑
k∈K

max

∆T

∑
i∈I

(
ρs

ε
+αµi

)
xik−gk, 0

,

(8)

s.t .
∑
j∈J

∑
k∈K

ψi jτjk xik ≤ γ, ∀i ∈ I , (9)

Constraints (2), (3), and (4), (10)

where gk indicates the total amount of green energy gener-
ated by cloudlet k during a time slot and γ is an E2E delay
threshold, which defines the maximum E2E delay between a
mobile device and its proxy VM. The objective of the prob-
lem is to minimize the total on-grid energy consumption and
Constraint (9) is to guarantee the E2E delay between every
mobile device and its proxy VM to be less than a pre-defined
threshold γ. Note that the energy driven proxy VM migra-
tion problem is amixed integer linear programming problem,
and thus we also can use CPLEX to solve it.

4. Performance Evaluation

In this section, we will evaluate the performance of Latency
Aware proxyVMMigration (LAM) andEnergyAware proxy
VM Migration (EAM) as compared to the Static method.
The Static method means proxy VMs do not change their
locations after the initial deployment.

We set up a network with 5 × 5 BS-cloudlet combi-
nations. As shown in Fig. 9, each BS is connected to its
cloudlet via an access switch. Also, each BS/cloudlet can
communicate with other BSs/cloudlets via the SDN based
cellular core network and each cloudlet is powered by both
green energy and on-grid energy. The amount of green en-
ergy generated in each cloudlet is considered to be the same,
i.e., ∀k ∈ K , gk = 1000 W . The radio coverage area for
each BS is 1 km×1 km. In order to emulate each mobile de-
vice’s movement pattern, we apply the user movement trace
provided by the EveryWare Lab [44]. The trace provides the
users’ movement in the road network of Milan in different
time slots. We select a 5 km × 5 km area of the network and
monitor the movement of the qualified users††† in different
time slots during the monitoring period of six hours. We use
the qualified users’ movement trace to obtain the values of
ψ =

{
ψi j |i ∈ I , j ∈ J

}
in different time slots. In addition,

we assume that the E2E delay between a clouldet and a BS is
proportional to their distance††††, i.e., τjk = λd jk + β, where
d jk is the distance between BS j and cloudlet k, and λ and
β are the coefficient and the offset used to map distance into
delay, respectively. Moreover, the CPU utilization of each
mobile device’s proxy VM is randomly selected between
20% and 100%, i.e., µi = U (0.2, 1) ,∀i ∈ I . Each cloudlet
†††The qualified users are userswhoonlymovewithin the selected

5km × 5km area during the monitoring period.
††††The E2E delay between a clouldet and a BS is measured by
the SDN controller in the real system.

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
615

Fig. 9 The network topology.

Table 1 Values and definitions of parameters.

Parameters Definition Value

α power coefficient 0.2W/%
β E2E delay offset 10ms
λ E2E delay coefficient 25ms/km
γ E2E delay threshold 40ms
∆T the length of a time slot 0.5hour
ρs static power consumption of a PM 80W
|I | total number of qualified mobile devices 632
|J | total number of BSs 25
|K | total number of cloudlets 25

contains 5 PMs and each PM can host at most 6 proxy VMs,
i.e., ε = 6 and φk = 30. Other simulation parameters are
listed in Table 1.

Figure 10(a) shows the average E2E delay between mo-
bile devices and their proxy VMs, and the average on-grid
energy consumption of the network during the monitoring
period (i.e., six hours). Obviously, LAM incurs the lowest
average E2E delay as compared to EAM and Static because
if LAM is applied, once a mobile device roams from one
BS into a new BS, its proxy VM may also be migrated into
the cloudlet, which has the lowest E2E delay respect to the
new BS. Yet, LAM incurs the highest on-grid energy con-
sumption because many mobile devices would move to the
same BS’ coverage area, and thus their proxy VMs would
be migrated to the cloudlet (that is connected to the BS).
Consequently, the energy demand of this cloudlet would be
significantly increased, and thus the cloudlet’s green energy
is subsequently drained. This triggers the cloudlet to pull
energy from the grid. On the other hand, since energy de-
mands are moving to the cloudlet, other cloudlets may have
superfluous green energy, i.e., small value of energy gap.
This unbalanced energy gap among different cloudlets in-
creases the total on-grid energy consumption by applying
LAM. As a comparison, EAM can balance the energy gap
among cloudlets by migrating proxy VMs from the cloudlets
with positive energy gap into the cloudlets with negative en-
ergy gap. Thus, as shown in Fig. 10(b), although EAM
incurs higher average E2E delay than LAM, it saves 39.17%
and 35.74% of on-grid energy consumption as compared to
LAM and Static, respectively. Therefore, we conclude that
there is a tradeoff betweenminimizing the average E2E delay
and minimizing the on-grid energy consumption. Note that

EAM can also guarantee the E2E delay between each proxy
VM and its mobile devices to be less than the predefined
threshold (i.e., the value of γ), as demonstrated in Fig. 10(b),
where the average E2E delay violation rate† for EAM during
the monitoring period is 0%. Yet, the average E2E delay
violation rate of LAM and Static are 6.3% and 33.6%, re-
spectively. Figure 10(b) also shows the maximum E2E delay
among all the mobile devices and their proxy VMs during
the monitoring period. Interestingly, although LAM incurs
the lowest average E2E delay, the maximum E2E delay of
LAM is larger than that of EAM.

We further investigate how the amount of green energy
generation (i.e., the value of gk) affects the performance of
the three methods. As shown in Fig. 10(c), the average on-
grid energy consumption by applying LAMand Static almost
linearly decreases as the amount of green energy generation
increases. Yet, the decrement of the average on-grid energy
consumption by applying EAM is much faster than LAM
and Static. This demonstrates that EAM can better utilize
green energy by further balancing the energy gaps among
cloudlets when more green energy is available. On the other
hand, as shown in Fig. 10(d), the average E2E delay incurred
by EAM is slightly increasing as the amount of green energy
generation increases. This is because more available green
energy in each cloudlet may result in more proxy VMs being
migrated to the cloudlets (with negative gap), thus incurring
long E2E delay. Note that the average E2E delay incurred
by LAM and Static does not change as the amount of green
energy generation increases.

In addition, we investigate how the amount of traffic
load in the mobile core network affects the performance of
the three methods. Note that increasing the traffic load in
the mobile core network leads to increasing the E2E delay
between a cloudlet and a BS. Thus, we use the value of λ
to reflect the traffic loads of the mobile core network, i.e.,
larger value of λ implies heavier traffic load of the mobile
core network, and vice versa. As shown in Fig. 10(e), when
the value of λ is small, the average E2E delay incurred by
the three methods is similar. However, as the value of λ
becomes larger, the average E2E delay gap between LAM
and EAM/Static becomes larger. Figure 10(f) shows the
average on grid energy consumption by varying the value
of λ. The energy consumption of LAM and Static does not
change since the value of λ does not affect their migration
strategies. Yet, the average on-grid energy consumption
incurred by EAM is increasing as the value of λ increases
because a larger value of λ causes less flexibility to balance
the energy gap among cloudlets while satisfying Constraint
(9).

5. Future Works

Migrating proxy VMs among cloudlets can potentially re-

†Average E2E delay violation rate = N
|K |

, where N refers
to the number of the mobile devices with E2E delay larger than γ,
and |K | is the total number of mobile devices in the network.

616
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

Fig. 10 Simulation results.

duce the E2E delay between mobile devices and their proxy
VMs as well as the on-grid energy consumption of the whole
network. However, the following issues need to be consid-
ered in order to design a more efficient proxy VM migration
strategy:

• Proxy VM decomposition: A proxy VM is associated with

a number of static/mobile IoT devices owned by the same
user. Migrating the whole proxy VM when its mobile de-
vices roam away can reduce the E2E delay betweenmobile
devices and its proxy VM, but may increase the E2E de-
lay between static devices and its proxy VM. Thus, before
conducting migration, it is beneficial to decompose the
proxy VM into two proxy VMs: one proxy VM continues

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
617

to serve the static IoT devices, and the other proxy VMmi-
grates among cloudlets as mobile IoT devices roams away
[22].

• Migration overheads: Migrating a proxy VM among
cloudlets introduces extra overheads. From the network-
ing perspective, the migration overheads incur additional
proxy VM migration traffic, which is determined by the
size of the proxy VM, the provisioned bandwidth, etc.
[24]. From the energy consumption perspective, the mi-
gration overheads refer to the amount of energy incurred
by the proxy VM migration. Migrating a proxy VM from
the source cloudlet to the destination cloudlet may intro-
duce non-negligible energy consumption from both source
and destination cloudlets [45]; thus, designing a proxy
VM migration strategy without considering the migration
energy consumption may significantly increase the total
on-grid energy consumption [46]. From the performance
of the proxy VM perspective, the migration overheads
indicate the performance degradation of the proxy VM
[47]. Specifically, conducting data sharing and analyt-
ics in a proxy VM consumes CPU, memory, and network
resource of the proxy VM; meanwhile, proxy VM mi-
gration is considered as an expensive application, which
consumes a significant amount of resources in the proxy
VM. Thus, proxy VM migration can decelerate the speed
of data sharing and analytics, which are conducted during
the migration proxy.

• Rightsizing cloudlets: The capacities of different cloudlets
(i.e., the values of φk) are assumed to be the same in the
simulations. However, the capacity may vary among the
cloudlets to further improve the performance (i.e., the av-
erage E2E delay) of the proxy VM migration strategies.
For instance, the cloudlets located in the dense areas (such
as train stations) may have higher capacities (to host more
proxy VMs) than the cloudlets in sparse areas. In addi-
tion, the amount of green energy generation (i.e., the value
of gk) may also vary among the cloudlets to reduce the
number of proxy VM migrations, i.e., the cloudlets with
higher capacities could have more green energy generator
units (e.g., larger sized solar panels to produce more green
energy) than the cloudlets with lower capacities. Thus,
it is beneficial to rightsizing cloudlets by optimizing the
capacity and green energy generation for each cloudlet.

In the future, we will design an efficient proxy VM migra-
tion strategy by considering both the proxy VM decomposi-
tion and migration overheads to maximize the profit of IoT
users/network providers. Also, we will implement the pro-
posed semantic social IoT and proxy VM migration in our
MEC lab.

6. Conclusion

In this paper, we have introduced the MEIoT architecture to
facilitate the IoT data sharing/analysis. We have illustrated
four challenges in the current IoT system and proposed the
corresponding solutions in the context of MEIoT. We have

evaluated the performance of the two proposed proxy VM
migration methods, i.e., LAM and EAM, via simulations.
In addition, we have elicited future research directions of
MEIoT.

References

[1] Newsroom, Gartner. [Online] Available: http://www.gartner.com/
new-sroom/id/2844317, date of access: April 6, 2017.

[2] D. Evans, “The Internet of Things: How the Next Evolution of
the Internet is Changing Everything,” CISCO white paper, pp.1–11,
2011.

[3] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,
“Cognitive Internet of things: A new paradigm beyond connection,”
IEEE Internet Things J., vol.1, no.2, pp.129–143, April 2014.

[4] X. Sun, N. Ansari, and R. Wang, “Optimizing resource utilization of
a data center,” IEEE Commun. Surveys Tuts., vol.18, no.4, pp.2822–
2846, Fourthquarter 2016.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107–113, 2008.

[6] Spark 2.1.0. [Online] Available: https://spark.apache.org/docs/
2.1.0/, date of access: April 6, 2017.

[7] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S.A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A.
Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency
critical IoT applications in 5G: Perspective on the design of radio
interface and network architecture,” IEEE Commun. Mag., vol.55,
no.2, pp.70–78, Feb. 2017.

[8] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Commun. Surveys
Tuts., vol.19, no.3, pp.1628–1656, 2017.

[9] X. Sun andN. Ansari, “Energy-optimized bandwidth allocation strat-
egy for mobile cloud computing in LTE networks,” 2015 IEEE
Wireless Communications and Networking Conference (WCNC),
pp.2120–2125, New Orleans, LA, 2015.

[10] R.N. Clarke, “Expanding mobile wireless capacity: The challenges
presented by technology and economics,” Telecommun. Policy,
vol.38, no.8, pp.693–708, 2014.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets inmobile computing,” IEEEPervasiveComput.,
vol.8, no.4, pp.14–23, Oct.–Dec. 2009.

[12] M. Taheri and N. Ansari, “A feasible solution to provide cloud com-
puting over optical networks,” IEEE Netw., vol.27, no.6, pp.31–35,
Nov./Dec. 2013.

[13] B.P. Rimal, D.P. Van, and M. Maier, “Mobile edge computing em-
powered fiber-wireless access networks in the 5G era,” IEEE Com-
mun. Mag., vol.55, no.2, pp.192–200, Feb. 2017.

[14] C. Zhang and W. Zhang, “Spectrum sharing for drone networks,”
IEEE J. Sel. Areas Commun., vol.35, no.1, pp.136–144, Jan. 2017.

[15] B. Li, D. Zhu, and P. Liang, “Small cell in-band wireless backhaul
in massive multiple-input multiple-output systems,” 2015 IEEE In-
ternational Conference on Communications (ICC), pp.1838–1844,
London, 2015.

[16] S. Hur, T. Kim, D.J. Love, J.V. Krogmeier, T.A. Thomas, and A.
Ghosh, “Millimeter wave beamforming for wireless backhaul and
access in small cell networks,” IEEE Trans. Commun., vol.61, no.10,
pp.4391–4403, Oct. 2013.

[17] G. Zhang, T.Q. S. Quek, M. Kountouris, A. Huang, and H. Shan,
“Fundamentals of heterogeneous backhaul design—Analysis and
optimization,” IEEE Trans. Commun., vol.64, no.2, pp.876–889,
Feb. 2016.

[18] Nokia Multi-access Edge Computing (MEC) Solutions. [Online]
Available: https://networks.nokia.com/solutions/multi-access-edge-
computing, date of access: April 6, 2017.

[19] V. Bahl, “Emergence ofMicroDataCenter (Cloudlets/Edges) forMo-
bile Computing.” [Online] Available: https://www.microsoft.com/

http://www.gartner.com/new-sroom/id/2844317
http://www.gartner.com/new-sroom/id/2844317
http://dx.doi.org/10.1109/jiot.2014.2311513
http://dx.doi.org/10.1109/jiot.2014.2311513
http://dx.doi.org/10.1109/jiot.2014.2311513
https://doi.org/10.1109/COMST.2016.2558203
https://doi.org/10.1109/COMST.2016.2558203
https://doi.org/10.1109/COMST.2016.2558203
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
https://spark.apache.org/docs/2.1.0/
https://spark.apache.org/docs/2.1.0/
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/mcom.2017.1600435cm
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/wcnc.2015.7127795
http://dx.doi.org/10.1109/wcnc.2015.7127795
http://dx.doi.org/10.1109/wcnc.2015.7127795
http://dx.doi.org/10.1109/wcnc.2015.7127795
http://dx.doi.org/10.1016/j.telpol.2013.11.006
http://dx.doi.org/10.1016/j.telpol.2013.11.006
http://dx.doi.org/10.1016/j.telpol.2013.11.006
http://dx.doi.org/10.1109/mprv.2009.64
http://dx.doi.org/10.1109/mprv.2009.64
http://dx.doi.org/10.1109/mprv.2009.64
http://dx.doi.org/10.1109/mnet.2013.6678924
http://dx.doi.org/10.1109/mnet.2013.6678924
http://dx.doi.org/10.1109/mnet.2013.6678924
http://dx.doi.org/10.1109/mcom.2017.1600156cm
http://dx.doi.org/10.1109/mcom.2017.1600156cm
http://dx.doi.org/10.1109/mcom.2017.1600156cm
http://dx.doi.org/10.1109/jsac.2016.2633040
http://dx.doi.org/10.1109/jsac.2016.2633040
http://dx.doi.org/10.1109/icc.2015.7248592
http://dx.doi.org/10.1109/icc.2015.7248592
http://dx.doi.org/10.1109/icc.2015.7248592
http://dx.doi.org/10.1109/icc.2015.7248592
http://dx.doi.org/10.1109/tcomm.2013.090513.120848
http://dx.doi.org/10.1109/tcomm.2013.090513.120848
http://dx.doi.org/10.1109/tcomm.2013.090513.120848
http://dx.doi.org/10.1109/tcomm.2013.090513.120848
https://doi.org/10.1109/TCOMM.2016.2515596
https://doi.org/10.1109/TCOMM.2016.2515596
https://doi.org/10.1109/TCOMM.2016.2515596
https://doi.org/10.1109/TCOMM.2016.2515596
https://networks.nokia.com/solutions/multi-access-edge-computing
https://networks.nokia.com/solutions/multi-access-edge-computing
https://networks.nokia.com/solutions/multi-access-edge-computing
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf

618
IEICE TRANS. COMMUN., VOL.E101–B, NO.3 MARCH 2018

en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-
for-Mobile-Computing-1.pdf, date of access: April 6, 2017.

[20] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe, “ParkNet: Drive-by sensing of road-
side parking statistics,” Proc. 8th international conference on Mobile
systems, applications, and services, pp.123–136, San Francisco, CA,
June 2010.

[21] P. Neog, H. Debnath, J. Shan, N. Paiker, N. Gehani, R. Curtmola,
X. Ding, and C. Borcea, “FaceDate: A mobile cloud computing
app for people matching,” Proc. 11th EAI International Conference
on Body Area Networks. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Turin,
Italy, pp.184–190, Dec. 2016.

[22] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the
Internet of things,” IEEE Commun. Mag., vol.54, no.12, pp.22–29,
Dec. 2016.

[23] X. Jin, L.E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable
and flexible cellular core network architecture,” Proc. 9th ACM
conference on Emerging networking experiments and technologies,
pp.163–174, Santa Barbara, CA, Dec. 2013.

[24] X. Sun and N. Ansari, “PRIMAL: PRofIt maximization avatar place-
ment for mobile edge computing,” Proc. IEEE International Confer-
ence on Communications (ICC), pp.1–6, Kuala Lumpur, Malaysia,
May 2016.

[25] X. Sun, N. Ansari, and Q. Fan, “Green energy aware avatar migration
strategy in green cloudlet networks,” 7th IEEE International Confer-
ence on Cloud Computing Technology and Science (Cloudcom),
pp.139–146, Vancouver, Canada, Nov.–Dec. 2015.

[26] X. Sun and N. Ansari, “Green cloudlet network: A distributed
green mobile cloud network,” IEEE Netw., vol.31, no.1, pp.64–70,
Jan./Feb. 2017.

[27] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Commun. Lett., vol.21, no.7, pp.1481–
1484, 2017.

[28] X. Sun and N. Ansari, “Adaptive avatar handoff in
the cloudlet network,” IEEE Trans. Cloud Comput., doi:
10.1109/TCC.2017.2701794, early access.

[29] OpenFlow Switch Specification. [Online] Available: https://
www.op-ennetworking.org/images/stories/downloads/sdn-resources/
onf-spec-ifications/openflow/openflow-switch-v1.5.0.noipr.pdf, date
of access: April 6, 2017.

[30] Semantic Web. [Online] Available: https://www.w3.org/standards/
se-manticweb/, date of access: April 6, 2017.

[31] Resource Description Framework. [Online] Available: https://
www.w-3.org/RDF/, date of access: April 6, 2017.

[32] SPARQL 1.1 Overview. [Online] Available: https://www.w3.org/
TR/ sparql11-overview/, date of access: April 6, 2017.

[33] CoRE Resource Directory. [Online] Available: https://tools.ietf.org/
pdf/draft-ietf-core-resource-directory-10.pdf, date of access: April
6, 2017.

[34] P.N. Mahalle, B. Anggorojati, N.R. Prasad, and R. Prasad, “Iden-
tity authentication and capability based access control (IACAC) for
the Internet of things,” J. Cyber Security and Mobility, vol.1, no.4,
pp.309–348, Chicago, 2013.

[35] Y. Zhang andX.Wu, “Access control in Internet of things: A survey,”
arXiv preprint arXiv:1610.01065, 2016.

[36] Social Internet of Things. [Online] Available: http://www.social-
iot.org/, date of access: April 6, 2017.

[37] L. Atzori, A. Iera and G. Morabito, “From “smart objects” to “social
objects”: The next evolutionary step of the Internet of things,” IEEE
Commun. Mag., vol.52, no.1, pp.97–105, Jan. 2014.

[38] I. Farris, R. Girau, L. Militano, M. Nitti, L. Atzori, A. Iera, and G.
Morabito, “Social virtual objects in the edge cloud,” IEEE Cloud
Comput., vol.2, no.6, pp.20–28, Nov.–Dec. 2015.

[39] O. Bodriagov and S. Buchegger, “Encryption for peer-to-peer social
networks,” 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Confer-

ence on Social Computing, pp.1302–1309, Boston, MA, 2011.
[40] A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobil-

ity path prediction scheme for mobile networks,” IEEE Trans. Veh.
Technol., vol.64, no.6, pp.2577–2590, June 2015.

[41] N.L.M.Adrichem, C.Doerr, and F. Kuipers, “Opennetmon: Network
monitoring in OpenFlow software-defined networks,” 2014 IEEE
Network Operations and Management Symposium (NOMS), pp.1–
8, Krakow, Poland, May 2014.

[42] Í. Goiri, K. Le, T.D. Nguyen, J. Guitart, J. Torres, and R. Bianchini,
“GreenHadoop: Leveraging green energy in data-processing frame-
works,” Proc. 7th ACM european conference on Computer Systems,
pp.57–70, Bern, Switzerland, April 2012.

[43] N. Ansari and T. Han, Green Mobile Networks: A Networking Per-
spective, Wiley-IEEE Press, ISBN: 978-1-119-12510-5, 2017.

[44] User Movement Simulations Project. Available. [Online]: http://
everywarelab.di.unimi.it/lbs-datasim

[45] A. Strunk and W. Dargie, “Does live migration of virtual machines
cost energy?,” 2013 IEEE 27th International Conference on Ad-
vanced Information Networking and Applications (AINA), pp.514–
521, Barcelona, 2013.

[46] Q. Fan, N. Ansari, and X. Sun, “Energy driven avatar migration
in green cloudlet networks,” IEEE Commun. Lett., vol.21, no.7,
pp.1601–1604, 2017.

[47] A. Anand, J. Lakshmi, and S.K. Nandy, “Virtual machine placement
optimization supporting performance SLAs,” 2013 IEEE 5th Inter-
national Conference on Cloud Computing Technology and Science,
pp.298–305, Bristol, 2013.

Nirwan Ansari is Distinguished Professor
of Electrical and Computer Engineering at the
New Jersey Institute of Technology (NJIT). He
has also been a visiting (chair) professor at sev-
eral universities. Professor Ansari has authored
Green Mobile Networks: A Networking Per-
spective (Wiley-IEEE, 2017) with T. Han, and
co-authored two other books. He has also (co-
)authored more than 500 technical publications,
over 200 in widely cited journals/magazines. He
has guest-edited a number of special issues cov-

ering various emerging topics in communications and networking. He has
served on the editorial/advisory board of over ten journals. His current
research focuses on green communications and networking, cloud com-
puting, and various aspects of broadband networks. Professor Ansari was
elected to serve in the IEEE Communications Society (ComSoc) Board of
Governors as a member-at-large, has chaired ComSoc technical commit-
tees, and has been actively organizing numerous IEEE International Con-
ferences/Symposia/Workshops. He has frequently been delivering keynote
addresses, distinguished lectures, tutorials, and invited talks. Some of his
recognitions include IEEE Fellow, several Excellence in Teaching Awards,
some best paper awards, the NCE Excellence in Research Award, the IEEE
TCGCC Distinguished Technical Achievement Recognition Award, the
ComSoc AHSN TC Technical Recognition Award, the ComSoc AHSN
TC Outstanding Service Recognition Award, the NJ Inventors Hall of Fame
Inventor of the Year Award, the Thomas Alva Edison Patent Award, Purdue
University Outstanding Electrical and Computer Engineer Award, and des-
ignation as a COMSOC Distinguished Lecturer. He has also been granted
36 U.S. patents. He received a Ph.D. from Purdue University in 1988, an
MSEE from the University of Michigan in 1983, and a BSEE (summa cum
laude with a perfect GPA) from NJIT in 1982.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf
http://dx.doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.1145/1814433.1814448
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.4108/eai.15-12-2016.2267654
http://dx.doi.org/10.1109/mcom.2016.1600492cm
http://dx.doi.org/10.1109/mcom.2016.1600492cm
http://dx.doi.org/10.1109/mcom.2016.1600492cm
http://dx.doi.org/10.1145/2535372.2535377
http://dx.doi.org/10.1145/2535372.2535377
http://dx.doi.org/10.1145/2535372.2535377
http://dx.doi.org/10.1145/2535372.2535377
http://dx.doi.org/10.1109/icc.2016.7511131
http://dx.doi.org/10.1109/icc.2016.7511131
http://dx.doi.org/10.1109/icc.2016.7511131
http://dx.doi.org/10.1109/icc.2016.7511131
http://dx.doi.org/10.1109/cloudcom.2015.23
http://dx.doi.org/10.1109/cloudcom.2015.23
http://dx.doi.org/10.1109/cloudcom.2015.23
http://dx.doi.org/10.1109/cloudcom.2015.23
http://dx.doi.org/10.1109/mnet.2017.1500293nm
http://dx.doi.org/10.1109/mnet.2017.1500293nm
http://dx.doi.org/10.1109/mnet.2017.1500293nm
http://dx.doi.org/10.1109/LCOMM.2017.2690678
http://dx.doi.org/10.1109/LCOMM.2017.2690678
http://dx.doi.org/10.1109/LCOMM.2017.2690678
http://dx.doi.org/10.1109/TCC.2017.2701794
http://dx.doi.org/10.1109/TCC.2017.2701794
http://dx.doi.org/10.1109/TCC.2017.2701794
https://www.op-ennetworking.org/images/stories/downloads/sdn-resources/onf-spec-ifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.op-ennetworking.org/images/stories/downloads/sdn-resources/onf-spec-ifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.op-ennetworking.org/images/stories/downloads/sdn-resources/onf-spec-ifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.op-ennetworking.org/images/stories/downloads/sdn-resources/onf-spec-ifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.w3.org/standards/se-manticweb/
https://www.w3.org/standards/se-manticweb/
https://www.w-3.org/RDF/
https://www.w-3.org/RDF/
https://www.w3.org/TR/ sparql11-overview/
https://www.w3.org/TR/ sparql11-overview/
https://tools.ietf.org/pdf/draft-ietf-core-resource-directory-10.pdf
https://tools.ietf.org/pdf/draft-ietf-core-resource-directory-10.pdf
https://tools.ietf.org/pdf/draft-ietf-core-resource-directory-10.pdf
https://arxiv.org/abs/1610.01065
https://arxiv.org/abs/1610.01065
http://www.social-iot.org/
http://www.social-iot.org/
http://dx.doi.org/10.1109/mcom.2014.6710070
http://dx.doi.org/10.1109/mcom.2014.6710070
http://dx.doi.org/10.1109/mcom.2014.6710070
http://dx.doi.org/10.1109/mcc.2015.116
http://dx.doi.org/10.1109/mcc.2015.116
http://dx.doi.org/10.1109/mcc.2015.116
http://dx.doi.org/10.1109/passat/socialcom.2011.158
http://dx.doi.org/10.1109/passat/socialcom.2011.158
http://dx.doi.org/10.1109/passat/socialcom.2011.158
http://dx.doi.org/10.1109/passat/socialcom.2011.158
http://dx.doi.org/10.1109/tvt.2014.2345263
http://dx.doi.org/10.1109/tvt.2014.2345263
http://dx.doi.org/10.1109/tvt.2014.2345263
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1145/2168836.2168843
http://dx.doi.org/10.1145/2168836.2168843
http://dx.doi.org/10.1145/2168836.2168843
http://dx.doi.org/10.1145/2168836.2168843
http://dx.doi.org/10.1002/9781119125099
http://dx.doi.org/10.1002/9781119125099
http://everywarelab.di.unimi.it/lbs-datasim
http://everywarelab.di.unimi.it/lbs-datasim
http://dx.doi.org/10.1109/aina.2013.137
http://dx.doi.org/10.1109/aina.2013.137
http://dx.doi.org/10.1109/aina.2013.137
http://dx.doi.org/10.1109/aina.2013.137
http://dx.doi.org/10.1109/LCOMM.2017.2684812
http://dx.doi.org/10.1109/LCOMM.2017.2684812
http://dx.doi.org/10.1109/LCOMM.2017.2684812
http://dx.doi.org/10.1109/cloudcom.2013.46
http://dx.doi.org/10.1109/cloudcom.2013.46
http://dx.doi.org/10.1109/cloudcom.2013.46
http://dx.doi.org/10.1109/cloudcom.2013.46

ANSARI and SUN: MOBILE EDGE COMPUTING EMPOWERS INTERNET OF THINGS
619

Xiang Sun received a B.E. degree in elec-
tronic and information engineering and an M.E.
degree in technology of computer applications
from Hebei University of Engineering, Hebei,
China. He is currently working towards the
Ph.D. degree in electrical engineering at the New
Jersey Institute of Technology (NJIT), Newark,
New Jersey. His research interests include mo-
bile edge computing, big data networking, green
edge computing and communications, Internet
of Things, and cloud computing.

