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SUMMARY This paper introduces recent trends in video streaming and
four methods proposed by the authors for video streaming. Video traffic
dominates the Internet as seen in current trends, and new visual contents
such as UHD and 360-degree movies are being delivered. MPEG-DASH
has become popular for adaptive video streaming, and machine learning
techniques are being introduced in several parts of video streaming. Along
with these research trends, the authors also tried fourmethods: route naviga-
tion, throughput prediction, image quality assessment, and perceptual video
streaming. These methods contribute to improving QoS/QoE performance
and reducing power consumption and storage size.
key words: video streaming, picture quality assessment, MPEG-DASH,
machine learning

1. Introduction

As pointed out by many researchers and engineers, Cisco
forecasts Internet IP video traffic to reach more than 80% of
the total traffic by 2021 [1]. Richer video content, ultra high-
definition (UHD), 360-degree, and virtual reality/augmented
reality (VR/AR) have been supported by large-scale video
delivery services such as YouTube and Netflix. It was an-
nounced that Netflix and Amazon Prime subscribers world-
wide crossed the 100 million mark.

Additionally, new technologies for video streaming are
evolving. MPEG-DASH (DynamicAdaptive Streaming over
HTTP) was standardized in 2013 for supporting adaptive
video streaming [2], [3]. In MPEG-DASH, video con-
tents are encoded by multiple bitrate-resolution pairs, called
“representations,” and adaptive streaming is carried out by
clients’ selection of one representation according to their net-
work conditions or capability of the receiving device. Fur-
thermore, various machine learning techniques have been
introduced into video streaming for improving/estimating
streaming performance and picture quality [4]. Streaming
quality prediction and image quality assessment are exam-
ples of the aforementioned methods, and the number of re-
search papers in this area has increased in the last few years.

In this paper, a brief overview of recent trends in video
streaming is provided in Sect. 2. Further, four proposals
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by the authors for improving Quality of Services/Quality
of Experience (QoS/QoE) performances are introduced in
subsequent sections. Section 3 introduces route naviga-
tion, which utilizes past connection history collected on
clouds and recommends a moving route that will maximize
throughput and/or minimize power consumption [5]. Sec-
tion 4 presents throughput prediction that uses short-term
and long-term connection records and attempts to predict
future throughputs by applying machine learning methods
[6]. This method is also extended to transportation-mode es-
timation. Section 5 demonstrates image quality assessment,
which designs a no-reference type image quality predictor
using convolutional neural networks (CNNs) and saliency
maps [7]. Section 6 presents a perceptual video encoder in
which neighboring DASH representations are perceptually
discriminable, owing to a newly developed subjective quality
estimator [8]. Finally, Sect. 7 concludes this paper.

2. Recent Trends in Video Streaming

2.1 MPEG-DASH

MPEG-DASH [3] is an international standard that is capa-
ble of continuous playback by changing the bitrate dynami-
cally and adaptively while observing the network bandwidth.
Video contents are encoded by multiple bitrate-resolution
pairs and are divided into small segments of typical lengths
of 2 to 5 s. The URL of each segment is written in the
Media Presentation Description (MPD) file, which has in-
formation on encoded bitrates, resolutions, minimum buffer
time, etc. Clients access the MPD file at the beginning of
streaming session and refer to it for selecting the optimal
bitrate/resolution pair according to their network conditions.
Every segment can be accessed individually by the client
via HTTP GET requests. Historically, MPEG-DASH stan-
dardization was triggered after proprietary HTTP streaming
methods were proposed by Apple, Adobe, and Microsoft.

Previously, the “encoding recipe” which specifies bi-
trate/resolution pairs was empirically determined and fixed
for all the video contents. However, this fixed encoding
recipe suffers from following problems: higher resolution
does not always show higher quality, excessive or insuffi-
cient bitrate allocation may occur, and perceptually redun-
dant DASH representations which are not discriminable by
the human eye are often generated. Therefore, Netflix indi-
cates that the encoding recipe should be adaptively designed
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according to input video characteristics [9], [10], although
their concrete methods have not been shown yet.

2.2 Machine Learning

Similar to other research fields, introduction of the ma-
chine learning into video streaming researches is ongoing.
Gaussian Mixture Model (GMM), Hidden Markov Model
(HMM), Support Vector Machine (SVM), Support Vector
Regression (SVR), and reinforcement learning were intro-
duced into many components such as throughput prediction
[11], rate control [12], Multi-method and image quality as-
sessment [10], [13]. VideoMultimethod Assessment Fusion
(VMAF) [10] is a picture quality predictor proposed recently
by Netflix that integrates multiple image quality predictors
and motion information by SVR, and outputs its own score.

Most recently, deep learning methods have been ag-
gressively introduced into video streaming and image quality
assessment. Pensieve [14] generates adaptive bitrate algo-
rithms by applying deep reinforcement learning to observ-
able QoS parameters of clients. Pensieve can be applied
to the MPEG-DASH-based streaming system and adaptively
selects future representations to avoid rebuffering while im-
proving QoE. Regarding image quality assessment, several
proposals, mainly using CNN, are being continued for no-
reference image quality predictor since the publication of
CVPR paper [15]. Correlation to ground truth subjective
quality has increased although we still have scope for im-
proving the prediction performance.

2.3 Mobile ICT Infrastructure

The authors have been executing the Mobile ICT Infrastruc-
ture project supported by JSPS Grant-in-Aid for Scientific
Research (A) from 2015 to 2018. As shown in Fig. 1, in
this project, we focus on (a) collection of connection his-
tory by smartphones, (b) generation of radio quality maps,
(c) development of throughput prediction and consumption
power prediction, (d) efficient rate control and route navi-
gation, and (e) content delivery experiments. As extension
techniques, we focus on utilization of cloud platforms and
multiple sensors; investigation of new wireless communica-
tion techniques; and evaluations and improvement of QoE.

Fig. 1 Configuration of our mobile ICT infrastructure project.

Finally, we attempt to develop application prototypes such
as smart route navigation, proactive/predictive content deliv-
ery, adaptive content off-loading, and rebuffering-free video
streaming. The proposals put forth in this paper are mainly
carried out under this project’s direction along with consid-
erations on recent trends in video streaming.

3. Route Navigation

3.1 Objectives

We previously proposed smart route navigation which maxi-
mizes communication quality (e.g., throughputs) and/ormin-
imizes power consumption by utilizing connection history
and radio quality maps [16]. We extend this work in the cur-
rent study by incorporating adaptive playout buffer control.

3.2 Proposed Method and Evaluations

The basic scenario of the proposed method, which is shown
in Fig. 2, is summarized as follows: (1) Connection history
is collected, analyzed, and stored on a cloud system. (2) Our
method determines an optimal travel route for high-speed
and energy-efficient connections. (3) When a user enters
into a high throughput area, our method temporarily extends
a video playout buffer size and aggressively downloads video
segments until the extended buffer is filled. After leaving
this area, video contents are consumed smoothly till next
connection spots are reached.

Recent video streaming adopts ON/OFF strategy, which
is different from the classical video streaming in the 90s,
that uses constant bit rate (CBR) packet delivery. This re-
cent strategy can be classified into short (or zippy pacing)
and long ON/OFF cycle (or sawtooth pacing) [17]. In our
previous paper, we mentioned that the long ON/OFF cycle
can contribute to reducing power consumption because the
occurrences of tail energy can be reduced [18]. Based on
these considerations, we consider an adaptive playout buffer
control for reducing power consumption.

Figure 3 shows an example of our playout buffer control
in which buffer size is increased when a user enters into a
high-speed connection area. Figure 4 shows the throughput
behaviors of the shortest and the optimal (good throughput)

Fig. 2 Overview of smart route navigation.
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Fig. 3 Behavior of our adaptive playout buffer control.

Fig. 4 Throughput comparison of the shortest and optimal route selected
by the proposed method.

Fig. 5 Comparison of power consumption according to extended buffer
sizes.

route; the shortest route is provided by Google Maps. We
can confirm that our route can achieve higher throughput as
expected.

Figure 5 shows the result of comparison of power con-
sumption when the content bitrate is 20Mbps, where No
exist represents the case of no high-speed area, whereas For-
mer,Middle, and Latter represent the location of high-speed
areas near to the starting point, in the middle of the route and
near the destination, respectively. Conventional represents
the case when maximum and minimum buffer sizes are 30 s
and 20 s respectively, and real and sim represent field exper-

iment and simulation, respectively. We can save 250mW
when the maximum buffer size is 250 s.

4. Throughput Prediction

4.1 Objectives

We have been collecting throughput data in addition to loca-
tion and time information by using a smartphone to gener-
ate radio quality maps. The data are used for prediction
experiments. We focused on both short-term and long-
term prediction and confirmed that the latter contributes
to reduction in rebuffering in video streaming when users
are not stationary [19], [20]. For the short-term predic-
tion, we attempted linear prediction, GMM-HMM, a hy-
brid of linear and GMM-HMM [6], and most recently, long
short-term memory (LSTM) [21]. We also investigated
transportation-mode estimation by using throughputs, re-
ceived signal strength indication (RSSI), and Cell ID [22].
This contributes to switching throughput prediction models
according to moving patterns of users.

4.2 Proposed Method and Evaluations

Figure 6 shows the basic structure of our hybrid throughput
predictor. We adopt a hybrid prediction model that switches
linear prediction assuming autoregressive (AR) model and
GMM-HMM-based state transition model. An SVM is also
introduced as a classifier for selecting each of the prediction
models according to throughput records. This classifier is
pre-trained by using the dataset of past throughput records.

Figure 7 demonstrates the comparison of root mean
square relative errors (RMSREs) among several prediction
methods in different scenarios. In prediction methods, we
compare harmonic mean (HM), last sample (LS), mov-
ing average (MA), stochastic [23], linear prediction (AR),
GMM-HMM, and our hybridmethod (HOAH).We use seven
datasets: threeLTE cases (static, walk, and bus), twoHSPDA
cases (ferry and train), and two WiFi cases (personal 5GHz
and enterprise WPA2). HSPDA datasets are published in
[24], whereas LTE and WiFi datasets are collected by us.
AR performs better in static cases when throughput is sta-
tionary. In moving cases, GMM-HMM performs better be-
cause HMM can follow state changes. From these results,
we can conclude that our hybrid method is effective for the
abovementioned seven scenarios.

We also attempt transportation mode estimation by us-
ing communication quality parameters, throughputs, RSSI,
and Cell ID, which are available inline during session [22].
Figure 8 shows the concept of transportationmode estimation
combined with subsequent throughput prediction. Because
the throughput behaviors are different according to moving
patterns, we can expect better prediction by preparing differ-
ent predictionmodels per transportationmode. Furthermore,
if we can achieve sufficient estimation performance without
using dedicated sensors like GPS and accelerometers, power
reduction of mobile devices can be expected.
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Fig. 6 Configuration of proposed throughput predictor.

Fig. 7 Comparison of RMSREs among various prediction methods.

Fig. 8 Transportation mode estimation using communication quality fac-
tors.

Figure 9 shows the results of recognition accuracy of
three transportation modes (static, walking, and riding a
train) for three different datasets. In this experiment, we use
random forest as a classifier among three candidates: SVM,
nearest neighbor, and random forest, based on comparison
experiments. As shown in the figure, results conclude that
typical transportation modes for daily commuting can be
accurately recognized. The contribution of Cell IDs is sig-
nificant for this task.

Fig. 9 Results of recognition accuracy of three transportation modes.

5. Image Quality Assessment

5.1 Objectives

Research on image quality assessment has a long history
because it is well known that MSE and PSNR do not nec-
essarily represent subjective image quality precisely. SSIM
[25] is a popular technique that offers better quality predic-
tion than PSNR; however, its performance is limited and
reference images are necessary for evaluation. No-reference
type (or blind) image quality assessment methods, which do
not need reference images, have also been proposed includ-
ing the one proposed by the authors, namely the one using
SVR [26]. However, their performances are not impressive
owing to the limited capability of classical machine learning
techniques.

In recent years, however, deep learning-based image
quality assessment has been focused on by many researchers
owing to its high prediction accuracy. In this research, we
propose a blind and fast image quality predictor using convo-
lutional neural networks. Our method introduces a saliency
map [27] into the predictor and devises acceleration tech-
niques for reducing computational complexity of the pro-
posed method.

5.2 Proposed Method and Evaluations

Figure 10 shows the configuration of our proposed image
quality predictor. During pre-processing, local contrast nor-
malization is applied to input images, and the normalized
image is split into 32×32 patches with RGB components. In
the training process, we apply a distortion clustering strategy
which consists of three steps: CNN for distortion recogni-
tion, posterior observation, and distortion clustering. The
distortion recognition tries to recognize 13 distortion types
such as compression, blur, and white noise. The posterior
observation tries to describe distorted images by two param-
eters of gamma function. The distortion clustering tries to
group the distortion types into four clusters (distortion map-
ping table) based on the abovementioned two parameters.
We then design and train another CNN for each distortion
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Fig. 10 Configuration of the proposed image quality predictor.

Table 1 Comparison of prediction accuracy among existing methods and
our proposal.

cluster to predict image quality score.
To achieve the final image quality score, we use a

saliency map. By analyzing the relation between saliency
information and prediction errors, we found that non-salient
regions are likely to have larger prediction errors than salient
regions. Therefore, we remove non-salient patches from im-
age quality calculation and assign weights to salient patches.
This removal of non-salient regions contributes to the accel-
eration of image quality score calculation. A summarized
algorithm description of our image quality predictor is pre-
sented below.

Table 1 shows the comparison results of prediction ac-
curacy to ground truth subjective quality among existing
methods and our proposal for LIVE database [28]. We rec-
ognize that our proposal yields the best result in both Pearson
correlation coefficient (PCC) and Spearman rank-order cor-
relation coefficient (SROCC). We also confirmed that by us-
ing fast saliency map model [29] and reducing the number of
salient regions (i.e., increasing threshold ε in Algorithm 1),
the computational complexity can be successfully reduced
while maintaining prediction accuracy.

6. Perceptual Video Streaming Using JND Estimation

6.1 Objectives

Current video streaming uses a fixed encoding recipe

(bitrate-resolution pair) as shown in Table 2 for provid-
ing network adaptivity and/or device scalability by using
MPEG-DASH or similar techniques. However, it has been
indicated that this fixed encoding recipe suffers from several
problems such as improper resolution selection and stream
redundancy; therefore, the necessity of “per-title encode opti-
mization” which adaptively generates an encoding recipe ac-
cording to input video characteristics is advocated [9], [10].

Moreover, Just-Notable Difference (JND) is known as
a subjective quality measure which quantifies the number of
people noticing quality differences. Table 3 [30] shows the
relationship between JND score and the number of people
when people compare two pictures: reference picture and
degraded picture; the ratio of people who prefer the reference
video determines the JND score. As per the definition, when
JND score is zero, people do not notice picture difference,
but when JND score is one, many people start to notice the
picture difference.

Therefore, in this research, we develop a perceptual
quality driven video streaming based on JND scores. We
develop a JND estimator by using SVR and generate an
encoding recipe in which neighboring representation has
one JND distance. This approach can contribute to avoiding
redundant encoding caused by the fixed encoding recipe.
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Table 2 Conventional fixed encoding recipe.

Table 3 Relationship between JND score and the number of people who
noticed quality differences.

6.2 Proposed Method and Evaluations

Figure 11 shows our encoder structure for 2K video input.
Pre-encoding carries out trial encoding of four resolutions
(1080p, 720p, 540p, and 360p) and three QP points (15, 30,
and 5) per 5-s segment. Distortion measures calculate the
following three distortion measures of the encoded pictures:
PSNR, SSIM, and VMAF. Curve fitting approximates rate-
distortion curves by equation y = a · xb + c from three trial
encoding points per resolution. JND estimation estimates
JND scores on the approximated rate-distortion curves by
using a developed JND estimator. Recipe generation gener-
ates an encoding recipe in which neighboring representation
has one JND distance. Finally, Encode carries out video
encoding to produce multiple representations according to
the recipe.

The JND estimator is pre-trained by using VideoSet
database [31], which has ground truth JND scores of one,
two, and three achieved by subjective assessment for 220
sequences in addition to using our own subjective assessment
results for compensating JND scores more than four. SVR
inputs are QP, bitrate, resolution and, distortion measures,
and SVR output is the estimated JND score.

Figure 12 shows an example of rate-JND curves, and
Fig. 13 illustrates the comparison of averaged storage sizes
for storing 10 representations by the fixed encoding recipe
and our adaptive encoding recipe. From Fig. 12, we can
recognize that better rate-JND curves (i.e., selection of bet-
ter bitrate-resolution pair) are achieved. From Fig. 13, we
notice that storage sizes can be reduced by more than half
while keeping similar picture quality. Although omitted, we
also verified that better QoE performances were achieved
over congested networks implemented by a network emula-
tor owing to smaller storage sizes.

Fig. 11 Proposed encoder structure.

Fig. 12 Example of rate-JND curves for VideoSet No.8 sequence.

Fig. 13 Comparison of averaged total storage sizes for VideoSet se-
quences.

7. Conclusion

This paper has presented a brief overview of recent trends in
video streaming and introduced four methods proposed by
the authors. Route navigation using past connection records
successfully provided higher throughput and lower power
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consumption. In throughput prediction, adaptively switch-
ing between linear prediction and GMM-HMM model re-
sulted in better prediction performance than existing meth-
ods. Transportation-mode estimation using communication
quality parameters was also described. Image quality assess-
ment based onCNNand saliencymaps demonstrated the best
prediction performance among the compared methods, and
its acceleration performance was discussed. Finally, percep-
tual video streaming using a newly developed JND estimator
was proposed, and an improvement in rate-JND curves and
a reduction in storage sizes were achieved.

As future work, integration of the proposed methods
into a single framework will be considered. Furthermore,
improvement in each method will be considered by incorpo-
rating recent evolution in machine learning.

Acknowledgments

This workwas partially supported by JSPSKAKENHIGrant
Numbers 15H01684, 15H02688 and 17K12681.

References

[1] “Complete Visual Networking Index (VNI) Forecast,” https://
www.cisco.com/c/en/us/solutions/service-provider/visual-networkin
g-index-vni/index.html

[2] I. Sodagar, “The MPEG-DASH standard for multimedia streaming
over the Internet,” IEEE Multimedia, vol.18, no.4, pp.62–67, April
2011.

[3] ISO/IEC23009-1, “Dynamic adaptive streaming overHTTP (DASH)
– Part 1: Media presentation description and segment formats,” 2014.

[4] Netflix Tech Blog, “Using Machine Learning to Improve Stream-
ing Quality at Netflix,” https://medium.com/netflix-techblog/using-
machine-learning-to-improve-streaming-quality-at-netflix-9651263e
f09f, March 2018.

[5] K. Kanai, S. Takenaka, J. Katto, and T. Murase, “Energy-efficient
mobile video delivery utilizing moving route navigation and video
playout buffer control,” IEICE Trans. Commun., vol.E101-B, no.7,
pp.1635–1644, July 2018.

[6] B. Wei, K. Kanai, W. Kawakami, and J. Katto, “HOAH: A hy-
brid TCP throughput prediction with autoregressive model and hid-
den Markov model for mobile networks,” IEICE Trans. Commun.,
vol.E101-B, no.7, pp.1612–1624, July 2018.

[7] Z. Cheng,M. Takeuchi, K. Kanai, and J. Katto, “A fully-blind and fast
image quality predictor with convolutional neural networks,” IEICE
Trans. Fundamentalsm vol.E101-A, no.9, pp.1557–1566, Sept. 2018.

[8] M. Takeuchi, S. Saika, Y. Sakamoto, T. Nagashima, Z. Cheng, K.
Kanai, J. Katto, K. Wei, J. Zengwei, and X. Wei, “Perceptual quality
driven adaptive video coding using JND estimation,” PCS 2018, June
2018.

[9] Netflix Tech Blog, “Per-Title Encode Optimization,” https://
medium.com/netflix-techblog/per-title-encode-optimization-7e9944
2b62a2, Dec. 2015.

[10] J.D. Cock, Z. Li, M. Manohara, and A. Aaron, “Complexity-based
consistent-quality encoding in the cloud,” IEEE ICIP 2016, Sept.
2016.

[11] Q. Xu, Z.M. Mao, S. Mehrotra, and J. Li, “PROTEUS: Network
performance forecast for real-time, interactive mobile applications,”
ACM MobiSys 2013, June 2013.

[12] V. Menkovski and A. Liotta, “Intelligent control for adaptive video
streaming,” IEEE ICCE 2013, Jan. 2013.

[13] A.K. Moorthy and A.C. Bovik, “Blind image quality assessment:
From natural scene statistics to perceptual quality,” IEEE Trans.

Image Process., vol.20, no.12, pp.3350–3364, April 2011.
[14] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video

streaming with pensieve,” ACM SIGCOMM 2017, Aug. 2017.
[15] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural

networks for no-reference image quality assessment,” CVPR 2014,
June 2014.

[16] K. Kanai, J. Katto, and T. Murase, “Performance evaluations of
comfort route navigation providing high-QoS communication for
mobile users,” ITETrans.Media Technology andApplications, vol.2,
no.4, pp.327–335, Oct. 2014.

[17] A. Rao, A. Legout, Y.S. Lim, D. Towsley, C. Barakat, and W.
Dabbous, “Network characteristics of video streaming traffic,” ACM
CoNEXT 2011, Dec. 2011.

[18] Y. Ishizu, K. Kanai, J. Katto, H. Nakazato, and M. Hirose, “Energy-
efficient video streaming over named data networking using interest
aggregation and playout buffer control,” IEEE Greencom 2015, Dec.
2015.

[19] H. Konishi, K. Kanai, and J. Katto, “Improvement of throughput
prediction accuracy for video streaming in mobile environment,”
IEEE GCCE 2014, Oct. 2014.

[20] K. Kanai, H. Konishi, Y. Ishizu, and J. Katto, “A highly-reliable
buffer strategy based on long-term throughput prediction for mobile
video streaming,” IEEE CCNC 2015, Jan. 2015.

[21] Bo Wei, W. Kawakami, K. Kanai, J. Katto, and S. Wang, “TRUST:
A TCP throughput prediction method in mobile networks,” IEEE
Globecom 2018, Dec. 2018.

[22] W. Kawakami, K. Kanai, B. Wei, and J. Katto, “Machine learning
based transportationmodes recognition usingmobile communication
quality,” IEEE ICME 2018, July 2018.

[23] H. Yoshida, K. Satoda, and T. Murase, “Constructing stochastic
model of TCP throughput on basis of stationarity analysis,” IEEE
Globecom 2013, Dec. 2013.

[24] HSDPA, http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
[25] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image

quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol.13, no.4, pp.600–612, April 2004.

[26] T. Kumekawa,M.Wakabayashi, J. Katto, andN.Wada, “Blind PSNR
estimation of compressed video sequences supported by machine
learning,” ITE Trans. Media Technology and Applications, vol.2,
no.4, pp.353–361, Oct. 2014.

[27] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.20, no.11, pp.1254–1259, Nov. 1998.

[28] H.R. Sheikh, M.F. Sabir, and A.C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Trans. Image Process., vol.15, no.11, pp.3440–3451, Nov. 2006.

[29] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature
similarity index for image quality assessment,” IEEE Trans. Image
Process., vol.20, no.8, pp.2378–2386, Aug. 2011.

[30] VideoClarity: “Understanding MOS, JND, and PSNR,” available at
http://videoclarity.com/PDF/WPUnderstandingJNDMOSPSNR.pdf,
viewed at Jan. 2018.

[31] H. Wang, I. Katsavounidis, J. Zhou, J. Park, S. Lei, X. Zhou, M.O.
Pun, X. Jin, R. Wang, X. Wang, Y. Zhang, J. Huang, S. Kwong,
and C.C. Kuo, “Videoset: A large-scale compressed video quality
dataset based on JND measurement,” J. Vis. Commun. Image R.,
vol.46, pp.292–302, 2017.

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://dx.doi.org/10.1109/mmul.2011.71
http://dx.doi.org/10.1109/mmul.2011.71
http://dx.doi.org/10.1109/mmul.2011.71
http://dx.doi.org/10.3403/30293350
http://dx.doi.org/10.3403/30293350
https://medium.com/netflix-techblog/using-machine-learning-to-improve-streaming-quality-at-netflix-9651263ef09f
https://medium.com/netflix-techblog/using-machine-learning-to-improve-streaming-quality-at-netflix-9651263ef09f
https://medium.com/netflix-techblog/using-machine-learning-to-improve-streaming-quality-at-netflix-9651263ef09f
https://medium.com/netflix-techblog/using-machine-learning-to-improve-streaming-quality-at-netflix-9651263ef09f
http://dx.doi.org/10.1587/transcom.2017cqp0010
http://dx.doi.org/10.1587/transcom.2017cqp0010
http://dx.doi.org/10.1587/transcom.2017cqp0010
http://dx.doi.org/10.1587/transcom.2017cqp0010
http://dx.doi.org/10.1587/transcom.2017cqp0007
http://dx.doi.org/10.1587/transcom.2017cqp0007
http://dx.doi.org/10.1587/transcom.2017cqp0007
http://dx.doi.org/10.1587/transcom.2017cqp0007
http://dx.doi.org/10.1587/transfun.e101.a.1557
http://dx.doi.org/10.1587/transfun.e101.a.1557
http://dx.doi.org/10.1587/transfun.e101.a.1557
http://dx.doi.org/10.1109/pcs.2018.8456297
http://dx.doi.org/10.1109/pcs.2018.8456297
http://dx.doi.org/10.1109/pcs.2018.8456297
http://dx.doi.org/10.1109/pcs.2018.8456297
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
http://dx.doi.org/10.1109/icip.2016.7532605
http://dx.doi.org/10.1109/icip.2016.7532605
http://dx.doi.org/10.1109/icip.2016.7532605
http://dx.doi.org/10.1145/2462456.2464453
http://dx.doi.org/10.1145/2462456.2464453
http://dx.doi.org/10.1145/2462456.2464453
http://dx.doi.org/10.1109/icce.2013.6486825
http://dx.doi.org/10.1109/icce.2013.6486825
http://dx.doi.org/10.1109/tip.2011.2147325
http://dx.doi.org/10.1109/tip.2011.2147325
http://dx.doi.org/10.1109/tip.2011.2147325
http://dx.doi.org/10.1145/3098822.3098843
http://dx.doi.org/10.1145/3098822.3098843
http://dx.doi.org/10.1109/cvpr.2014.224
http://dx.doi.org/10.1109/cvpr.2014.224
http://dx.doi.org/10.1109/cvpr.2014.224
http://dx.doi.org/10.3169/mta.2.327
http://dx.doi.org/10.3169/mta.2.327
http://dx.doi.org/10.3169/mta.2.327
http://dx.doi.org/10.3169/mta.2.327
http://dx.doi.org/10.1145/2079296.2079321
http://dx.doi.org/10.1145/2079296.2079321
http://dx.doi.org/10.1145/2079296.2079321
http://dx.doi.org/10.1109/dsdis.2015.38
http://dx.doi.org/10.1109/dsdis.2015.38
http://dx.doi.org/10.1109/dsdis.2015.38
http://dx.doi.org/10.1109/dsdis.2015.38
http://dx.doi.org/10.1109/gcce.2014.7031099
http://dx.doi.org/10.1109/gcce.2014.7031099
http://dx.doi.org/10.1109/gcce.2014.7031099
http://dx.doi.org/10.1109/ccnc.2015.7158060
http://dx.doi.org/10.1109/ccnc.2015.7158060
http://dx.doi.org/10.1109/ccnc.2015.7158060
http://dx.doi.org/10.1109/glocom.2018.8647390
http://dx.doi.org/10.1109/glocom.2018.8647390
http://dx.doi.org/10.1109/glocom.2018.8647390
http://dx.doi.org/10.1109/icme.2018.8486560
http://dx.doi.org/10.1109/icme.2018.8486560
http://dx.doi.org/10.1109/icme.2018.8486560
http://dx.doi.org/10.1109/glocom.2013.6831293
http://dx.doi.org/10.1109/glocom.2013.6831293
http://dx.doi.org/10.1109/glocom.2013.6831293
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
http://dx.doi.org/10.1109/tip.2003.819861
http://dx.doi.org/10.1109/tip.2003.819861
http://dx.doi.org/10.1109/tip.2003.819861
http://dx.doi.org/10.3169/mta.2.353
http://dx.doi.org/10.3169/mta.2.353
http://dx.doi.org/10.3169/mta.2.353
http://dx.doi.org/10.3169/mta.2.353
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1109/34.730558
http://dx.doi.org/10.1109/tip.2006.881959
http://dx.doi.org/10.1109/tip.2006.881959
http://dx.doi.org/10.1109/tip.2006.881959
http://dx.doi.org/10.1109/tip.2011.2109730
http://dx.doi.org/10.1109/tip.2011.2109730
http://dx.doi.org/10.1109/tip.2011.2109730
http://videoclarity.com/PDF/WPUnderstandingJNDMOSPSNR.pdf
http://videoclarity.com/PDF/WPUnderstandingJNDMOSPSNR.pdf
http://videoclarity.com/PDF/WPUnderstandingJNDMOSPSNR.pdf
http://dx.doi.org/10.1016/j.jvcir.2017.04.009
http://dx.doi.org/10.1016/j.jvcir.2017.04.009
http://dx.doi.org/10.1016/j.jvcir.2017.04.009
http://dx.doi.org/10.1016/j.jvcir.2017.04.009
http://dx.doi.org/10.1016/j.jvcir.2017.04.009


KANAI et al.: METHODS FOR ADAPTIVE VIDEO STREAMING AND PICTURE QUALITY ASSESSMENT TO IMPROVE QOS/QOE PERFORMANCES
1247

Kenji Kanai received the B.E., M.E., and
Ph.D. degrees from Waseda University, Tokyo,
Japan, in 2010, 2012, and 2015, respectively.
He is currently an Assistant Professor at Waseda
University. He is a member of IEEE, IEICE, and
IPSJ.

Bo Wei is currently working toward her
Ph.D. degree at the Graduate School of Funda-
mental Science and Engineering, Waseda Uni-
versity. She received her B.E. and M.E. degrees
from Tianjin University, Tianjin, China in 2012
and 2015, respectively. She is a student member
of the IEEE and IEICE.

Zhengxue Cheng received the B.E. de-
gree fromShanghai JiaoTongUniversity, Shang-
hai, China, in 2014, and received the M.E. de-
gree from Waseda University and Shanghai Jiao
Tong University, in 2015 and 2017, respectively,
through a double-degree program. She is cur-
rently pursuing the Ph.D. degree in Waseda Uni-
versity.

Masaru Takeuchi received the B.E. and
M.E. degrees from Waseda University, Tokyo,
Japan, in 2010 and 2012, respectively. He joined
Sharp Corporation in 2012 and then joined
Waseda University in 2015. He is currently pur-
suing the Ph.D. degree inWaseda University. He
is a member of IEEE and IEICE.

Jiro Katto received the B.S., M.E., and
Ph.D. degrees from the University of Tokyo in
1987, 1989, and 1992, respectively; all in elec-
trical engineering. He joined NEC Corporation
in 1992 and then joined Waseda University in
1999. He is a fellow of IEICE and a member of
ITE, IPSJ, IEEE, and ACM.


