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Multi-Autonomous Robot Enhanced Ad-Hoc Network under
Uncertain and Vulnerable Environment∗

Ming FENG†a), Lijun QIAN††b), and Hao XU†c), Nonmembers

SUMMARY This paper studies the problem of real-time routing in a
multi-autonomous robot enhanced network at uncertain and vulnerable tac-
tical edge. Recent network protocols, such as opportunistic mobile network
routing protocols, engaged social network in communication network that
can increase the interoperability by using social mobility and opportunistic
carry and forward routing algorithms. However, in practical harsh envi-
ronment such as a battlefield, the uncertainty of social mobility and com-
plexity of vulnerable environment due to unpredictable physical and cyber-
attacks from enemy, would seriously affect the effectiveness and practical-
ity of these emerging network protocols. This paper presents a GT-SaRE-
MANET (Game Theoretic Situation-aware Robot Enhanced Mobile Ad-
hoc Network) routing protocol that adopt the online reinforcement learning
technique to supervise the mobility of multi-robots as well as handle the
uncertainty and potential physical and cyber attack at tactical edge. Firstly,
a set of game theoretic mission oriented metrics has been introduced to de-
scribe the interrelation among network quality, multi-robot mobility as well
as potential attacking activities. Then, a distributed multi-agent game theo-
retic reinforcement learning algorithm has been developed. It will not only
optimize GT-SaRE-MANET routing protocol and the mobility of multi-
robots online, but also effectively avoid the physical and/or cyber-attacks
from enemy by using the game theoretic mission oriented metrics. The
effectiveness of proposed design has been demonstrated through computer
aided simulations and hardware experiments.
key words: reinforcement learning, game theory, mobile ad-hoc network,
mission oriented metrics, multi-agent systems

1. Introduction

Mobile Ad-hoc network (MANET) is a self-configuring net-
work of mobile routers connected by wireless links, i.e. the
union of which form an arbitrary topology. The routers are
able to move randomly and/or organize themselves arbitrary
[1]. Therefore, the wireless network topology can be re-
configured rapidly [2], [3]. For instance, a network can be
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formed dynamically by the wireless nodes to exchange in-
formation without using any fixed existing network infras-
tructure [4]. Each node plays a role of router in the MANET
as it must forward the traffic to other nodes. During the
past decade, advanced MANET networking development in
harsh environments, e.g. battlefield, outer space, disaster
rescue and etc., attracts tremendous interests [5], [6]. The
major challenge is how to provide reliable information ex-
change even while lacking continuous network connectivity
due to uncertain and vulnerable environment. Delay Tol-
erant Networking (DTN) [5] is an emerging Ad-hoc net-
work that can support multi-user with sporadic connectiv-
ity. Meanwhile, inspired by carry-and-forward [6] mech-
anism adopted in E-mail exchanging system, researchers
have proposed a class of store-carry forward opportunistic
mobile networking. Moreover, opportunistic mobile net-
working has been considered as another promising network-
ing for uncertain environment. To reduce the network delay
and improve the packet delivery ratio, how to plan the mov-
ing paths for network nodes especially under uncertain and
vulnerable environment, e.g. at tactical edge, and when to
forward messages are two critical factors for opportunistic
mobile networking.

To address two important challenges in opportunistic
mobile networking, a series of routing protocols have been
developed recently. Epidemic routing proposed in [7] indis-
criminately floods the network with messages. As shown in
[7], this routing could provide a high message delivery ratio
and delivery time. However, it will increase message deliv-
ery cost as well. For reducing the message delivery cost,
many recent researches [8]–[10] were inspired by efficiently
connectivity existing in social network. Through developing
effective social metrics, social network has been success-
fully integrated into communication network as a new type
of network. Particularly, three promising social-based rout-
ing protocols, i.e. SimBet [8], Bubble RAP [9] and Friend-
ship routing [10], were developed and applied to uncertainty
communication environment. In [8], SimBet used similar-
ity and betweenness centrality metrics to determine the suit-
able relay nodes with higher probabilities of delivering the
message. Bubble RAP [9] utilized centrality and commu-
nity to make forwarding decisions whereas friendship rout-
ing [10] considered the interrelations among nodes through
introducing a metric to measure the quality of friendship.
However, those social-aware mobile opportunistic network
protocols mainly focused on effectively introducing social
functions (e.g. carry-and-forward scheme [6]) into network
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Fig. 1 Multi-robot enhanced MANET at tactical edge.

nodes without considering how to use social mobility fur-
ther enhancing network interoperability,the ability for two
or more networks, systems, devices, applications or compo-
nents to communicate. Recently, authors in [11] developed
a novel SCATE (Social-Cognitive Advancement at Tactical
Edge) routing that effectively upgrade the MANET quality
through utilizing learned social mobility. However, the ef-
fects from uncertain and vulnerable environment such as en-
emy attacks at tactical edge are not considered which could
limit their applicability to real-world scenario such as bat-
tlefield.

Based on the discussion above and to further reap the
advantages from mobility of network nodes as well as de-
fend the potential attacks from enemy, a novel GT-SaRE-
MANET (game theoretic based Situation-aware Robot En-
hanced Mobile Ad-hoc Net- work) has been developed in
this paper. (see Fig. 1). The objectives of GT-SaRE-
MANET are 1) generating a unified framework effectively
engaging the MANET routing with multi-robot mobility,
and 2) developing a novel game theoretic situation-aware
online reinforcement learning that can optimize the routing
protocol as well as multi-robot path planning under uncer-
tain and vulnerable environment at the tactical edge. To
realize those objectives, a novel set of two-player (i.e. at-
tacker and defender) game theoretic mission oriented met-
rics has been designed firstly that can simultaneously de-
scribe the effectiveness of MANET routing protocol, prac-
tical multi-robot mobility, and effect from vulnerable en-
vironment. Then, an optimal design problem of MANET
routing and multi-robot path planning are formulated un-
der uncertain and vulnerable environment. A game theo-
retic situation-aware online reinforcement learning has been
developed that can learn the optimal design of MANET
routing and multi-robot moving path online at tactical edge
even under harsh environment. Both numerical simula-
tion and experimental tests results have been provided to
demonstrate the effectiveness of the proposed GT-SaRE-
MANET protocol. Compared with Optimized Link State
Routing (OLSR) [12] and emerging social-aware protocols
(e.g. BubbleRap, Simbet), the proposed GT-SaRE-MANET
protocol can effectively utilize the multi-robot mobility and
take the affects from real-time enemy attacks into consider-

ation. Therefore, GT-SaRE-MANET can not only signifi-
cantly reduce the message delivery cost and delay but also
increase the message delivery ratio even at uncertain and
vulnerable tactical edge.

Beyond the battle field scenario, The GT-SaRE-
MANET protocol is also expected to be used in the cate-
gory of mobile networks such as land mobile networks [13],
public safety network [14], interstellar networks [15], and
vehicle networks [16]. Considering public safety network
as an example, due to rapidly growth of population, more
people has moved from urban close to suburban such as
the forests where are flammable, and more new houses have
been built on the fire alarm line. While a serious wildfire oc-
curring such as paradise wildfire at California 2018 [17], it
is very difficult to maintain the high-quality communication
network at those areas. The spread trend and distribution of
fires are even more difficult for residuals in disaster centers
to predict. By joining the concept of robot-enhanced col-
laborative disaster relief, the autonomous robot groups can
form the opportunity mobile network through mutual coop-
eration autonomously. Using this robot-enhanced network,
the distribution and trend of the fire will be identified effec-
tively, furthermore the critical public safety information in
disaster area can be transmitted to rescue team timely for
efficiently reducing the fire risk.

The rest paper is organized as follows. Section 2
presents GT-SaRE-MANET protocol and develops the game
theoretic situation-aware reinforcement learning technique
for both unicast and multicast scenarios. Section 3 pro-
vides the simulation settings. Section 4 demonstrates the nu-
merial simulation results and compares GT-SaRE-MANET
with OLSR, BubbleRap and Simbet, then extends the simu-
lations to experimental tests. Section 5 concludes the paper.

2. Game Theoretic Reinforcement Learning Based In-
telligent GT-SARE-MANET Routing

In this section, the development of GT-SaRE-MANET
(game theoretic Situation-aware Robot Enhanced Mobile
Ad-Hoc Network) routing protocol is given. It is based on
the opportunistic mobile networking schemes, where a node
receives packets, stores them in their buffers, carries them
while moving, and forwards them to other nodes when they
encounter each other.

After introducing a novel set of game theoretic mis-
sion oriented metrics, an optimal routing and multi-robot
path planning design problem can be formulated. Due to
the uncertainty and vulnerability of harsh environment,e.g.
tactical edge, formulated optimal design can not be obtained
in real-time. Therefore, game theoretic situation-aware on-
line reinforcement learning is developed to learn the optimal
routing and multi-robot moving plan that cannot only reduce
message delivery delay and cost, increase message delivery
ratio, and also better defend the potential worst attacks from
enemy. Moreover, both unicast and multicast scenarios have
been considered.
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2.1 Game Theoretic Mission Oriented Metrics

The main mission of GT-SaRE-MANET routing protocol is
to optimize message delivery performance as well as avoid-
ing the potential attack by effectively using the mobility of
multi-robots. To develop the effective routing for GT-SaRE-
MANET, an optimal and resilient design problem needs to
be formulated firstly. Considering unicast as a mission,
the optimal routing design can be formulated as Markov
Decision Process (MDP). However, different from conven-
tional MANET, developed GT-SaRE-MANET needs to con-
sider optimal design for communication network, multi-
robot path planning under uncertain enemy attacks. There-
fore, the mission oriented state and action space need to be
redefined for GT-SaRE-MANET as

Attack observation space: Oi(t) = [oi,1(t), ..., oi,l(t)]
State space: Si(t) = [Si,net(t),Si,robot(t)], i = 1, 2, ...,N.
Action space: Ai(t) = [ai,net(t), ai,robot(t)], i = 1, 2, ...,N.

where oi,1(t) is the observed attacks by robot i at time
t. Moreover, Si,net(t),Si, robot(t),ai,net(t),ai,robot(t) denote the
robot i’s mission oriented states and actions sub spaces
from network routing and robot path planning aspects re-
spectively. Specifically, Si,net(t) includes mission oriented
states as “keep message”, “not keep message”, “never had
message”, “had message before” and “local routing table”.
Si,robot(t) includes “position”, “velocity”, and “acceleration”
of robot i. In addition, ai,net(t) includes mission oriented
actions as “carrying message”, “forwarding message” and
“sharing local routing table with contacts”. ai,robot(t) in-
cludes “moving directions”, “moving velocity” and “mov-
ing acceleration” of robot i.

Also due to the uncertainty and vulnerability of harsh
environment, e.g. tactical edge, multi-robot are placed in
a distributed manner without knowing the full knowledge
of network topology and possible attacking information.
Therefore, directly utilizing mobility of multi-robots to en-
hance MANET quality is very difficult and unrealistic. To
better reap the advantages from multi-robot mobility even
under uncertain and vulnerable environment, a set of dis-
tributed game theoretic mission oriented metrics is devel-
oped. Those metrics in each robot are the critical perfor-
mance indices that can help distributed robots better plan-
ning their mobility and routing protocol to accomplish the
mission as well as defend enemy attacks effectively.

1) Movement activity index (MA): degree of robot i’s ac-
tivity measured at time t, i.e.

MAi =

∫ t

0

(
vit + uit2

)
dτ (1)

where vi, ui are the velocity and accelerator of robot i
that follow the mobile robot dynamics, i.e.{

ṗi = vi
v̇i = ui

, i = 1, 2, ...,N (2)

where pi and N represents the position of robot i and
total number of robots in the network respectively. It
is important to note that more active robot could have
higher chance to find and transmit message to destina-
tion.

2) Frequency of encounters (FE) [11]: percentage of time
(measured at time t) robot i and its neighbors are with
in their communication range rc, i.e.

FEi(t) =
1
t

∫ t

0
num(Ni(τ))dτ (3)

where num is the statistics of neighbors in current
neighbor set

Ni = { j ∈ (1, ...,N) : ‖p j(t) − pi(t)‖ ≤ rc} (4)

3) Mission completion success probability (MCSP): cur-
rent probability (measured at time t) that robot i can be
used to carry and transmit message to receiver success-
fully which is defined as

MCS Pi(t) =
1

sizeo f (Ai(t))
(5)

where Ai(t) is defined as current mission oriented ac-
tions set at robot i including mobility pattern and rout-
ing actions. The Ai(t) is updated along with time as

Ai(t) = Ai(t − 1) ∩ Ai,hist(t) ∩ Ai,neighbors(t) (6)

with Ai,neighbors(t) being the mission oriented actions
from robot i’s neighbors, i.e. robots that contact robot i
at time t. Ai,hist(t) is the complementary set of robot i’s
historical mission oriented actions sets. When the robot
operated one action and has not benefited the mission
completion, that action will be stored in the historical
mission oriented actions sets, i.e. Ai,hist. It is important
to note that robot will have more chance to complete
the mission when it is very clear what to do, i.e. the
size of mission oriented actions set is getting smaller.

4) Potential Attacking Area Estimator (PAaE): The poten-
tial attacking area estimated by robot i (measured at
time t), which can be defined as

PAaEi(t) = g(Pi(t),Oi(t)) (7)

with Oi(t), Pi(t) being defined as moving actions and
positions of attackers estimated at robot i. The Pi(t)
has been updated along with time as

Pi(t) = Pi(t − 1) ∪ Pi,hist(t) ∪ Pi,neighbors(t) (8)

where Pi,neighbors(t) is the attackers’ position estimated
by robot i’s neighbors at time t. Pi,hist(t) is robot i’s
historical information about estimated attackers posi-
tion. If robot encountered the attackers, that practical
attackers’ position information will be used to adjust
estimation scheme. Based on the estimated attackers’
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position and moving action, the potential attacking area
at time t can be estimated.

2.2 Game Theoretic Reinforcement Learning Based Intel-
ligent GT-SaRE-MANET Routing

The reward function at robot i can be defined as

Reward: ri(t) = f (MAi(t), FEi(t),MCS Pi(t), PAaEi(t))

with f (∗) being the reward evaluation function. Accord-
ing to the defined game theoretic mission oriented metrics,
MAi(t), FEi(t),MCS Pi(t), PAaEi(t) depends on the current
state, action of robot i and the attackers’ information ob-
served by robot i. Then, the optimal value function corre-
sponding to a game theoretic mission oriented policy solved
as

V∗(t) = max
π∈PD(A)

min
o∈O

N∑
i=1

TF∑
τ=t

βτE(ri(t)|πi, si) (9)

π∗i (si, t)← arg max
πi∈PD(Ai)

min
oi∈Oi

N∑
i=1

V∗i (t) (10)

where oi is the observed attacker information, ri(t) is the
reward at time t, βτ ∈ [0, 1) is the discount factor at time
τ. V∗(t) represents the optimal value under policy π. While
policy π is used to represent the probability of taking action
a in state s at time t, also can be explained as the policy for
action selection, so π is a probabilistic outcome, a collection
of probability distributions over the available actions, π ∈
PD (A).

However, it is very difficult and even impossible to at-
tain optimal value function and policy directly due to two
major challenges, i.e. 1) the harsh environment with uncer-
tain attacks from enemy, 2) total value function, i.e. V(t),
cannot be obtained since multi-robots are placed in a dis-
tributed manner with limited information exchange. To
overcome above challenges, an online distributed game the-
oretic Q-learning has developed that can learn the optimal
routing, multi-robot mobility by considering worst enemy
attack at harsh environment e.g. tactical edge.

Inspired from recent Q-learning [18] and Equilibrium
Q learners literatures [19]–[24], a game theoretic mission
oriented optimal Q-function, can be defined as

Q∗(s, a, o) =

N∑
i=1

Q∗i (si, ai, oi) =

N∑
i=1

V∗i (t) (11)

Then, the optimal game theoretic mission oriented policy,
i.e. routing and robot’s path planning, can be obtained as

π∗i (si, t)← arg max
πi∈PD(Ai)

min
oi∈Oi

N∑
i=1

Q∗i (si, a, o, t) (12)

Since optimal Q-function is very difficult to obtain, we need
to estimate it through Q-learning technique. Specifically, the
optimal Q-function will be learned in a distributed manner

Fig. 2 Information exchange during contact.

as

Qi(si, ai, oi, t + 1) = Qi(si, ai, oi, t) + α { ri(t)+

γ[Vi(s
′

i , t) + V−i(s
′

i , t)] − Qi(si, ai, oi, t) }
(13)

Vi(s
′

i , t) = max
πi∈PD(Ai)

min
oi∈Oi

∑
ai∈Ai

{ πi

(
s
′

i , a
′

i , t
)

×Qi(s
′

i , a
′

i , o
′

i , t) }
(14)

V
′

−i(s
′

i , t) = max
π−i∈PD(Ai)

min
oi∈Oi

∑
ai∈Ai

{

π−i

(
s
′

i , a
′

i , a
′

−i, t
)
× Q−i(s

′

i , a
′

i , a
′

−i, o
′

i , o
′

−i, t) }
(15)

where α is a learning rate, γ is a discounting factor, a
′

, o
′

denote mission oriented action and attacker’s moving action
at next time that can be selected from in the action space
A and attacker observation space O. And s

′

is the mission
oriented state at next time that belongs to the state space S.
Vi(s′i , t) is the value of a mission oriented policy for robot i
at time t. Moreover, Q−i(s′i , a

′

i , a
′

−i, o
′

i , o
′

−i, t) denotes the esti-
mate Q-function from the neighbors of robot i at time t, also
the V

′

−i(s′i , t). Although multi-robots are deployed in a dis-
tributed manner, they could contact with each other when
they move close within a certain region. Once different
robots had the contact, they will share their current learnt Q-
function, current and historical mission oriented states and
actions, also observed attacker informations. Through us-
ing those information, distributed robot can better solve its
own optimal policy including routing and mobility. A de-
tailed example is given in Fig. 2. for better explaining this
scenario.

Next, the estimated optimal mission oriented policy π
for agent i (i.e. Routing and multi-robot path planning for
GT-SaRE-MANET) can be developed as

πi (si, t)← arg max
πi∈PD(Ai)

min
oi∈Oi

∑
ai∈Ai

{

πi (si, ai, t) × Qi(si, ai, oi, t) }
(16)
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2.3 Extension to Multicast Case

Multicast broadcasting is more critical and challenging es-
pecially under uncertain and vulnerable environment, e.g.
tactical edge. To obtain learning based intelligent GT-SaRE-
MANET in multicase case, we could extend from GT-SaRE-
MANET in unicast case that developed in Sections II.A
and II.B. Specifically, there are two major differences be-
tween unicast GT-SaRE-MANET and multicast GT-SaRE-
MANET. First, in multicast case, there are multiple destina-
tions for data delivery, i.e. D1,D2,D3...,DM . Therefore, the
develop GT-SaRE-MANET routing in multicast case needs
to maximize the possibility to find all destinations and ac-
complish successful message delivery. To realize this, we
consider that the robot can still carry the same data mes-
sage even this robot also decide to forward the message to
the other robots contacted at current t. Second, the number
of destinations who have not received messages needs to be
updated dynamically. If one destination Dk has already re-
ceived the message, the destination should stop requesting
robots to forward message to it. Hence, when robot i move
close to one destination, the destination will notify the robot
i that “no need to come here, robot i has already sent the
data”, if this destination has already received the message
from another robot j. Then, robot i will remove the rele-
vant mission oriented actions. Namely, ai(t) will be updated
from

Ai(t) = Ai(t − 1) ∩ Ai,hist(t) ∩ Ai,neighbors(t) ∩ A j, f inal(t)

It is important to note that the online learning process will
be terminated only if there are M robots arrived their final
states, i.e. all M destinations received message from those
M robots.

ai(t) = argmax
ai∈Ai

Qi(si, a, t) (17)

To better demonstrate the developed distributed Q-
learning based intelligent design, a detailed GT-SaRE-
MANET algorithm is given in the in Algorithm table 1.
First, each robot has their own Q-function. Second, Each
robot will obtain current reward by calculating the reward
function. There is a Potential Attacking Area Estimator
(PAaE) in the reward function (The potential attacking area
estimated by robot i(measured at time t)) which help give
a negative reward when encounter attacker. The robot ith
state S also includes position information. So when current
robot with a specific action a at current states get a negative
reward, the negative reward in its Q-function will help the
robot dodge attacker. Third, Robots could share informa-
tion with their neighbor since robots in the neighborhood
are within communication range that can support the in-
formation exchange. Also, using the identification index,
robots can effectively disguise the teammates from enemy.
Using the updated information, the robots will recalculate
their own Q-function. It will help each robot have an overall
overview condition of attacker.

Algorithm 1 Distributed Learning Based GT-SaRE-
MANET

1: Initialize the mission oriented state space S i,action
space Ai,Oi, policy πi(si, t), attacker’s position informa-
tion Pi(t), the Q-learning environment

2: for t = 1 : TF do
3: for i = 1 : N do
4: Attain current Q-function Qi(t). And find current mis-

sion oriented state (si(t))
5: estimated attackers position information update Pi(t) =

Pi(t − 1) ∪ Pi,hist(t) ∪ Pi,neighbors(t)
6: Obtain current mission oriented action ai ← πi(si, t)

Mixed with Ai(t) = Ai(t − 1) ∩ Ai,hist(t) ∩ Ai,neighbors(t)
7: Estimate optimal Q-function:
8: Compute the reward

ri(t) = f (MAi(t), FEi(t),MCS Pi(t), PAaEi(t))
9: Compute

Qi(si, ai, oi, t + 1) = Qi(si, ai, oi, t) + α { ri(t)+
γ[Vi(s′i , t) + V−i(s′i , t)] − Qi(si, ai, oi, t) }

Vi(s′i , t) = max
πi∈PD(Ai)

min
oi∈Oi

∑
ai∈Ai
{ πi

(
s′i , a

′

i , t
)

×Qi(s′i , a
′

i , o
′

i , t) }
V
′

−i(s′i , t) = max
π−i∈PD(Ai)

min
oi∈Oi

∑
ai∈Ai
{ π−i

(
s′i , a

′

i , a
′

−i, t
)

×Q−i(s′i , a
′

i , a
′

−i, o
′

i , o
′

−i, t) }
10: Estimate Optimal πi(si, t):
πi (si, t)← arg max

πi∈PD(Ai)
min
oi∈Oi

∑
ai∈Ai
{ πi (si, ai, t)

×Qi(si, ai, oi, t) }
11: end
12: Update Q-function,i.e. Qi(s, a, o, t) and Update Q-

learning environments
13: Stop learning if one robot arrives final state, i.e. suc-

cessfully deliver message to destination
14: end

In the unicast GT-SARE-MANET simulation, the mis-
sion oriented action for each UAVs group has been defined
as ai = [ai,1, ai,2], with ai,1 being the mission oriented action
vector that represents the flying patterns. Initially, 200 flying
patterns has been generated, i.e. ai,1 = [ai,11ai,12...ai,1 200].
Next, a2 is the action vector about four routing choices [
“store data”; “forward data”; “interaction”; “idle” ]. There-
fore, the mission oriented action table for each UAVs group
initially contains 4*200 elements. In multicast GT-SaRE-
MANET simulation, the mission oriented action has been
defined as a = [a1, a2], with a1 being the mission oriented
action vector about flying patterns. However, in the mul-
ticast case, multi-UAV may still hold the same necessary
data after forwarding. Hence, the a2 needs to be defined
as [“store data”; “only forward data”; “forward and hold
data”; “interaction”;”idle”]. Therefore, the mission oriented
action table for each UAVs group initially contains 5*200
elements.

The destination positions of message transmitter and
receiver have been initialized randomly for both unicast and
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Fig. 3 Performance evaluation.

multicast cases. After 1000 times indices training, three crit-
ical parameters can be computed and used to evaluate the
performance of different routing protocols, i.e.,

• Data delivery ratio: ratio of data message successfully
received to the total sent.
• Data delivery delay: the average time for the destina-

tions to receive the data message from transmitter.
• Data delivery cost: the number of times that a data

message is forwarded before delivered.

3. Simulation Setup

To better demonstrate the effectiveness of proposed intel-
ligent GT-SaRE-MANET routing, both matlab and Com-
mon Open Research Emulator (CORE) have been used in
the computer aided simulation. Also several recent net-
work protocols including OLSR, Simbet, Bubblerap have
been used as benchmarks to compare with proposed de-
sign. Moreover, we are interested in effects from the un-
certain and vulnerable environment to the network proto-

col. In the simulation, the network traffic was generated
with random source and actions. To simulate the transient
connectivity in practical battlefield, the unmanned aerial ve-
hicle (UAV), commonly known as a flying robot is consid-
ered here. Also the Reference Group mobility model has
been used. It is important to note that developed GT-SaRE-
MANET has been tested at the same scenario. However,
since the multi-UAV mobility and routing design all based
on reinforcement learning, there is no need to set explicit
mobility mode. In GT-SaRE-MANET simulation, multi-
UAV have been divided into different groups. Each group
has a leading UAV determining the mobility of entire group.
We use the same experiment settings such that the attack-
ers’ movements is initialized with specific trajectory, and the
message is generated randomly and data time-to-live (TTL)
varies from 5 minutes to 20 minutes.

4. Simulation Results

In this section, the performance of developed game theoretic
Q-learning based GT-SaRE-MANET routing has been eval-
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Fig. 4 Global reward evaluation for multicast case.

uated and compared with several recent routing protocols,
including OLSR protocol, SimBet, BubbleRap, especially at
tactical edge. In Fig. 3(d) to (f), the performance of develop
learning based GT-SaRE-MANET routing for unicast case
has been evaluated in matlab emulator. Compared with re-
cent advanced network routing protocol, the developed GT-
SaRE-MANET can maximize the message delivery ratio as
well as minimize the message delivery delay and cost. Even
under the uncertain and vulnerable harsh environment such
as tactical edge, proposed GT-SaRE-MANET can provide
over 60% message delivery ratio at tactical edge. It is be-
cause proposed design has intelligently utilized game the-
oretic based situation aware online reinforcement learning
to effectively manage the routing protocol as well as multi-
robot mobility even under uncertainty enemy attacks. Then,
the performance of proposed GT-SaRE-MANET routing for
multi-cast at tactical edge has been demonstrated in Fig. 3(g)
to (l) separately via matlab and CORE emulator. They both
give similar results. Although multicast case is much more
complicate and difficulty than unicast case, the developed
learning based GT-SaRE-MANET routing still can provide
a much more efficient and reliable performance even at tac-
tical edge, where the distributed Q function is being con-
verged and shown in Fig. 4.

To consider more realistic uncertainty and vulnerabil-
ity from tactical environment, a battlefield communication
scenario has been set up and used to evaluate the perfor-
mance of designed scheme. In this scenario, a tactical map
has been adopted and several military groups have been di-
vided into different areas. After randomly selected transmit-
ter and receiver within military groups, the mission UAVs
will be initialized in different places and used to help on
message exchange. And the attacking UAV group is set up
with specific trajectory. Based on the tactical map, the net-
work model will be generated and included in real-time sim-
ulation. Moreover, mission UAVs do not have fully knowl-
edge of transmitter and receiver locations and actual attack-
ers’ trajectory. Therefore, the designed algorithm will ad-
vise distributed mission UAVs to search transmitter and re-
ceiver, avoid the potential attack and then carry and forward
the message from source to destination.

Both unicast and multicast cases have been investi-
gated. As shown in Fig. 3(a) (b), the best group of UAV

Fig. 5 DJI S1000 platform and detection radar.

Fig. 6 Real-time ground station monitor.

(i.e. green frame) will carry and forward message to desti-
nation successfully. In this realistic battlefield scenario, the
developed algorithm can provide better performance than
recent advanced routing protocol, i.e. lower delivery delay
and cost, and higher deliver ratio. To validate the practi-
cal effectiveness of the proposed learning based GT-SaRE-
MANET routing algorithm, a real-time experimental test
has been conducted. We set up three DJI S1000 UAVs, two
among them has been rebuilt by including 5.8 GHz wire-
less transceiver module and an Intel i7 processor for em-
bedding online game theoretic reinforcement learning algo-
rithm. The Fig. 5 show the detection radar setup to detect at-
tackers position in real-time. The outdoor test has been run
at Federal Aviation Association (FAA) certified UAS test
site. During the test, message transmitter and receiver have
been deployed firstly. Then, two UAVs has been deployed in
the different places without known the location of transmit-
ter, receiver and each other. Then, one UAV act as attacker
flying with specific trajectory to interrupt the message ex-
change. In Fig. 6, the developed GT-SaRE-MANET scheme
can effectively force two distributed UAVs to not only find
the transmitter and receiver, and also efficiently avoid the
attacking UAV and transmit the message from source to the
destination even under the uncertain and vulnerable environ-
ment.

5. Conclusion

In this paper, a novel multi-robot enhanced MANET has
been investigated. Through integrating the advanced on-
line game theoretic reinforcement learning technique, a se-
ries of intelligent network routing and multi-robot mobil-
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ity can be obtained to not only significantly improve the
MANET quality but also handle the practical effects from
uncertain and vulnerable harsh environment such as the bat-
tlefield. Moreover, the effectiveness of the proposed algo-
rithm has been validated through computer-aid simulations
as well as real-time experimental tests. Both numerical sim-
ulation and experimental results demonstrated that the pro-
posed online learning based GT-SaRE-MANET scheme can
provide much better performance than the state-of-the-art
designs such as OLSR, BubbleRap, Simbet, especially in
uncertain and vulnerable environment of tactical edge.
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