This paper applies minimum mean square error (MMSE) interference rejection followed by joint maximum likelihood detection (MLD) to a receiver in a distributed antenna network (DAN). DAN receivers capture not only the desired signals, but also the interference signals from nearby uncoordinated antennas. For the overloaded signal situation, non-linear detection schemes such as joint MLD can be applied to the received signals. However, the amount of metric calculations in joint MLD increases exponentially with the number of signal streams. Therefore, MMSE interference rejection followed by MLD detection is proposed. The proposed scheme reduces the complexity by a factor of 1/2M(NT-1) where NT is the number of interference signals with 2MQAM modulation. The effect of residual interference after the MMSE interference rejection is evaluated. Numerical results obtained through computer simulation and experiment show that the performance of the proposed scheme is about 4.0dB worse at a bit error rate (BER) of 10-3 than that of the joint MLD while its complexity is four times lower for QPSK signal streams. The BER performance degradation can be suppressed to about 2.5dB by adjusting the value of the coefficient in the MMSE matrix.
Hirokazu MIYAGI
Keio University
Yukitoshi SANADA
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hirokazu MIYAGI, Yukitoshi SANADA, "Performance of MMSE Interference Rejection Followed by Joint MLD for DAN" in IEICE TRANSACTIONS on Communications,
vol. E101-B, no. 12, pp. 2471-2478, December 2018, doi: 10.1587/transcom.2018EBP3032.
Abstract: This paper applies minimum mean square error (MMSE) interference rejection followed by joint maximum likelihood detection (MLD) to a receiver in a distributed antenna network (DAN). DAN receivers capture not only the desired signals, but also the interference signals from nearby uncoordinated antennas. For the overloaded signal situation, non-linear detection schemes such as joint MLD can be applied to the received signals. However, the amount of metric calculations in joint MLD increases exponentially with the number of signal streams. Therefore, MMSE interference rejection followed by MLD detection is proposed. The proposed scheme reduces the complexity by a factor of 1/2M(NT-1) where NT is the number of interference signals with 2MQAM modulation. The effect of residual interference after the MMSE interference rejection is evaluated. Numerical results obtained through computer simulation and experiment show that the performance of the proposed scheme is about 4.0dB worse at a bit error rate (BER) of 10-3 than that of the joint MLD while its complexity is four times lower for QPSK signal streams. The BER performance degradation can be suppressed to about 2.5dB by adjusting the value of the coefficient in the MMSE matrix.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018EBP3032/_p
Copy
@ARTICLE{e101-b_12_2471,
author={Hirokazu MIYAGI, Yukitoshi SANADA, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance of MMSE Interference Rejection Followed by Joint MLD for DAN},
year={2018},
volume={E101-B},
number={12},
pages={2471-2478},
abstract={This paper applies minimum mean square error (MMSE) interference rejection followed by joint maximum likelihood detection (MLD) to a receiver in a distributed antenna network (DAN). DAN receivers capture not only the desired signals, but also the interference signals from nearby uncoordinated antennas. For the overloaded signal situation, non-linear detection schemes such as joint MLD can be applied to the received signals. However, the amount of metric calculations in joint MLD increases exponentially with the number of signal streams. Therefore, MMSE interference rejection followed by MLD detection is proposed. The proposed scheme reduces the complexity by a factor of 1/2M(NT-1) where NT is the number of interference signals with 2MQAM modulation. The effect of residual interference after the MMSE interference rejection is evaluated. Numerical results obtained through computer simulation and experiment show that the performance of the proposed scheme is about 4.0dB worse at a bit error rate (BER) of 10-3 than that of the joint MLD while its complexity is four times lower for QPSK signal streams. The BER performance degradation can be suppressed to about 2.5dB by adjusting the value of the coefficient in the MMSE matrix.},
keywords={},
doi={10.1587/transcom.2018EBP3032},
ISSN={1745-1345},
month={December},}
Copy
TY - JOUR
TI - Performance of MMSE Interference Rejection Followed by Joint MLD for DAN
T2 - IEICE TRANSACTIONS on Communications
SP - 2471
EP - 2478
AU - Hirokazu MIYAGI
AU - Yukitoshi SANADA
PY - 2018
DO - 10.1587/transcom.2018EBP3032
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E101-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2018
AB - This paper applies minimum mean square error (MMSE) interference rejection followed by joint maximum likelihood detection (MLD) to a receiver in a distributed antenna network (DAN). DAN receivers capture not only the desired signals, but also the interference signals from nearby uncoordinated antennas. For the overloaded signal situation, non-linear detection schemes such as joint MLD can be applied to the received signals. However, the amount of metric calculations in joint MLD increases exponentially with the number of signal streams. Therefore, MMSE interference rejection followed by MLD detection is proposed. The proposed scheme reduces the complexity by a factor of 1/2M(NT-1) where NT is the number of interference signals with 2MQAM modulation. The effect of residual interference after the MMSE interference rejection is evaluated. Numerical results obtained through computer simulation and experiment show that the performance of the proposed scheme is about 4.0dB worse at a bit error rate (BER) of 10-3 than that of the joint MLD while its complexity is four times lower for QPSK signal streams. The BER performance degradation can be suppressed to about 2.5dB by adjusting the value of the coefficient in the MMSE matrix.
ER -