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PAPER
Matrix Completion ESPRIT for DOA Estimation Using
Nonuniform Linear Array

Hongbing LI†a), Qunfei ZHANG†, Nonmembers, and Weike FENG††, Student Member

SUMMARY A novel matrix completion ESPRIT (MC-ESPRIT) algo-
rithm is proposed to estimate the direction of arrival (DOA) with nonuni-
form linear arrays (NLA). By exploiting the matrix completion theory and
the characters of Hankel matrix, the received data matrix of an NLA is
tranformed into a two-fold Hankel matrix, which is a treatable for matrix
completion. Then the decision variable can be reconstructed by the inexact
augmented Lagrange multiplier method. This approach yields a completed
data matrix, which is the same as the data matrix of uniform linear ar-
ray (ULA). Thus the ESPRIT-type algorithm can be used to estimate the
DOA. The MC-ESPRIT could resolve more signals than the MUSIC-type
algorithms with NLA. Furthermore, the proposed algorithm does not need
to divide the field of view of the array compared to the existing virtual
interpolated array ESPRIT (VIA-ESPRIT). Simulation results confirm the
effectiveness of MC-ESPRIT.
key words: direction of arrival (DOA), nonuniform linear array, matrix
completion

1. Introduction

Array signal processing is being widely used to estimate
the parameters of signals in numerous areas such as sonar,
radar and wireless communications [1]. And the direction
of arrival (DOA) estimation problem, which has drawn con-
siderable attention, is an important aspect of array signal
processing. In this paper, we consider the case of Nonuni-
form Linear Arrays (NLA). In practice, some of the sensors
in a uniform array may stop functioning, which yields an
NLA. In this case, the array should be treated as nonuniform
in order to optimize the DOA sestimator. Another applica-
tion of NLA is the design of high performance and low cost
arrays with reduced number of sensors. Reducing the num-
ber of sensors decreases the production cost as well as the
computational time. This is due to the fact that nonregular
geometry provides almost the same Root Mean Square Er-
ror (RMSE) performance as the equivalent Uniform Linear
Array (ULA) with the same number of array elements.

Subspace decomposition-based methods such as multi-
ple signal classification (MUSIC) based algorithms [2] have
been proposed. However, MUSIC based algorithms are ex-
tremely in terms of computational complexity due to spectral
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peaks search to obtain the DOAs. Since the ESPRIT [3] can
avoid the spectral searching procedure of the MUSIC based
algorithms and thus reduce much of the computational load,
various ESPRIT-type algorithms [4], [5] have been presented
to estimate the DOA. But the ESPRIT-type algorithms re-
quire special sensor array configuration, and it can be applied
only to uniform linear arrays (ULA). However, it was found
that linear arrays with nonuniform spacing could achieve
higher performance for DOA estimation [6], [7]. In order to
extend the ESPRIT-typemethods to nonuniform linear arrays
(NLA), a series of methods with interpolated array [8], [9]
are proposed. Their basic idea is using the interpolation
technique to estimate the outputs of a virtual array from the
received data of real array, so the outputs of a virtual array
can be used to estimate DOA through ESPRIT, so they are
called as virtual interpolated array ESPRIT (VIA-ESPRIT).
However, the interpolated ESPRIT procedure must divide
the field of view of the array into several sectors, if the DOA
of target is beyond a certain sector, there should be a sharp
drop in angle estimated performance. [10] dealt with the
problem of DOA estimation for multiple uncorrelated sig-
nals incident on partially augmentable antenna arrays, and
the maximum-entropy (ME) positive-definite (p. d.) com-
pletion algorithm for partially specified Toeplitz covariance
matrices was proposed for NLA.

Matrix completion (MC) [11] is a new technique which
can be applied to recover a low-rank matrix from subset
of the matrix entries by minimizing the nuclear norm of
the matrix. Many algorithms have been proposed to solve
the MC problem. According to the nature of optimization
problem, two main categories are formed. One in which
the nuclear norm minimization is explored, such as singular
value thresholding (SVT) [12], accelerated proximal gradi-
ent (APG) [13] and augmented Lagrange multiplier (ALM)
[14], et al. The other in which an approximation error objec-
tive function on a Grassmannmanifold is minimized, such as
subspace evolution and transfer (SET) [15] and Grassmanian
rank-one update subspace estimation (GROUSE) [16], et al.
Compared with ULA, the received data of NLA can be con-
sidered as a low-rank matrix. Therefore, through solving the
MC problem, the received data of NLA is able to recover a
completed data matrix, which is the same as the data matrix
of ULA.

In this paper, we combine the theory of matrix comple-
tion with the ESPRIT, and a novel algorithm called matrix
completion ESPRIT (MC-ESPRIT) is proposed to deal with
the problem of the interpolated ESPRIT method. By reshap-

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



2254
IEICE TRANS. COMMUN., VOL.E102–B, NO.12 DECEMBER 2019

ing the received data of NLA into a low-rank Hankel matrix,
a virtual completed data matrix can be obtained by solving
a MC problem. Because the virtual completed data matrix
is the same as the received data of ULA with the same array
aperture, ESPRIT can be exploited to estimate DOA finally.
Notation: (·)T denotes the transpose operator; rank[·] de-
notes the rank of a matrix; 〈·〉 denotes the inner product of
matrixs; C denotes the plural sets.

2. Problem Formulation

Consider an NLA consisting of N omnidirectional sensors
whose positions d = [d1, d2, · · · , dN ] are the integer times
to λ/2 (λ is the wavelength of the signal), and take the first
sensor as the reference that means d1 = 0. Assume that
there are P noncoherent far-field targets within the same
range locating at θp, p = 1, 2, · · · , P, where θp is DOA of
the pth target with respect to the array normal. Therefore,
the outputs of the entire sensors can be expressed as

x (tl) = [x1 (tl) , x2 (tl) , · · · , xN (tl)]T

= As (tl) + n (tl) , l = 1, 2, · · · , L
(1)

where x (tl) ∈ CN×1, A = [a (θ1) , a (θ2) , · · · , a (θP)]
is an N × P matrix composed of P steering vec-

tors, a
(
θp

)
=

[
1, e j

2πd2
λ sin θp , · · · , e j

2πdN
λ sin θp

]T
, s(t) =

[s1(t), s2(t), · · · , sP (t)]T are the envelopes of the reflected
signals. The noise vector n(t) is modeled as a zero-mean,
spatially complex white Gaussian distribution with covari-
ance matrix σ2

nIN . L is the number of snapshots.
In order to use MC theory to recover a completed data

matrix of virtual ULA, we can set the received data as zero
for the position without sensors. Assume that a virtual ULA
has the same array aperture with the NLA, and dN denotes
the array aperture of the NLA. So the array aperture of the
NLA is dN = (M−1)×λ/2 (M > N ), where M denotes the
number of sensors for the virtual ULA. Denote the received
data of the virtual ULA as y (tl), so the dimension of y (tl) is
M×1, For example, if the four sensors of NLA are situated at
positions d = [0, 1, 3, 6]×λ/2, its geometry and the geometry
of virtual ULA are illustrated in Fig. 1.

Then the received data of the virtual ULA can bewritten
as

y (tl) = [x1 (tl) , x2 (tl) , 0, x3 (tl) , 0, 0, x4 (tl)]T (2)

Therefore, the received data matrix of virtual ULAwith

Fig. 1 The geometry of NLA with d = [0, 1, 3, 6] × λ/2.

multiple snapshots can be expressed as

Y =
[
y (t1) , y (t2) , · · · , y (tL )

]
(3)

3. MC-ESPRIT

First of all, we recall the basic theory ofMC. The strong inco-
herent property (SIP) is one of the basic conditions for MC,
the requirement of the recovery matrix is that the singular
value vector of the matrix is independent to the orthonormal
basis of its space. As long as there are no all zero rows or
columns, the SIP is generally satisfied. If the data matrix is
a low-rank matrix and meets the condition of SIP, one could
recover the data matrix by solving the following optimization
problem

minimize rank(M )
subject to PΩ(M) = PΩ(Y ) (4)

where M is the decision variable and rank(M ) is equal to
the rank of the matrix M . Ω is the set of effective element
positions for Y . For arbitrary (i, j) ∈ Ω, there always exists
Y i j belong toY , andY i j is non-zero element, so we call is an
effective element position. PΩ(M ) is the orthogonal projec-
tion of M onto the subspace of matrices that vanish outside
Ω. Similar to the l0-norm problem of compressive sensing
(CS), the above problem is NP-hard, and the NP refers to
a nondeterministic polynomial. The so-called uncertainty
is that a certain number of operations can be used to solve
problems that can be solved in polynomial time. In general,
the NP problems are problems where the correctness of their
solution can be “easily checked”, which means there exists
a polynomial checking algorithm. If all the problems in NP
are reduced by turing to one problem, the problem is called
NP-hard. Therefore, Eq. (4) can be transferred as

minimize ‖M ‖∗
subject to PΩ(M ) = PΩ(Y ) (5)

where ‖M ‖∗ denotes the nuclear norm (or sum of all singular
values) of a matrix M .

One can observe that the received data matrix Y have
rows whose elements are all zero, which does not satisfy the
condition of SIP. Thus, we cannot use the above optimization
procedure to recover the completed data matrix of virtual
ULA. According to reference [17], Y should be transposed,
we have Ỹ = YT . And then a two-fold Hankel matrix can be
defined as

Y e =



Ỹ 1 Ỹ 2 · · · Ỹ L−k1+1
Ỹ 2 Ỹ 3 · · · Ỹ L−k1+2
...

...
...

...

Ỹ k1 Ỹ k1+1 · · · Ỹ L



(6)

Where k1 (1 ≤ k1 ≤ L) is called pencil parameter, and each
block matrix of Y e is a k2 × (M − k2 + 1) Hankel matrix,
which is defined as
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Ỹm =



Ỹm,1 Ỹm,2 · · · Ỹm,M−k2+1
Ỹm,2 Ỹm,3 · · · Ỹm,M−k2+2
...

...
...

...

Ỹm,k2 Ỹm,k2+1 · · · Ỹm,M



(7)

where m satisfies 1 ≤ m ≤ L, and 1 ≤ k2 ≤ M is another
pencil parameter. Ỹm,k denotes the (m, k)th element of the
matrix Ỹ .

According to the expression of Ỹ , the block Ỹm can be
expressed as

Ỹm = ZLDmZR (8)

ZL =



1 1 · · · 1
z1 z2 · · · zP
...

...
. . .

...

zk2−1
1 zk2−1

2 · · · zk2−1
P



(9)

ZR =



1 z1 · · · zM−k2
1

1 z2 · · · zM−k2
2

...
...

. . .
...

1 zP · · · zM−k2
P



(10)

Dm =



s1 (tm) 0 · · · 0
0 s2 (tm) · · · 0
...

...
. . .

...
0 0 · · · sP (tm)



(11)

where zp = e jπ sin θp , p = 1, 2, · · · , P.
Substituting Eq. (8) into Eq. (6), one can obtain the fol-

lowing

Y e =



ZL

ZLD1
...

ZLDk1−1



[
ZR D1ZR · · · Dk1−1ZR

]

(12)

Equation (12) indicates that Y e is low-rank
(rank (Y e) ≤ P) when L is supposed to be much greater
than P, soY e satisfies the condition of SIP. Therefore, we can
recover the decision variableM through the low-rankMC al-
gorithm that is presented in Eq. (5) by using Y e instead of Y .
The optimization problem of Eq. (5) can be solved by inexact
augmented Lagrange multiplier (IALM) method [18] or the
classic singular value thresholding (SVT) method. Because
the IALMhas better stability and smaller computational load
than the SVT method, we choose the IALM to recover the
decision variable M . The IALM function and algorithm for
MC-ESPRIT can be expressed as below.
_ Formulation

minimize ‖M ‖∗
subject to M + E = Y, PΩ(E) = 0, PΩ(M = PΩ(Y ) (13)

where E is a temporary matrix for Lagrange operation whose
entries are also 0 if (i, j) ∈ Ω.

_ Function

L(M, E,D, µ) = ‖M ‖∗+〈D,Y−M−E〉+
µ

2
‖Y − M − E‖2F

(14)

where D is a temporary sparse matrix.
_ Algorithm
Observation samples Y

k = 0,
M0 = 0, E0 = 0, µ0 = 1/ ‖Y ‖2 > 0 (15)

While not converged do

k > 0,
(U, S,V ) = svd

[
Y − E0 + µ

−1
0 Dk

]
(16)

Mk+1 = Ukdiag
[
max

(
0, σi − µ

−1
k

)]
VT

k (17)
Ek+1 = PΩ (Y − Mk+1 − Dk/µk ) (18)
Dk+1 = Dk + µk (Y − Mk+1 − Ek+1) (19)
µk+1 = 1.6µk (20)

where σi denotes the ith element of S.
End while

‖PΩ (Y − Mk )‖2
‖PΩ(Y )‖2

< ε (21)

where ε is the stopping criteria.
_ Output M
BecauseM has the same structure ofY e, the completed

data matrix of virtual ULA can be obtained by inverse trans-
form of two-fold Hankel by the recovered data matrix M .
Therefore, the DOAs can be obtained through the completed
data of virtual ULA by exploiting the ESPRIT-type methods.

4. Discussions

4.1 Cramer-Rao Bound (CRB)

The CRB is derived for the angle estimation with the com-
pleted data of virtual ULA, the ith diagonal element of the
Fisher information matrix (FIM) with respect to the ith DOA
can be written as

Fii = Ltr
{
R−1 ∂R

∂Ψi
R−1 ∂R

∂Ψi

}
(22)

where R is the covariance matrix of the completed data of
virtual ULA,Ψi denotes the ith DOA of the estimated DOAs
of signals.

According to [19], the CRB of linear array can be ex-
pressed as

CRB (θi)=
1

2L (2π sin θi/λ)2

(
1

SNR
+

1
N × SNR2

)
1

N × AV
(23)
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where G = N×AV is defined as topological gain of linear ar-

ray, AV =
1
N

N∑
n=1

(xn)2, xn is the position of the nth element

of linear array.
From the Eq. (23), we can see that the CRB of NLA is

lower than that of theULAwith the same number of elements
for higher topological gain. Whereas its CRB is higher than
that of the ULA with the same apeture for lower topological
gain. For the same reason, the parameter estimation perfor-
mance of NLA is the same. This can be verified by the later
simulation in Fig. 6 and Fig. 7.

4.2 Computational Load

The comparisons of computational load for the pro-
posed MC-ESPRIT, VIA-ESPRIT and the algorithms in
[7], [10] are shown in this section. Because the MC-
ESPRIT and VIA-ESPRIT both use the ESPRIT algo-
rithm, whose computational load of ESPRIT algorithm is
o
(
M2L + M3 + (M − 1) P2 + 6P3

)
, to estimate the DOAs,

the difference of their computational loads focuses on how
to obtain the completed data of virtual ULA. For MC-
ESPRIT, it use the IALM method to recover the data ma-
trix M , and then one can obtain the completed data of vir-
tual ULA. The computational load of IALM method is K ×

o
(
4 (M − k2)2 (k1 + 1) + 10 (k1 + 1)3 + 4P

√
P + 8

(√
P
)3)

,
where K is the number of iteration. For VIA-ESPRIT, it ex-
ploits interpolation technique to estimate the completed data
of virtual ULA, and the computational load of interpolation
is o

(
2N2Q + N3 + M NQ

)
, where Q is the number of inter-

polated step. In general, L is supposed to be much greater
than N , and 1 ≤ k1 ≤ L, so 10 (k1 + 1)3is bigger than N3 in
most case. Through comparing expression of the computa-
tional loads of MC-ESPRIT and VIA-ESPRIT, one can find
that the MC-ESPRIT has higher computational load than the
VIA-ESPRIT.

For the algorithm in [7], [10], they both exploit
Root-MUSIC algorithm to estimate the DOAs of sig-
nals, and the computaional load of Root-MUSIC algorithm
is o

{
M2L + M3 + 36(M − 1) [M (M − P) + M + (M − 1)

log2(M − 1) + (M − 2)2
] }
. As we known that the algo-

rithm in [10] and the MC-ESPIRT both use matrix com-
pletion technology to obtain the completed data of virtual
ULA, so the computational load of the MC-ESPRIT is lower
than the algorithm in [10]. Besides, the algorithm in [7]
exploits the Canonical Polyadic Decomposition (CPD) of
higher-order tensors and the Root-MUSIC to estimate the
DOAs, so its computational load must be higher than the
MC-ESPRIT.

4.3 Implementation and Remarks

Based on the above theoretical analysis, the procedure of the
proposed MC-ESPRIT can be summarized as follow.

Step 1 Extend the receive vector data x (tl) ∈ CN×1 to

a virtual ULA received data y (tl) ∈ CM×1 by setting the
received data as zero for the position without sensors, then
the received data matrix Y of virtual ULA with multiple
snapshots can be obtained according to Eq. (3).

Step 2 Transform received data matrix Y to a two-fold
Hankel matrix Y e according to Eq. (6).

Step 3 Exploit the IALM method to recovery Y e exactly.
Step 4 Inverse-transform of the two-fold Hankel Y e to the

completed data matrix of virtual ULA.
Step 5 Use ESPRIT-type method to estimate the DOAs

based on the completed data matrix of virtual ULA.
Remark 1: In order to obtain the interpolation matrix, the

VIA-ESPRIT algorithm should divide the field of view of the
array into several sectors, if the DOA of target is outside the
sector, VIA-ESPRIT could not estimate the DOA correctly.
Whereas our MC-ESPRIT does not limit by the sectors, it
can estimate the DOA in the field of view of the array.

Remark 2: The proposed MC-ESPRIT algorithm can re-
solve M-1 narrow-band signals if the number of sensors in
virtual ULA is M (M > N ), while the classic MUSIC al-
gorithm based on the received data of N-element NLA can
estimate N − 1 narrow-band signals. Therefore, our MC-
ESPRIT could resolve more signals than the classic MUSIC
algorithm based on the received data of NLA.

5. Simulation Results

In the first simulation, assume that there exist P=4 un-
correlated stationary signals, which are located at angles
−10◦, 0◦, 5◦, 20◦ for a 5-element NLA, whose positions are
d = [0, 1, 4, 9, 11] × λ/2. The number of snapshots L = 256
is given during the simulations. The estimated results of
DOAs by the MC-ESPRIT, VIA-ESPRIT and the method in
[10] are shown in Fig. 2, Fig. 3 and Fig. 4 with SN R = 20 dB
and 50 Monte-Carlo trials for the four targets.

It can be seen from Fig. 2, Fig. 4 and Fig. 5 that the
proposed algorithm and the method proposed in [7] and [10]
can estimate the DOAs correctly without dividing the field
of view of the array into several sectors. Figure 3 indicates
that the VIA-ESPRIT can effectively estimate DOAs when
the angles of signals are lay in the sector [−10◦, 20◦]. On
the contrary, the VIA-ESPRIT cannot estimate the DOAs
correctly beyond the interpolated sector.

In the second simulation, the probabilities of success-
ful detection of the MC-ESPRIT, VIA-ESPRIT, the method
proposed in [7], [10] and the MUSIC (ULA with 5, 12) are
evaluated. The ULA is the same as the first simulation.
Assume that there are two closely-spaced targets located at
0◦ and 5◦, which are said to be successfully resolved if and
only if the absolute errors of DOA for the two targets are
within 0.1◦. The interpolated sector of the VIA-ESPRIT is
[0◦, 10◦], and the grid of the VIA-ESPRIT is 0.2◦. Figure 6
displays the probability of successful detection as functions
of SNR with L = 256. For each SNR, 500 Monte Carlo
experiments are run.

It is observed thatMUSICwith 12-elementULAhas the
lowest SNR threshold among the five algorithms, whose rea-
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Fig. 2 The estimated results of the MC-ESPRIT.

Fig. 3 The estimated results of the VIA-ESPRIT.

Fig. 4 The estimated results of the method proposed in [7].

Fig. 5 The estimated results of the method proposed in [10] (Dot-dashed
vertical lines indicate the four exact DOA’s).

Fig. 6 Probability of successful detection versus SNR.
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Fig. 7 RMSEs of angle estimation versus SNR.

son is that the MC-ESPRIT, VIA-ESPRIT and the method
in [7], [10] exist transformed errors when they transform
the NLA to ULA with the same aperture. On the other
hand, for low SNRs, the MC-ESPRIT shows great improved
resolution for two closely-spaced targets as compared to the
VIA-ESPRIT algorithm. The reason is that theVIA-ESPRIT
obtains the completed data of virtual ULA through discretiz-
ing the interpolated sector, so its transformed errors must be
affected by the size of grid. The bigger grid, the bigger
transformed error. Wheras the MC-ESPRIT uses the matrix
completion theory to get the completed data of virtual ULA,
it does not refer to discretize the interpolated sector.

The simulated conditions of the third simulation are
the same as the second one. Define that the perfor-
mance of angle estimation is evaluated by RMSE defined

as RMSE =

√
1
P

P∑
p=1

E
[(
θ̂p − θp

)2]
, where θ̂p and θp are

the estimated/trueDOA, respectively. TheRMSEof theMC-
ESPRIT, VIA-ESPRIT, the method in [7], [10] and MUSIC
(ULA with N = 5 and N = 12) are evaluated. Figure 7
displays the RMSEs of the six algorithms as functions of
SNR. For each SNR, 200 Monte Carlo experiments are run.

It is observed that the proposed MC-ESPRIT outper-
forms the VIA-ESPRIT, the MUSIC with 5-element ULA
and the method proposed in [10]. In addition, the perfor-
mance of the proposed algorithm is almost the same as the
method in [7].

In the fourth simulation, there are five targets located
at −20◦, −10◦, 0◦, 10◦ and 20◦. The estimated results of
five targets are presented in Fig. 8 for an NLA with d =
[0, 1, 3, 6] × λ/2 using the proposed MC-ESPRIT. The SNR
is 15 dB and the number of pulses is L = 256, where 50
Monte-Carlo simulations are used. It can be seen from Fig. 8
that the proposed algorithm can estimate more signals than
the number of sensors in NLA, so it can resolve more signals
than the classicMUSIC algorithm based on the received data
of NLA.

Fig. 8 Estimated results of five targets with MC-ESPRIT.

Fig. 9 Runtime of MC-ESPRIT, VIA-ESPRIT, MUSIC and the method
proposed in [7], [10] versus the number of sensors.

For the fifth simulation, we compare the computational
complexity of the MC-ESPRIT with the VIA-ESPRIT, MU-
SIC and the method in [7], [10]. Figure 8 presents an evalu-
ation of the computational load using TIC and TOC instruc-
tion in MATLAB for the proposed algorithm, VIA-ESPRIT
andMUSIC algorithm. The TIC and TOC instruction can be
used to calculate the runtime of an algorithm. Simulations
are conducted in MATLAB 2015b on a Core i5, 2.5GHz,
8GB RAM PC, and all results are given via 50 Monte-Carlo
trials. The runtimes are plotted versus the number of sensors
in Fig. 9.

We can observe from Fig. 9 that the VIA-ESPRIT algo-
rithm has the lowest computation load, while the method in
[7] has largest computation load, which is consistent with the
results of previous theoretical analysis. When the number
of sensors is small, the computation load of MC-ESPRIT is
smaller than the method proposed in [10], and almost the
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same as the VIA-ESPRIT. With the increase of the sensors
number, the computation load of MC-ESPRIT is gradually
similar to the method proposed in [10].

6. Conclusion

In this paper, the theory of matrix completion is exploited
to ESPRIT-type method, and then a novel DOA estimation
algorithm called MC-ESPRIT has been presented for NLA.
Based on matrix completion theory and the characters of
Hankel matrix, a completed data matrix of virtual ULA,
which has more elements than the real NLA, is recovered.
Therefore, the proposed algorithm could estimate more tar-
gets than theMUSIC-type algorithmswithNLA.At the same
time, MC-ESPRIT does not limit by the sectors, which en-
sures it to estimate the DOA in the field of view of the array.
Simulation results demonstrate that MC-ESPRIT provides
better performance than VIA-ESPRIT when the SNR is low.
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