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5G Communications
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SUMMARY We present a novel hybrid beamforming architecture for
high speed 5G technologies. The architecture combines several new con-
cepts to achieve significant hardware and cost reduction for large antenna ar-
rays. Specifically, we employ an on-site code division multiplexing scheme
to group several antenna elements into a single analog-to-digital converter
(ADC). This approach significantly reduces analog hardware and power
requirements by a factor of 8 to 32. Additionally, we employ a novel analog
frequency independent beamforming scheme to eliminate phase shifters al-
together and allow for coherent combining at the analog front-end. This
approach avoids traditional phase-shifter-based approaches typically asso-
ciated with bulky and inefficient components. Preliminary analysis shows
that for an array of 800 elements, as much as 97% reduction in cost and
power is achieved using the hybrid beamformer as compared to conventional
beamformer systems.
key words: ultra-wideband, 5G, beamformer, arrays, frequency indepen-
dent, self-mixing

1. Introduction

With the growing interest for reduced size platforms, such
as unmanned aerial vehicles (UAVs), and requirement for
small ultra-wideband (UWB) performance to address multi-
functionality and security, there is strong need for small
UWB apertures and transceivers. The latter must be small,
agile, low power and provide scanning across large instan-
taneous bandwidth apertures to enable increased spectral
efficiency, spatial multiplexing, and simultaneous transmit
and receive (STAR) applications. Furthermore, UWB ar-
rays offer high data rates and allow for secure communi-
cation using long codes that spread across the bandwidth.
With these capabilities, such transceivers can lead to the
ultimate software radars/radios. They are also needed for
secure communications with multiple input multiple output
(MIMO) capabilities.

As is the case with all arrays, it is important to achieve
low cost and low power beamforming. For UWB arrays,
beamforming must be frequency independent [1]. However,
to date, the development of low power wideband beamform-
ers has been a challenge. In fact, traditional beamformers
and MIMO radars have been mostly suited for narrowband
or multiband operations with inherently high-power require-
ments. Depending on the level of intelligence, beamform-
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ing techniques can be classified into two major categories,
namely digital and analog beamforming. Analog beamform-
ers rely on phase shifters at the front-end to steer the beam.
However, due to tuning limitations, they are only capable of
beamforming in a single spatial direction at a time [2]. That
is, beams from multiple directions cannot be formed simul-
taneously, limiting the capability of the analog beamformer,
particularly forMIMOapplications. Also, phase shifters suf-
fer from high losses and bandwidth limitations. This issue
is exacerbated for arrays with a large number of elements as
a large number of phase shifters is required. As a result, tra-
ditional analog beamformers suffer from large size, weight,
and complexity, not to mention power consumption. In addi-
tion, traditional analog beamformers have other drawbacks.
Among them: 1) performance suffers from quantized levels
of phase increments, 2) phase shifting networks imply large
processing overhead, 3) significant hardware complexity that
impacts size, power, and cost, and 4) do not accommodate
spatial multiplexing.

The aforementioned pitfalls motivate us towards digital
beamforming for UWB operations. Indeed, digital beam-
forming approaches offer more flexibility [1], [3]. In this
case, beamforming and related adaptive algorithms are car-
ried out at the digital back-end of the transceiver using field-
programmable gate arrays (FPGAs) or other digital process-
ing units. Digital adaptive beamformers can achieve more
accurate main beams, null steering, side lobe level control,
simultaneous multi-directional beams, and even spatial mul-
tiplexing. However, existing baseband digital beamform-
ers have extensive hardware requirements as they employ
separate analog-to-digital converters (ADCs) for each sig-
nal path, as illustrated in Fig. 1 (top). The large number
of high-cost and power-hungry ADCs results in excessive
power consumption in the back-end circuitry, making such
approaches limited to small arrays. This reduces perfor-
mance and transceiver efficiency, particularly for applica-
tions with limited space and power budgets, required for
future small vehicular platforms.

Indeed, two bottlenecks exist in UWB communication:
1) narrow bandwidth for realizing the down-conversion pro-
cess, and 2) highly expensive and power hungry digital beam-
steering back-ends. With this in mind, we present a new
beamforming concept for small high data rate platforms that
overcomes the aforementioned complexity and large power
requirements. Figure 1 depicts our novel hybrid transceiver
and contrasts it to traditional beamformers. The proposed
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beamformer is referred to as On-Site Code Division Mul-
tiplexing (OS-CDM) and incorporates several features: a)
UWB aperture fabricated via standard, low cost, Printed Cir-
cuit Board (PCB) techniques, b) co-integrated array feeding
[4], [5], c) On-Site Code DivisionMultiplexing for hardware
and power reduction [6], [7] (see Fig. 1 (bottom)), and d) a
frequency independent receiver concept for beamforming
(see Fig. 2). The proposed OS-CDM concept uses coding to
combine many array element signals into a single ADC. As
a result, cost and power reduction can be achieved. Further,
back-end wiring/pins are also reduced since the entire com-
posite signal (covering all bands) is pushed to the processing

Fig. 1 Traditional beamformer using a single ADC for every antenna
element (top) vs. the on-site coding scheme that uses one ADC to serve
several antennas concurrently (bottom).

Fig. 2 Hybrid beamforming concept that combines the on-site code division multiplexing (OS-CDM)
approach with subarrays for further reduction of costs in achieving frequency independent beamforming.

unit.
In this paper, for the first time, we combine OS-

CDM with a novel frequency independent beamforming
concept at the analog stage. This hybrid beamforming ap-
proach promises game-changing novelties for a new class of
transceivers with significantly reduced power and hardware
needs.

2. Receiver Architecture

As depicted in Fig. 2, the beamformer, presented in this pa-
per, consists of three necessary components: a UWB an-
tenna array, a frequency independent beamformer, and an
OS-CDM concept for hardware reduction. This receiver ar-
chitecture is suitable for UWB communications. To date,
no such architecture exists to handle UWB beam steering
with down-conversion at the baseband and across large band-
widths. Both technologies are required to realize practical
UWB communications using the small form factor required
for 5G communications.

2.1 Ultra-Wideband Tightly Coupled Array

A key component of the proposed wideband beamformer
is its reduced size UWB antenna arrays. The latter offers
high data rates and enable continuous operations across large
bandwidths. Recently, a new class of UWB tightly coupled
arrays with compact feeding networks [4], [5], [8]–[11] was
designed and implemented to deliver more than 8:1 [8] and
even 13:1 [5] of continuous bandwidths. Notably, these
arrays are designed to achieve the fundamental bandwidth
limits [9] for array design (see Fig. 4). Likewise, up to 6:1
bandwidth have been demonstrated while scanning down to
70◦ from broadside in all scan planes [10]. The architec-
ture is based on tightly coupled dipole arrays (TCDA) with
capacitive coupling that serves to cancel the ground plane’s
inductance [11]. As such, broadband impedance matching
[1] and extremely low profile (i.e., The array thickness is
only 1/16th of the wavelength at the lowest frequency of op-
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Fig. 3 Tightly coupled dipole array (TCDA) [4], [5], [8]–[11] rendering
and details of the wideband feed structure. More than 9:1 bandwidth has
been achieved by these conformal arrays. Also, the arrays are scalable from
low MHz up to 90GHz using PCB fabrication processes.

eration) have been achieved. The geometrical details of each
dipole and its feed are given in Fig. 3. As seen, the tightly
coupled dipole is integrated with a folded Marchand balun
serving as the feed and matching network. To enhance scan-
ning performance to low angles, metallic periodic squares,
forming a frequency selective surface (FSS), are placed on
top of the array [10]. These FSS surfaces are lightweight
and can be easily printed on the same board as the dipole
array. Figure 5 shows the performance of the TCDA ar-
ray with scanning down to 60◦ from boresight. The voltage
standing wave ratio (VSWR) plots show excellent impedance
matching across a 9:1 bandwidth while scanning.

2.2 On-Site Code Division Multiplexing

The benefits of the aforementioned array can only be real-
ized when paired with a suitable beamforming back-end. As
available beamformers are narrowband, on-site coding (see
Fig. 1) is a game-changer in beamforming technology. A key
aspect of this technique is the introduction of code division
multiplexing (CDM) to identify the signal associated with
each antenna array element. Using this coding approach, the
signals from each array element can be summed and treated
as a ‘single integrated signal’ prior to digitization. Thus,
a single ADC can be used to serve many array elements.
As such, power-hungry ADCs are significantly reduced and
much hardware reduction is achieved as well. More im-
portantly, once digitization is achieved, de-correlation can
be applied to perform beamforming at the digital domain.

Fig. 4 Bandwidth limits of conformal antennas vs. thickness, h, and
VSWR [9].

Fig. 5 VSWR of the array in Fig. 3 for different scan angles down to 60◦.

This is done via software processing; hence multiple beams
can be used to receive and/or transmit concurrently. This
approach also removes the usual phase-tuning Voltage Con-
trolled Oscillators (VCOs) with an array of mixers.

2.2.1 OS-CDM Cost and Power Reduction

Figure 1 depicts the block diagrams of a traditional digital
beamformer and an on-site coding receiver beamformer. As
can be seen, the RF front-end of the receiver section is iden-
tical for both architectures. As already mentioned, the main
advantage of the on-site coding receiver is the use of a single
ADC. This results in significant reduction in cost and power.
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Considering real components, the comparison between these
two architectures is given in Fig. 6. We note that evaluation
boards with maximum ratings were considered for compari-
son. For the conventional system, the following components
were considered: 1) ADC (AD9248) with sampling speed of
40 mega samples per second (MSPS) and 14-bit resolution
[17], and 2) Virtex-7 FPGA (VC707 evaluation board) [18].
For the OS-CDM, the following components were used: 1)
ADC (AD9250) with 250 MSPS sampling speed and 14-
bit resolution [19], 2) Virtex-7 FPGA (VC707 evaluation
board) [18], and 3) customized encoder board to perform
on-site coding. As seen in Fig. 6, the OS-CDM consumes
only 15% of the power and 20% of the cost for the conven-
tional digital beamformer [7]. This existing low power and
low cost beamformer can be extended to handle thousands
of array elements in a systematic and frequency independent
manner.

2.2.2 OS-CDM Signal Analysis

In our previous work [6], [7], [12], [15], [16], we have con-
ducted extensive analysis to study the effect of OS-CDM on

Fig. 6 Comparison between 64-element conventional beamformer and
64-element OS-CDM in terms of cost and power. 1-OS-CDM cluster
corresponds to combining 8-paths together into a single path [7].

Fig. 7 BER analysis of an eight-channel OSCR for various modulation schemes when Walsh-
Hadamard (WH) and Gold Codes (GC). The computer BER and combined gain (CG) are compared
with theoretical limits for the same modulation scheme (shown in black): (a) BPSK, (b) QPSK, and (c)
16-QAM [7].

noise degradation. It was shown that using orthogonal codes,
such as Walsh-Hadamard (WH) codes, no SNR degradation
incurs for up to 8-elements per ADC. More in detail, in
[6], [7], [12], various codes from a family of synchronous
Walsh Hadamard codes and asynchronous Gold codes were
studied, based on initial bit error rate (BER) optimization us-
ing different modulation schemes and 8 signal paths. For a
highly synchronous system like OS-CDM,Walsh Hadamard
codes proved to be ideal choice as they lead to smaller SNR
degradation. Simulation results for 8 signal paths using
WH and Gold codes (GC) for different modulation schemes,
namely, binary phase shift keying (BPSK), Quadrature phase
shift keying (QPSK), and 16-quadrature amplitude modu-
lation (16-QAM). The BER curve was computed for each
modulation scheme after coherently combining signals from
all 8 signal paths. This curve was plotted and compared
against the theoretical BER. The latter is shown in black in
Fig. 7(a)–7(c).

2.2.3 OS-CDM Hardware Fabrication and Testing

The OS-CDM has already been demonstrated (fabricated
and tested) in [6], [7], [12], [13], showing an unprecedented
factor of 8-fold hardware reduction in ADC count with cor-
responding reduction in power consumption. Also, it has
been validated experimentally across 0.5–5GHz. The back-
end electronics for the OS-CDM concept have also been
fabricated and tested at low frequencies for 8 signal paths
[6], [12], [13]. As illustrated in Fig. 8, OS-CDM has been
implemented in the form of a multi-channel (2, 4, and 8
channels) receiver using commercial-off-the-shelf (COTS)
components and PCB boards with integrated ADCs, mixers,
low-noise amplifiers (LNAs) and FPGAs. Measurements
were performed in an anechoic chamber using a UWB an-
tenna array operating from 200MHz to 2.5GHz for multi-
beam tracking [13] at multiple frequencies. Results verified
that on-site coding has minimal SNR degradation. Typical
direction-finding accuracy was within 0.1 degree or so [7].
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2.3 Frequency Independent Beamforming

The proposed OS-CDM/frequency independent beamformer
with subarray segmentation is depicted in Figs. 2 and 9. That
is, the frequency independent beamforming concept is ap-
plied at the front-end of the array, but only to a small groups
of elements (subarrays). Subsequently, these groups are
combined via on-site coding. This combined approach pro-
vides even more reduction in hardware and power without
impacting beamforming resolution. Even more important,
the hybrid beamformer concept is simple and easy to im-
plement. Concurrently, it is beneficial for large and smaller
antenna arrays. Its operation is as follows:

Fig. 8 Fabricated prototypes of 2, 4, and 8-channel OS-CDM receiver
using a single ADC [6], [7], [12], [13].

Fig. 9 Frequency independent beamforming for the subarrays shown in Fig. 2 [14].

1) The entire array is first segmented into small sub-
apertures. These sub-apertures consist of arrays of 5×5 up
to 25×25 elements, depending on design goals. Reconfig-
uration of the aperture size and group choice is done using
switches placed behind each array element. That is, each
antenna element is equipped with a monolithic microwave
integrated circuit (MMIC) switch. Doing so, the beamwidth
of the array can be controlled.

2) Using the concept of self-mixing and symmetrical
phase cancellation, the subarray elements are summed in
congruence to produce the beam without using any phase
shifters. Only mixers are inserted to self-mix the signals
from oppositely phased array elements. Fig. 9 shows one
realization of this concept based on a recent patent [14].

More in detail, we assume an array of 2 × n linearly
and equally spaced elements, with d being the inter-element
distance. We define n to be the set of non-zero integers
determining the position of the elements in reference to the
center. For instance, the nth antenna element is identified by
moving left or right from the center. The signal at the nth

element has a time delay equal to ±|n|τ, where τ is related
to the angle of arrival (AoA) θ using,

τ = d/c sin θ (1)

In (1), c is the speed of light in free space. Hence, the relative
phase between two successive elements is defined as,

φ = 2π fRFτ (2)

where fRF is the RF signal frequency. The goal is to com-
pensate for the phase delays at each antenna element to co-
herently combine the signals from all antenna elements and
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Table 1 ADC requirements for various array sizes showing reduction in cost and power using the
hybrid frequency independent/OS-CDM concept in Figs. 1, 2, 6, and 7. Notably, the data are the same
at all operational frequencies as the RF front-end is scalable.

Array
size

Sub-apertures
size

Number of ADCs
(conventional)

Number of ADCs
(hybrid concept)

% reduction
in Power

% reduction
in Cost

800 100 800 8 97.51% 96.87%
200 25 800 8 90.05% 87.49%
64 8 64 1 96.11% 95.11%

maximize SNR.
As illustrated in Fig. 9, the phase center is chosen at

the middle of the subarray. Doing so implies that oppositely
spaced elements away from the center have an incremental
phase delay of ±φ. This architecture is then employed to
sum the signals with opposite phase and therefore cancel
the time delays due to array element location. To verify
this, we assume a quadrature amplitude modulation (QAM).
Without accounting for the noise, the received signal at the
nth antenna element is,

sn;±|n |τ (t) = A(t∓ |n|τ)cos(2π fRF (t∓ |n|τ)+φd) (3)

where A(t) and φd are the modulation amplitude and phase,
respectively.

Considering a narrowband signal and neglecting mul-
tipath fading, the delay can be considered much lower than
the bit rate Tb , viz. τ << Tb , hence,

A(t ∓ |n|τ) = A(t) (4)

Replacing (4) into (3), the signal becomes,

sn;±|n |τ (t) = A(t)cos(2π fRF (t ∓ |n|τ) + φd) (5)

Using (2), (5) can be rewritten as,

sn;±|n |φ (t) = A(t)cos(2π fRF t ∓ |n|φ + φd) (6)

For n = ±1,

s±1;±φ (t) = A(t)cos(2π fRF t ∓ φ + φd) (7)

By mixing these two signals with opposite phase with
each other, this yields:

s1;φ (t)s−1;−φ (t) = A(t)cos(2π fRF t − φ + φd) (8)
×A(t)cos(2π fRF t + φ + φd)

= 1/2A2(t)(cos(2φ) + cos(2π(2 fRF )t + 2φd))

In (8), up-conversion resulted in canceling out the phase
delays ±φ. The signal product is then filtered out, resulting
in having the information signal centered at twice the RF
Frequency, with double the modulation phase,

s1;φ (t)s−1;−φ (t) = 1/2A2(t)cos(2π(2 fRF )t+2φd) (9)

Similarly, for n = ±2, and proceeding with the same mixing
and filtering approach, the result is

s2;2φ (t)s−2;−2φ (t) = 1/2A2(t)cos(2π(2 fRF )t + 2φd)
(10)

Accordingly, the signals received at both nth elements
will be mixed together and filtered, such as,

sn;nφ (t)s−n;−nφ (t) = 1/2A2(t)cos(2π(2 fRF )t + 2φd)
(11)

That is, the combined signal resulting from mixing sig-
nals with ±|n|φ phase delayed signals, is

|n|/2A2(t)cos(2π(2 fRF )t + 2φd) (12)

By examining (12), it is clear that signals are coherently
combined at this stage. Notably, signals from any direction
will be equally well received. As a result, higher gain is
exhibited in all directions. This implies high SNR for the
received signal to be subsequently demodulated and decoded
at the back-end. Clearly, because of the elimination of phase
shifters, this beamformer is frequency independent and has
a bandwidth equal to that of the antenna array.

3) To achieve directionality and reject unwanted signals,
the sub-aperture signals are summed using the OS-CDM
concept, illustrated in Fig. 2.

3. Power and Cost Reduction

As indicated in Table 1, if the sub-aperture in Fig. 2 is chosen
to have 5×5 array elements, and ADCs are used to combine
8 sub-apertures, the total cost and power will be reduced
by ∼87% and ∼90%, respectively. Alternatively, if the sub-
apertures are 10×10 elements, the resulting savings could be
as large as ∼97%. That is, the proposed hybrid frequency
independent/OS-CDM concept in Fig. 2 is highly promising
for large reductions in size, cost, and power.

4. Conclusion

We presented a low-cost hardware reduced hybrid beam-
former architecture for future 5G communications. The hy-
brid beamformer consists of a UWB aperture, a frequency
independent self-mixing technique, and an OS-CDM con-
cept. We showed that for very large arrays, using the hybrid
frequency independent technique in conjunction with the
OS-CDM concept promises greater than 95% reduction in
cost and power as compared to conventional digital beam-
formers.
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