Full Text Views
71
Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than state-of-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of low-density parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4bit message passing decoding is found to outperform 8bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.
Jan LEWANDOWSKY
Information Processing and Ergonomics (FKIE),the Institute of Communications of the Hamburg University of Technology
Gerhard BAUCH
the Institute of Communications of the Hamburg University of Technology
Matthias TSCHAUNER
Information Processing and Ergonomics (FKIE)
Peter OPPERMANN
the Fraunhofer Institute for Medical Image Computing (MEVIS)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jan LEWANDOWSKY, Gerhard BAUCH, Matthias TSCHAUNER, Peter OPPERMANN, "Design and Evaluation of Information Bottleneck LDPC Decoders for Digital Signal Processors" in IEICE TRANSACTIONS on Communications,
vol. E102-B, no. 8, pp. 1363-1370, August 2019, doi: 10.1587/transcom.2018TTI0001.
Abstract: Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than state-of-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of low-density parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4bit message passing decoding is found to outperform 8bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2018TTI0001/_p
Copy
@ARTICLE{e102-b_8_1363,
author={Jan LEWANDOWSKY, Gerhard BAUCH, Matthias TSCHAUNER, Peter OPPERMANN, },
journal={IEICE TRANSACTIONS on Communications},
title={Design and Evaluation of Information Bottleneck LDPC Decoders for Digital Signal Processors},
year={2019},
volume={E102-B},
number={8},
pages={1363-1370},
abstract={Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than state-of-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of low-density parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4bit message passing decoding is found to outperform 8bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.},
keywords={},
doi={10.1587/transcom.2018TTI0001},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Design and Evaluation of Information Bottleneck LDPC Decoders for Digital Signal Processors
T2 - IEICE TRANSACTIONS on Communications
SP - 1363
EP - 1370
AU - Jan LEWANDOWSKY
AU - Gerhard BAUCH
AU - Matthias TSCHAUNER
AU - Peter OPPERMANN
PY - 2019
DO - 10.1587/transcom.2018TTI0001
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E102-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2019
AB - Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than state-of-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of low-density parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4bit message passing decoding is found to outperform 8bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.
ER -