The search functionality is under construction.

The search functionality is under construction.

To solve the problem of the self-deployment of heterogeneous directional wireless sensor networks in 3D space, this paper proposes a weighted Voronoi diagram-based self-deployment algorithm (3DV-HDDA) in 3D space. To improve the network coverage ratio of the monitoring area, the 3DV-HDDA algorithm uses the weighted Voronoi diagram to move the sensor nodes and introduces virtual boundary torque to rotate the sensor nodes, so that the sensor nodes can reach the optimal position. This work also includes an improvement algorithm (3DV-HDDA-I) based on the positions of the centralized sensor nodes. The difference between the 3DV-HDDA and the 3DV-HDDA-I algorithms is that in the latter the movement of the node is determined by both the weighted Voronoi graph and virtual force. Simulations show that compared to the virtual force algorithm and the unweighted Voronoi graph-based algorithm, the 3DV-HDDA and 3DV-HDDA-I algorithms effectively improve the network coverage ratio of the monitoring area. Compared to the virtual force algorithm, the 3DV-HDDA algorithm increases the coverage from 75.93% to 91.46% while the 3DV-HDDA-I algorithm increases coverage from 76.27% to 91.31%. When compared to the unweighted Voronoi graph-based algorithm, the 3DV-HDDA algorithm improves the coverage from 80.19% to 91.46% while the 3DV-HDDA-I algorithm improves the coverage from 72.25% to 91.31%. Further, the energy consumption of the proposed algorithms after 60 iterations is smaller than the energy consumption using a virtual force algorithm. Experimental results demonstrate the accuracy and effectiveness of the 3DV-HDDA and the 3DV-HDDA-I algorithms.

- Publication
- IEICE TRANSACTIONS on Communications Vol.E103-B No.5 pp.545-558

- Publication Date
- 2020/05/01

- Publicized
- 2019/11/21

- Online ISSN
- 1745-1345

- DOI
- 10.1587/transcom.2019EBP3111

- Type of Manuscript
- PAPER

- Category
- Network

Li TAN

Beijing Technology and Business University

Xiaojiang TANG

Beijing Technology and Business University

Anbar HUSSAIN

Beijing Technology and Business University

Haoyu WANG

Beijing Technology and Business University

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Li TAN, Xiaojiang TANG, Anbar HUSSAIN, Haoyu WANG, "A Weighted Voronoi Diagram-Based Self-Deployment Algorithm for Heterogeneous Directional Mobile Sensor Networks in Three-Dimensional Space" in IEICE TRANSACTIONS on Communications,
vol. E103-B, no. 5, pp. 545-558, May 2020, doi: 10.1587/transcom.2019EBP3111.

Abstract: To solve the problem of the self-deployment of heterogeneous directional wireless sensor networks in 3D space, this paper proposes a weighted Voronoi diagram-based self-deployment algorithm (3DV-HDDA) in 3D space. To improve the network coverage ratio of the monitoring area, the 3DV-HDDA algorithm uses the weighted Voronoi diagram to move the sensor nodes and introduces virtual boundary torque to rotate the sensor nodes, so that the sensor nodes can reach the optimal position. This work also includes an improvement algorithm (3DV-HDDA-I) based on the positions of the centralized sensor nodes. The difference between the 3DV-HDDA and the 3DV-HDDA-I algorithms is that in the latter the movement of the node is determined by both the weighted Voronoi graph and virtual force. Simulations show that compared to the virtual force algorithm and the unweighted Voronoi graph-based algorithm, the 3DV-HDDA and 3DV-HDDA-I algorithms effectively improve the network coverage ratio of the monitoring area. Compared to the virtual force algorithm, the 3DV-HDDA algorithm increases the coverage from 75.93% to 91.46% while the 3DV-HDDA-I algorithm increases coverage from 76.27% to 91.31%. When compared to the unweighted Voronoi graph-based algorithm, the 3DV-HDDA algorithm improves the coverage from 80.19% to 91.46% while the 3DV-HDDA-I algorithm improves the coverage from 72.25% to 91.31%. Further, the energy consumption of the proposed algorithms after 60 iterations is smaller than the energy consumption using a virtual force algorithm. Experimental results demonstrate the accuracy and effectiveness of the 3DV-HDDA and the 3DV-HDDA-I algorithms.

URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2019EBP3111/_p

Copy

@ARTICLE{e103-b_5_545,

author={Li TAN, Xiaojiang TANG, Anbar HUSSAIN, Haoyu WANG, },

journal={IEICE TRANSACTIONS on Communications},

title={A Weighted Voronoi Diagram-Based Self-Deployment Algorithm for Heterogeneous Directional Mobile Sensor Networks in Three-Dimensional Space},

year={2020},

volume={E103-B},

number={5},

pages={545-558},

abstract={To solve the problem of the self-deployment of heterogeneous directional wireless sensor networks in 3D space, this paper proposes a weighted Voronoi diagram-based self-deployment algorithm (3DV-HDDA) in 3D space. To improve the network coverage ratio of the monitoring area, the 3DV-HDDA algorithm uses the weighted Voronoi diagram to move the sensor nodes and introduces virtual boundary torque to rotate the sensor nodes, so that the sensor nodes can reach the optimal position. This work also includes an improvement algorithm (3DV-HDDA-I) based on the positions of the centralized sensor nodes. The difference between the 3DV-HDDA and the 3DV-HDDA-I algorithms is that in the latter the movement of the node is determined by both the weighted Voronoi graph and virtual force. Simulations show that compared to the virtual force algorithm and the unweighted Voronoi graph-based algorithm, the 3DV-HDDA and 3DV-HDDA-I algorithms effectively improve the network coverage ratio of the monitoring area. Compared to the virtual force algorithm, the 3DV-HDDA algorithm increases the coverage from 75.93% to 91.46% while the 3DV-HDDA-I algorithm increases coverage from 76.27% to 91.31%. When compared to the unweighted Voronoi graph-based algorithm, the 3DV-HDDA algorithm improves the coverage from 80.19% to 91.46% while the 3DV-HDDA-I algorithm improves the coverage from 72.25% to 91.31%. Further, the energy consumption of the proposed algorithms after 60 iterations is smaller than the energy consumption using a virtual force algorithm. Experimental results demonstrate the accuracy and effectiveness of the 3DV-HDDA and the 3DV-HDDA-I algorithms.},

keywords={},

doi={10.1587/transcom.2019EBP3111},

ISSN={1745-1345},

month={May},}

Copy

TY - JOUR

TI - A Weighted Voronoi Diagram-Based Self-Deployment Algorithm for Heterogeneous Directional Mobile Sensor Networks in Three-Dimensional Space

T2 - IEICE TRANSACTIONS on Communications

SP - 545

EP - 558

AU - Li TAN

AU - Xiaojiang TANG

AU - Anbar HUSSAIN

AU - Haoyu WANG

PY - 2020

DO - 10.1587/transcom.2019EBP3111

JO - IEICE TRANSACTIONS on Communications

SN - 1745-1345

VL - E103-B

IS - 5

JA - IEICE TRANSACTIONS on Communications

Y1 - May 2020

AB - To solve the problem of the self-deployment of heterogeneous directional wireless sensor networks in 3D space, this paper proposes a weighted Voronoi diagram-based self-deployment algorithm (3DV-HDDA) in 3D space. To improve the network coverage ratio of the monitoring area, the 3DV-HDDA algorithm uses the weighted Voronoi diagram to move the sensor nodes and introduces virtual boundary torque to rotate the sensor nodes, so that the sensor nodes can reach the optimal position. This work also includes an improvement algorithm (3DV-HDDA-I) based on the positions of the centralized sensor nodes. The difference between the 3DV-HDDA and the 3DV-HDDA-I algorithms is that in the latter the movement of the node is determined by both the weighted Voronoi graph and virtual force. Simulations show that compared to the virtual force algorithm and the unweighted Voronoi graph-based algorithm, the 3DV-HDDA and 3DV-HDDA-I algorithms effectively improve the network coverage ratio of the monitoring area. Compared to the virtual force algorithm, the 3DV-HDDA algorithm increases the coverage from 75.93% to 91.46% while the 3DV-HDDA-I algorithm increases coverage from 76.27% to 91.31%. When compared to the unweighted Voronoi graph-based algorithm, the 3DV-HDDA algorithm improves the coverage from 80.19% to 91.46% while the 3DV-HDDA-I algorithm improves the coverage from 72.25% to 91.31%. Further, the energy consumption of the proposed algorithms after 60 iterations is smaller than the energy consumption using a virtual force algorithm. Experimental results demonstrate the accuracy and effectiveness of the 3DV-HDDA and the 3DV-HDDA-I algorithms.

ER -