
940
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

PAPER
P-Cube: A New Two-Layer Topology for Data Center Networks
Exploiting Dual-Port Servers

Moeen AL-MAKHLAFI†a), Nonmember, Huaxi GU†b), Member, Xiaoshan YU†, and Yunfeng LU†, Nonmembers

SUMMARY Connecting a large number of servers with high bandwidth
links is one of the most crucial and challenging tasks that the Data Center
Network (DCN)must fulfill. DCN faces a lot of difficulties like the effective
exploitation of DC components that, if highlighted, can aid in constructing
high performance, scalable, reliable, and cost-effective DCN. In this paper,
we investigate the server-centric structure. We observe that current DCs use
servers that mostly come with dual ports. Effective exploitation of the ports
of interest for building the topology structure can help in realizing the poten-
tialities of reducing expensive topology. Our new network topology, named
“Parallel Cubes” (PCube), is a duplicate defined structure that utilizes the
ports in the servers and mini-switches to form a highly effective, scalable,
and efficient network structure. P-Cube provides high performance in net-
work latency and throughput and fault tolerance. Additionally, P-Cube is
highly scalable to encompass hundreds of thousands of servers with a low
stable diameter and high bisection width. We design a routing algorithm
for P-Cube network that utilizes the P-Cube structure to strike a balance
among the numerous links in the network. Finally, numerical results are
provided to show that our proposed topology is a promising structure as
it outperforms other topologies and it is superior to Fat-tree, BCube and
DCell by approximately 24%, 16%, 8% respectively in terms of network
throughput and latency. Moreover, P-Cube extremely outperforms Fat-tree,
and BCube structures in terms of total cost, complexity of cabling and power
consumption.
key words: data center networking, P-Cube topology, server-centric net-
work, routing algorithm

1. Introduction

Cloud computing has gained considerable scholarly interest
in many fields. Data Center is the infrastructure of cloud
computing and is the main concern for today’s companies
like Google, Facebook, Yahoo, Microsoft, Amazon, and
other companies. Its operation is fundamental to providing
many online applications such as web mail, search, gaming,
and infrastructure services e.g., Dryad [2], MapReduce [3],
GFS [1], BigTable [4], and HDFS [5]. In addition, those
companies own data centers and host their data and their
users’ data. At the same time, as the need for data centers is
increasing, companies face many problems in dealing with
increasing needs such as material difficulties and financial
burden. Interconnecting the physical DC components is one
of the most crucial and challenging tasks for the Data Cen-
ter networks (DCNs). Given a largely grown data center
with corresponding increased servers, DCNs must be able

Manuscript received October 21, 2019.
Manuscript revised January 15, 2020.
Manuscript publicized March 3, 2020.
†The authors are with State Key Laboratory of Integrated Ser-

vice Networks, Xidian University, Xi’an China.
a) E-mail: moeen@stu.xidian.edu.cn
b) E-mail: hxgu@xidian.edu.cn
DOI: 10.1587/transcom.2019EBP3219

to interconnect these large number of servers, which could
be as large as millions of servers, by providing adequate
bandwidth to guarantee the quality of cloud services, the
demands for high reliability, flexibility and power density
to ensure that different applications are running effectively.
Thus, the DCNs infrastructure must be developed in order
to be capable of providing the network with all the needed
requirements, which includes a large number of computing
and storage resources as well as architectural design to link
nodes in between them appropriately.

A traditional DCN is constructed in three-layers. In
general, it contains edge, aggregation and core layer switches
in a down-top manner. The internet is connected to the data
center by uplinks coming out of the switches in the core
layer. Given the ever-increasing demands that the traditional
DCNs cannot achieve (e.g., high growth in Internet applica-
tions and services, high reliability and high power density).
Also, it has several disadvantages such as high cost, limited
bandwidth, and inflexibility.

Recent proposed studies, such as [6], [7] and [8] at-
tempted to build a high scalability network, however, these
networks may still suffer from the following issues: the net-
work size of Fat-tree [6] is restricted to the number of ports
in the switch. Moreover, one of the main drawbacks is the
fault intolerance at the root switch or the primary node at
the core layer, which could cause the entire tree to collapse.
DCell [7], typically demands more ports for each server.
It has been proven that it provides a high performance in
mega data centers “big band”capacity growth, but when an
incremental approach is being followed, huge inefficiencies
were presented. For example, DCell0, DCell1, DCell2 and
DCell3 will have a four-port switch that is connected to 4
servers, 20 servers, 420 servers (i.e. 21 times), and 176,820
(i.e. 421 times), respectively. The exponential growth in the
required number of servers affected the practicality of the
approach, as being applied for different enterprise data cen-
ters. Unfortunately, BCube [8] shares the same problems
besides its incapability in supporting partial networks due
to its topology structure. Its topology structure affects its
ability to getting expanded through incremental approaches
or small footprint nodes.

Exploiting commodity servers coming with dual-port
and commodity switches with multi-ports can result in get-
ting potential advantages that are multifaceted. The ad-
vantages include high performance, scalable, reliable, and
cost-effective data center networks (DCNs). The aforemen-
tioned advantages make investigating the technical cases to

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

AL-MAKHLAFI et al.: P-CUBE: A NEW TWO-LAYER TOPOLOGY FOR DATA CENTER NETWORKS EXPLOITING DUAL-PORT SERVERS
941

be crucial and vital to the research community.
In this paper, we propose P-Cube, a scalable network

for containerized data centers, which exploits the dual-port
servers and the low-cost commodity switches. P-Cube is
constructed by many pods. Each pod contains two types of
servers that differ in terms of network ports. To reduce the
cost of construction, we employ half of the total servers as
the dual-port servers (internal servers). The second half of
the total servers are employed as multi-port servers (exter-
nal servers) to provide a higher network capacity with high
bisection bandwidth. Conversely, each pod contains two
layers of the switches. On one hand, the first layer (inter-
nal switches) enables the connection between the types of
servers. Specifically, there are n internal switches, each of
switch is endowed with n ports for connecting n

2 internal and
n
2 external servers within the same pod. On the other hand,
the second layer (external switches) allows the connection
among the external servers in different pods in order to im-
prove the aggregate bottleneck throughput and provide high
degrees of symmetry and regularity, which are paramount
characteristics for the data center networks. In this network
structure, we denote a level-k P-Cube as P-Cubek as it has
nk
2 pods, where (k > 0), and n is the number of an inter-
nal switch ports. The total number of servers is given by
N = n3k

2 , and it increases doubly with P-Cube levels. For
example, when k = 8 and n = 48, P-Cube can have as many
as 442,368 servers. The diameter of P-Cube is stable and
is equal to 7, in consequence, it can support the real-time
requirements applications.

The rest of this paper is organized as follows. Section 2
presents the related works. Section 3 describes the construc-
tion and structure of P-Cube. Section 4 proposes our routing
algorithm in P-Cube. Section 5 shows a discussion where we
compare P-Cube and other topologies and evaluates P-Cube
to verify our proposed methods. Finally, Sect. 6 concludes
the paper.

2. Related Works

Recently many different DCN topologies have been devel-
oped in order to fit different criteria and purposes. These
topologies can be classified roughly into two classes. The
first class is switch-centric in which routing and networking
are the main responsibilities of the switch e.g. Fat-tree [6],
VL2 [10], FaceBook’s, four-post [14], Google’s Jupiter [15],
Space Shuffle [16], and Diamond [11]. The second class
is server-centric where routing schemes are realized more
effectively by exploiting the amenability of servers in pro-
gramming more than their counterparts (i.e. switches), such
as ServerSwitch [9]. Note that ports on the server are used
for networking and routing purposes. Typical topologies of
server-centric include DCell [7], BCube [8], FiConn [12],
BCN [17], DCube [18], Hyper-Flatnet [19], MDCube [20],
BCCC [21], GBC3 [23], NovaCube [24], and DPillar [13].

The previous efforts proposed numerous DCNs, how-
ever, most of those topologies are not suitable for the con-
tainer data centers that contain low-cost commodity switches

and dual-port servers. To satisfy the requirements of such
container data centers, we therefore present FiConn [12],
DCell [7] and BCube [8] for large-scale data centers. On the
other hand, there is a need for ameliorating the bandwidth
bottleneck, as such, we consider the high-end cost switches
at the top levels, i.e., Fat-tree [6] and Leaf-Spine [22] in order
to achieve the desired objective.

Leaf-spine is a DCN topology that is generally com-
posed of two-layer switches, viz., leaf switches, which are
connected to the servers and spine switches, which are con-
nected to the leaf switches. Leaf switches mesh into the
spine to form an access layer, by which the network connec-
tion points are delivered for the servers.

Fat-tree network is constructed by using three layers
of switches, these are edge, aggregation, and core. Fat-
tree consists of k pods each containing two layers (first and
second layers) of k

2 switches; the first layer of switches (edge)
has k ports, k

2 of the ports are connected to k
2 servers, while

the remaining k
2 ports are connected to the second layer of

switches (aggregation). At the third layer of switches (core),
there are (k2)2 k-port core switches, where each core switch
uses a port to connect a pod at the second layer. Therefore,
Fat-tree supports k3

4 of servers. Given a typical 48 port-
switches can support 27,648 servers.

FiConn is a recursive structure consisting of many low-
level FiConn’s levels, which are used to create a high-level
FiConn. FiConn0 uses commodity switches associated with
n-ports to connect to n-dual-port servers. The servers in
FiConn have two ports. The first port is an active port that
is used to connect the commodity switch while the second
port is a backup port that can be used to expand the network.
The backup ports are reserved and divided into two halves
in terms of functionality. The first half is used to construct
level1 connections with the other FiConn0’s, while the sec-
ond half is used to construct the higher-level connections.
Typically, in FiConnk−1 with v backup ports, the FiConnk
is built of (2

v + 1) FiConnk−1’s, and the total number of the
servers is equal to Nk = Nk−1(Nk−1

2k + 1), k > 0.
DCell is a recursive structure that consists of many

levels of low-level DCell’s, which are being used to construct
a high-level DCell. DCell0 use commodity switches that are
accompanied by n-ports to connect n servers. With N servers
in DCellk , N + 1 DCellk s are used to construct DCellk+1.
The N servers in a DCellk are connected to the other N
DCellk s.

BCube is a recursively defined structure likeDcell struc-
ture. It is specially designed formodularDCs. BCube’s basic
block is BCube0 and it is the same as DCell0. BCube uses
commodity switches that come with n-ports to connect n
servers. Constructing BCubek requires using n BCubek−1’s,
and nk switches with n-ports, where n ≤ 8.

Finally, we will mention some disparities between our
proposed structure and the previous structures in several as-
pects as follows: P-Cube utilizes the servers for networking
and routing rather than switches that are being utilized by
Fat-tree. In addition, Fat-tree has three layers of switches,

942
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

Fig. 1 A P-Cube1 with n = 4. The P-Cube1 is composed of 2 pods, each pod is composed of 4 internal
switches, each switch connected to 4 servers and 2 external switches.

but P-Cube has only two. Hence, Fat-tree uses the number of
switchesmore than P-Cube. For n-port switches, let N be the
total number of the server being utilized. We can observe in
Table 1 that Fat-tree utilizes 5N

n switches, while P-Cube uti-
lizes N

n + (nk), k > 0 switches. Therefore, P-Cube reduces
the cost of switches by approximately 70% compared with
Fat-tree. Moreover, Fat-tree supports a number of servers
that are restricted by the number of switch ports. While
P-Cube extends to a huge number of servers and does not
suffer from these restrictions.

Although FiConn is cheaper than the other structures, it
has significantly low throughput compared to the other four
structures. This is mainly because of the low bisection width
of the incomplete structure. Typically, in FiConn and DCell,
to connect around 4000 servers by using switches with 16-
ports, we need at least a level-2 compound diagram. Hence,
with an increased number of servers, we need to construct a
higher level to make connections among the servers. Con-
trariwise, in P-Cube network whatever the increase in the
number of servers, we just require a level-2 compound dia-
gram to connect the servers. The traffic at levels-2 is more
balanced than multi-level; as a result growing the output ag-
gregate bottleneck throughput. More specifically, in FiConn
the links in high-level that are used to interconnect the levels
always load more flows than links in low-level that are used
to connect with switches.

Although P-Cube has some similarities in design with
BCube and DCell, there are some differences. First, the de-
gree of nodes in BCubek andDCellk is k+1, while in P-Cube
the degree of N

2 of nodes (i.e. internal servers) is two. As a
result, exploiting existing dual-port on every server reduces
the cost by eliminating the need to add Network Interface
Cards (NICs) for N

2 servers. Second, P-Cube wiring costs
less than DCell and BCube, because each N

2 nodes (internal

server) uses only two ports. Third, routing in P-Cube out-
performs DCell in its capability in making a balanced use of
links at different levels.

3. Architecture

In this section, we first introduce our P-Cube physical struc-
ture, and then we describe how we address the servers and
switches in the Pod.

3.1 P-Cube Physical Structure

P-Cube is a server-centric topology that utilizes servers with
multi NIC ports and mini-switches. We construct our P-
Cube network by using many pods, each pod has two types
of mini-switches. The first type is called “internal switch”,
where every switch have n ports to connect n servers in the
same pod. The other type is called “external switch”, where
every switch has n2×k

4 ports, and this switch is used to connect
the peer servers in the different pods, in which a level-k P-
Cube is denoted as P-Cubek since it has n×k

2 pods, where
k > 0 and n is the number of internal switch ports. The
example shown in Fig. 1 illustrates how P-Cube of different
Pods is being constructed. The Pod is the building block
used in building larger P-Cubek . Each pod has n of internal
switches, and 2 of external switches (n = 4 for P-Cube1 as
in Fig. 1). Typically, n is an even number more than 4 such
as 4, 8, 16..etc.

The procedure of constructing P-Cube is shown inAlgo-
rithm 1, where it is divided into two parts. Part I constructs n
nodes and n internal switches and connecting all the nodes to
their designated switch. In addition, an organized manner it
constructs n×k

2 number of pods to build P-Cubek , and build-
ing connections for all nodes in the pod. Part II constructs

AL-MAKHLAFI et al.: P-CUBE: A NEW TWO-LAYER TOPOLOGY FOR DATA CENTER NETWORKS EXPLOITING DUAL-PORT SERVERS
943

Algorithm 1 The procedure of constructing P-Cube network
and building the connections.

/*k stands for the level of P-Cube, n is the number of internal switch
ports */
Part-I/* Build Pods in P-Cubek , and build internal connections */

1: Build Pods (k,n)
2: for (int p = 0; p < (n/2) ∗ k; p + +)
3: for (int i = 0; i < n; i + +)
4: for (int j = 0; j < n; j + +)
5: connect node (j) to switch (i) ;
6: if(i , j)
7: connect node (p, i, j) and (p, j, i);
8: if (((i < n

2)and(j ≥ n
2))or ((i ≥ n

2)and(j < n
2)))

9: The node (p, i, j) is an internal server.
10: else
11: The node (p, i, j) is an external server.
12: End if;
13: End for;
14: End for;
15: End for;
16: return;

Part-II/* Build the external switches and the external connections */
17: Build P-Cube (k,n)
18: for (int No_p = 0; No_p < (n/2) ∗ k; No_p + +)
19: for (int p = 0; p < No_p; p + +)
20: for(int i = 0; i < n; i + +;)
21: for(int j = 0; j < n; j + +)
22: if(i< n

2)
23: int T = No_p mod (n2)
24: if(j = T)
25: connect node(p, i, j) to switch (No_p, T);
26: else
27: int B = No_p mod (n2) + (n2)
28: if(j = B)
29: connect node(p, i, j) to switch (No_p, B);
30: End if;
31: End for;
32: End for;
33: End for;
34: End for;
35: return;

n × k number of external switches and building all external
connections among the external nodes to those switches in
several pods.

There are two types of servers in terms of network ports.
The first type is called internal servers, where there are N/2
servers with dual-port. The first port is connected to an
internal switch and the second port is connected to another
internal server in the same pod. The second type is called
external servers, where there are N/2 servers with multi-
ports depending on k, where one of the ports is connected to
an internal switch in the same pod, another port is connected
to another external server if and only if the server_id and
switch_id are not equal (see Algorithm 1, Line 6), and the
rest of the ports are connected with an external switch in
several pods. The parameter N denotes the total number of
servers in P-Cube, which is equal to k×n3

2 . Consequently,
the total number of internal servers and the total number of
external servers will be equal to N/2 for each of them.

3.2 Addressing

The internal switches are addressed by (k, p, i), where k
denotes the level of the topology, p denotes the pod number
(in [0, n×k2]), and i denotes the switch number (in [0, n]).
Every pod has two external switches. The first one is at the
top and the second one is at the bottom, in which they are
addressed by (p,T), (p, B) respectively, where T = p mod
n
2 , and B = T + n

2 .
The servers in P-Cube are addressed by (p, i, j), where

j denotes the position of that server in that switch (in [0, n]
starting from left to right, top to down). Precisely, the inter-
nal servers are addressed by (p, i< n

2 , j ≥ n
2) and (p, i≥ n

2 ,
j < n

2), while the external servers are addressed by (p, i< n
2 ,

j < n
2) and (p, i≥ n

2 , j ≥ n
2) as shown in Algorithm 1 (Line

8-11).
Now we will focus on how we build the connections.

In Algorithm 1 and Fig. 1 an example to illustrate the P-
Cube interconnection rules, when n=4, P-Cube1 has n×k

2 =2
pods. Every pod has 2 external switches, and 4 internal
switches, where every switch is connected to 4 servers. Ev-
ery pod has 16 servers, 8 of those servers are internal servers,
which are connected to each other according to their own ad-
dress, connect node (p, i, j) to (p, j, i), where (i , j) (Line
6, 7). By referring to Fig. 1, the internal servers in pod0
will be (0, 0, 2), (0, 0, 3), (0, 1, 2), (0, 1, 3), (0, 2, 0), (0, 2, 1),
(0, 3, 0), and (0, 3, 1) (Line 8, 9). The remaining 8 servers
are external servers(Line 10, 11), that are connected to exter-
nal switches in P-Cube according to their own address and
the external switch address, connect node (p, i, j) to switch
(p,T) or switch (p, B) (Line 25, 29), i f and onl y i f j = T
or j = B (Line 24, 28), respectively, where T = P mod n

2 ,
and B = T + n

2 . By referring to Fig. 1, the external servers
in pod0 will be (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 2),
(0, 2, 3), (0, 3, 2), and (0, 3, 3).

4. Routing in P-Cube

In this section, we propose our P-Cube Fault-tolerant Routing
scheme (PFR) an optimal, routing solution that effectively
exploits P-Cube structure and can effectively deal with vari-
ous failures. We start to present a routing protocol without
failures.

4.1 Routing without Failure (P-CubeRouting)

To improve the performance of P-Cube, we designed an effi-
cient shortest-path routing algorithm, which can exploits the
duplicate structure of P-Cube to forward the packet and bal-
ances the numerous links in the network. The designed rout-
ing algorithm, named “P-CubeRouting”, is shown in Algo-
rithm 2. P-CubeRouting comprises two types of traffic rout-
ing in order to route and transmit packets between any pairs
of servers. The first type is intra-pod traffic, where the source
and destination servers are in the same pod. The second type
is inter-pod traffic, where the source and destination servers

944
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

are in different pods. Consequently, Algorithm 2 consists of
three parts, which are marked as an internal switch, an ex-
ternal switch, and the P-CubeRouting. In P-CubeRouting,
we assume that (ps ,is , js) and (pd ,id , jd) are the source and
destination addresses of a packet. (Line 18) in Algorithm 2
shows how the function P-CubeRouting() route the packets
from any source (ps ,is , js) to any destination (pd ,id , jd).

For the intra-pod traffic (Line 20), the source server will
check the destination server address of the sending packet.
If the source_server_id equals to the destination_switch_id
(Line 21), then it will check whether the source_switch_id
equals to the destination_server_id (Line 22), i.e. directly
connected to the source server through NIC. If those two
conditions are met, the packet will be sent to the destination
server (Line 23). However, if the second condition is not met
(Line 25), then the source server is directly connected to an
intermediate server viaNIC.Consequently, the packetwill be
sent to the intermediate server (Line 26). The intermediate
server is also connected to the internal switch (k, pd , id).
Then, the intermediate server will forward the packet to the
internal switch (Line 27), which then forwards the packet to
the destination server(Line 29). For example, in Fig. 1, the
shortest path between the two nodes [0,1,2] and [0,2,0], is
([0,1,2], [0,2,1], [0,2,0]).

Otherwise (Line 32), an intermediate link (m1, m2) will
be established between the source and destination servers.
The source server is connected to an internal switch (k, ps ,
is). It will, therefore, forward the packet to the internal
switch (Line 33). The internal switch will then forward the
packet to an intermediate server m1 (Line 1-10), which will
consequently send it to an intermediate server m2. Similarly,
m2 is connected to an internal switch (k, pd , id), whose
function is to forward the packet to the destination server.
For example, in Fig. 1, the shortest path between the two
nodes [0,0,1] and [0,3,1] is ([0,0,1], [0,0,3], [0,3,0], [0,3,1]).

For the inter-pod traffic (Line 37), P-CubeRouting con-
tains two situations according to the type of the source server.
The first situation is when the source server (ps , is , js) is an
external server (Line 38), i.e. source server is directly con-
nected to the external switch through NIC. Hence, it will
forward the packet to an external switch (Line 39) whose
function is forwarding the packet to a server in the same pod
as the destination’s (Line 11-17). Once the packet arrives
at the same pod as its destination, we utilize the intra-pod
traffic to forward the packet to the destination server as illus-
trated earlier (Line 41). As shown in the following example
in Fig. 1 the shortest path between the two nodes [0,1,0] and
[1,1,3] is ([0,1,0], [0,0], [1,1,0], [1,1,3]).

The second situation is when the source server (ps , is ,
js) is an internal server (Line 42,45), i.e. the source server
is connected to the internal switch. The internal switch will
forward the packet to an external server (Line 1-10). Once
the packet arrives at an external server, P-CubeRouting will
treat it as in the first situation of inter-pod traffic until it
reaches the destination (Line 44,48). As shown in the fol-
lowing example in Fig. 1 the shortest path between the two
nodes [0,3,1] and [1,0,2] is ([0,3,1], [0,3,2], [0,2], [1,2,2],

Algorithm 2 P-CubeRouting.
/*(ps , is , js) source server

(pd , id , jd) destination server
where (p, i, j) denotes to (pod_id, switch_id, server_id)
respectively, and k denotes the level of the topology */

Part-I/* Routing the packets in the internal switch */
1: Internal switch (ps , is , js , pd , id , jd)
2: if (ps==pd)
3: if (is==id)
4: output port number = jd ;
5: else
6: output port number = id ;
7: else
8: output port number = id ;
9: send packet to the output port
10: end;

Part-II/* Routing the packets in the external switch */
11: External switch (pd , id)
12: if (id < n

2)
13: output port number = pd×

n
2 +id ;

14: else
15: output port number =(pd×

n
2)+(id -

n
2) ;

16: send packet to the output port
17: end;

Part-III/* Routing the packets in a servers */
18: P-CubeRouting (ps , is , js , pd , id , jd)
19: while packet not deliver to (pd , id , jd) do
20: if (ps==pd)
21: if (js==id)
22: if (jd==is)
23: send packet to node(pd , id , jd) ;
24: Break;
25: else
26: Send packet to intermediate node (ps ,js ,is);
27: send packet to internal switch (k, pd , id);
28: Internal switch (ps , js , is , pd , id , jd);
29: send packet to node (pd , id , jd) ;
30: Break;
31: end if
32: else
33: send packet to internal switch (k, ps , is);
34: Internal switch (ps , is , js , pd , id , jd);
35: Go to line (18)
36: end if
37: else
38: if (((is < n

2)and(js < n
2)) or ((is ≥

n
2)and(js ≥

n
2)))

39: send packet to external switch (p, j);
40: External switch (pd , id);
41: Go to line (18)
42: else if(((is< n

2)and(id ≥
n
2))or((is ≥

n
2)and(id<

n
2)))

43: Send packet to the corresponding node;
44: Go to line (18)
45: else
46: send packet to internal switch (k, ps , is)
47: Internal switch (ps , is , js , pd , id , jd)
48: Go to line (18)
49: end if;
50: end if;
51: end while;
52: return;

[1,2,0], [1,0,2]).

4.2 P-Cube Fault-Tolerant Routing (DFR)

Network failures affect network performance dramatically.

AL-MAKHLAFI et al.: P-CUBE: A NEW TWO-LAYER TOPOLOGY FOR DATA CENTER NETWORKS EXPLOITING DUAL-PORT SERVERS
945

Algorithm 3 PFR: P-Cube Fault-tolerant Routing.
/* k, n, int.sw, ext.sw and R denotes to the level of the network, the
number of internal switch ports, internal switch, external switch and
the chosen Route respectively, where k ≥1*/

1: PFT (ps , is , js , pd , id , jd)
2: if (src. f ail() | |dis. f ail()) then
3: return null;
4: else
5: if (ps==pd) then
6: if (is==id) then
7: while Int.sw.fail() do
8: if (((is&d < n

2) and (js&d < n
2)) or

((is&d ≥
n
2) and (js&d ≥

n
2)))then

9: if (src==uni) then
10: return R0= src→ext.sw(px, js)→(pd , jd , id)→

dis(pd , id , jd);
11: else if (dis==uni) then
12: return R1= src→(ps , js , is)→ext.sw(px, jd)→

dis(pd , id , jd);
13: else
14: return R2= src→ext.sw(px, js)→(ps , jd , js)→

int.sw(k, ps , jd)→(pd , jd , id)→dis;
15: end if;
16: else
17: if (src==uni) then
18: return R3= src→ext.sw(px, js)→cluster (v)→

cluster (jd)→dis(pd , id , jd);
19: else if (dis==uni) then
20: return R4= src→cluster (js)→cluster (v) →

ext.sw(px, jd)→dis(pd , id , jd);
21: else
22: return R5= src→ cluster (js)→cluster (jd) →

dis(pd , id , jd);
23: end if;
24: end if;
25: end while;
26: else
27: while Link (src, dis).fail() do
28: if (((is&d < n

2) and (js&d < n
2)) or

((is&d ≥
n
2) and (js&d ≥

n
2))) then

29: return R6= src→ext.sw(px, js)→(pd , id , js)→
Int.sw(k, pd , id)→dis(pd , id , jd);

30: else
31: return R7= src→int.sw(k, ps , is)→(ps , is , jw)→

cluster (w) →cluster (id)→dis;
32: end if;
33: end while;
34: end if;
35: else
36: while ext.sw (p, jm).fail() do
37: if (js == jd == jm) then
38: if (k >1) then
39: return R8= src→ext.sw(px, js)→ dis;
40: else
41: return R9= src→int.sw(k,ps ,is)→(ps , is , jv)→

ext.sw(px, jv)→(pd , id , jv)→dis;
42: end if;
43: else if (jm == js) then
44: return R10= src→int.sw(k,ps ,is)→(ps , is , jd)→

ext.sw(px, jd)→dis(pd , id , jd);
45: else if (jm == jd) then
46: return R11= src→ext.sw(px, js)→ (pd , id , js)→

int.sw(k,pd ,id)→dis(pd , id , jd);
47: end if;
48: end while;
49: end if;
50: end if;

In order to deal with these failures in the real-world, we need
to design a fault-tolerant routing scheme for P-Cube net-
work (PFR). PFR takes the network status into consideration
when making decisions of the routing to avoid network over-
crowding and to achieve a perfect load balance as shown in
Algorithm 3. PFR addresses three types of failures: internal
switch failure, link failure, and external switch failure. In the
PFR scheme, we call each internal switch (k, p, i) connected
with n servers as a cluster i. In Algorithm 3, we denote the
source and destination addresses as src (ps , is , js), and dis
(pd , id , jd) respectively. When we have (i = j), we call the
server a unique server, uni (p, i, i).

Internal switch failure happens when the source and the
destination servers are in the same pod and in the same switch
(Line 5, 6). We assume that the internal switch i or port has
failed. Generally, the routing procedure can be divided into
two cases as shown in Algorithm 3. The first case is when
the src and dis servers are external servers (Line 8). We
have three possible situations. The first situation is if src
= uni (Line 9), then the traffic will cross the path Route0.
Second, if dis = uni (Line 11), as a result the traffic will take
the path Route1. Third, if src , uni and dis , uni (Line
13), the traffic will traverse the path Route2.

x ∈



c k = 1

c + (k−1)n
2 , c + (k−2)n

2 + c, ..., c k > 1,
(1)

where c = jz mod n
2 , z = s, d

Consequently, the src and dis can directly reach each
other through k external switches. In addition, the external
switch (px, jz) is preferentially connected with the src or
dis server based on the most available bandwidth, where the
value x can be acquired using (1). From another perspective,
when the external switch (px, jz) or port fails, its connection
bandwidth can be considered zero, thus the traffic can be
routed via other external switches, where there are k external
switches that can use it to handle the faults in the network.
The second case is when src or dis or both are internal
servers (Line 16). Like the previous case, we have three
possibilities of failure situation. The first possibility is if
src = uni (Line 17) then the traffic will go through the path
Route3. Second, if dis = uni (Line 19), the traffic will take
the path Route4. Consider the case in which the external
switch (px, jz) or the cluster(v) connection fails, the traffic
can be routed over other external switches or other clusters,
where the value x can be obtained using (1), since there are
k external switches and (n2 − 1) clusters that can be used to
deal with the faults in the network. Third, if src , uni and
dis , uni (Line 21), the traffic will pass through the path
Route5.

As for the link failure, it occurs when the source and the
destination servers are in the same pod but are not in the same
switch (Line 26). In this case, we assume the link (src, dis)
fails (Line 27). We will check if src and dis servers are
external servers (Line 28), then the traffic will travel over the
path Route6, where we can get x from (1), since there are

946
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

k external switches. Otherwise, the traffic will traverse the
path Route7. Now we look at the case in which the cluster
(w) connection fails. The traffic can still get to its destination
by passing it over other clusters, as there are (n − 2) clusters
that we can leverage in order to take care of the faults in the
network.

External switch failure arises when the source and the
destination servers are in different pods (Line 35). Our
presumption is that the external switch (px, jm) or port has
failed (Line 36). The routing scheme can be considered in
two cases as shown in Algorithm 3. The first case is when
the src and dis servers connected by the external servers
(px, jm) (Line 37). There are two possible situations here:
The first situation is if the level o f the network is greater
than 1 (Line 38). That means there are k − 1 of external
switches (px, jm), that connects the src and dis with each
other, where the value x can be found using (1). then the
traffic will cross Route8 by one of such external switches
(Line 39). Second, if the level o f the network is equal
to 1 (Line 40), as a result, the traffic will take the Route9
(Line 41). From another perspective, when the external
switch (px, jv) or port fails, the traffic still able to reach its
destination by travel it over other external switches, where
there are (n2 − 1) external switches that can use it to handle
the faults in the network. The second case is when only the
src is connected to the external switch (px, jm) (Line 43),
the traffic will traverse the Route10 (Line 44). Lastly, when
only the dis is connected to the external switch (px, jm), in
this case, the traffic will go through Route11.

5. Analysis and Evaluation

5.1 Comparisons

In this subsection, we compare our proposed P-Cube with
Fat-tree, DCell, Leaf-Spine and Bcube. The analysis of the
basic network parameters of these structures is summarized
in Table 1, where we choose 5 critical metrics to evaluate the
performance of each architecture and the meanings of the 3
metrics are listed as follows:

Network Diameter: The diameter determines the max-
imum shortest distance (denoted by the number of links)
between all the pair of nodes. In Table 1, we observe that P-
Cube, Fat-tree and Leaf-Spine are outstanding, due to their
stable and relatively small network diameter. In contrast,
DCell, FiConn, and BCube have a big network diameter. Be-
sides, their network diameter grows according to the growing
of layers, as shown in Fig. 2.

Bisection Bandwidth: The network is partitioned into
two equally-sized parts of link capacities, which by adding
both of them, results in obtaining the bisection bandwidth.
It can be used to measure the worst-case network capac-
ity. P-Cube, Fat-tree and Leaf-Spine compared with other
topologies (i.e. DCell, FiConn, and BCube) achieves the best
bisection bandwidth and their bandwidth per server is stable.

Physical Cost and cabling complexity: Here, we com-
pare the cost, the power consumption, and cabling com-

Fig. 2 A comparison of network diameters between P-Cube topology and
other topologies.

plexity of P-Cube with Leaf-Spine, Fat-tree, BCube, DCell.
As the total cost and power consumption of the servers are
the same, we only estimate the cost and power consump-
tion of both the switches and NICs. Based on the formulas
shown in Table 1, we obtain the number of switches and
links in the structures. Note that in Leaf-Spine we have
chosen a non-oversubscription as per an actual industrially
recommended configuration [27], because it uses leaf and
spine switches with the same line speed, making compar-
isons more straightforward. Firstly, we consider five struc-
tures of Data Center using different ports switches to connect
2,048 servers. These structures are configured as follows:
P-Cube structure is P-Cube (16, 1). Fat-tree structure is con-
structed of three switches layers, where each of the layers 1
and 2 contains 256 16- port switches and layer 3 contains 128
16-ports switches. The Leaf-Spine structure is composed of
two switches layers, where the first layer contains 64 64-
port switches and the second layer contains 16 128-ports
switches. BCube structure is a part of BCube2 constructed
of 8 full BCube1s, where (n = 16). DCell structure is a part of
DCell2 constructed of 8 DCell1s. In this setup, P-Cube em-
ploys 128 16-ports internal switches and 16 64-ports external
switches; it also uses 3 NICs ports for each of the half of the
servers (external servers) and 2 NICs ports for each of the
second half of the servers (internal servers). Leaf-Spine uses
64 64-port switches in Leaf layer and 16 128-ports switches
in Spine layer; it also uses 1 NIC ports for each server. The
remaining three structures, i.e., Fat-tree, Bcube and DCell
utilize 640, 512 and 136 16-ports switches as well as 1, 3
and 3 NICs ports for each server, respectively.

Then, we construct P-Cube, Fat-tree, Leaf-Spine,
BCube, and DCell to connect the 4,096, 8,192 and 16,384
servers, respectively. In a word, the whole configuration of
these structures and network components (i.e., the amount
and ports of the switches) is portrayed in Table 3.

Table 2 shows the price and power consumption of the
network components (i.e., switches and NICs) used in the
data centers [8], [25], [26]. We obtain the costs and power
consumption (shown in the table) from the existing commer-

AL-MAKHLAFI et al.: P-CUBE: A NEW TWO-LAYER TOPOLOGY FOR DATA CENTER NETWORKS EXPLOITING DUAL-PORT SERVERS
947

Table 1 A comparison between P-Cube architecture and other network architectures.
Diameter No. of switch No. of wires No. of servers Bisection bandwidth

P-Cube 7 N
n + (nk), k > 0 {

∑n
n=1 (n − 1) } × nk

2 + (k2 + 1) × n3k
2 , k > 0 (n

3
2 × k), k > 0 N

2
FatTree[6] 6 5N

n N log n
2

N
2

n3
4

N
2

DCell[7] < 2k+1 − 1 N
n (k2 + 1) × N > (n + 1

2)2k − 1
2 , < (n + 1)2k − 1 N

4N logn N

BCube[8] k + 1 (k + 1)nk N logn N nk+1 N−1
k+1

Leaf-Spine 4 5N
2n1

2 × N n1×Ne
2

N
2

FiConn[12] < 2k+1 − 1 N
n (2 − 1

2k
) × N − N

n ≥ ((n4)2k × 2k+2) N
logN

n1 is the number of ports on a leaf switch, Ne is the total number of leaf switches.

Table 2 Cost and power consumption of switch and NICs [8], [25], [26].

Ports Cost($) Power(W)

P ≤ 128 20 per port 2 per port
Switch [25], [26] P = 256 10922 622

P = 512 65532 2490

1 5 5
NIC [8] 2 10 7.5

4 20 10

cial components and also the laboratory pro-type, which can
be changed with the adoption of novel technology. They
would be understood as approximations to real values.

Table 3 summarizes the construction costs and power
consumptions of both the switches and the NICs, in addition
to the number of the wires of the four networking structures
for a data center with 2048, 4096, 8192, and 16384 servers.
Note that in the aforementioned settings, DCell and BCube
structures are incomplete, consequently, there is need for
constructing partial structures.

Moreover, Fig. 3(a) shows that compared to Fat-tree and
BCube, P-Cube, Leaf-Spine and DCell use less number of
links, regardless of the data center size. In addition, the num-
ber of links used in P-Cube is less than that of Leaf-Spine and
DCell, this is because half of the servers in P-Cube structure
(internal servers) are endowed with only dual ports irrespec-
tive of the network size, as explained in Sect. 3.1. Hence,
P-Cube dramatically reduces the complexity of cabling, par-
ticularly for large container data centers. Furthermore, as
illustrated in Table3 and Fig. 3(b), PCube and DCell out-
perform Fat-tree, Leaf-Spine, and BCube in terms of the
construction costs of both the switches and the NICs, re-
gardless of the size of the data center. However, PCube,
Leaf-Spine, and DCell outperform Fat-tree and BCube in
terms of the power consumption of both the switches and the
NICs as shown in Fig. 3(c).

5.2 Evaluation

In this subsection, we conduct simulations utilizing OPNET
simulator to evaluate the performance of P-Cube network us-
ing the proposed P-CubeRouting algorithm. However, there
are several measurements to evaluate the DCN topology,

here we will focus on two important measurements: net-
work throughput and latency (ETE delay). The definition of
ETE delay is the time spent to send packets from the source
node to the destination node, which includes a processing
delay, a transmission delay, a propagation delay, and the
queuing delay. The definition of offered load is the number
of packets per second injected into the network. The defi-
nition of throughput is the number of the packets arrived at
the destinations in a duration of time, where with increasing
the offer lode, the latency will decrease until load reaches
the end of limitation of that network could afford, which is
called its saturation point.

In the simulations, the network of P-Cube is set to 432
servers, with n=6 and k=4. DCell network is set to 420
servers, with n=20 and k=1. The BCube network is set to
400 servers. Fat-tree network is set to 432 servers, with 12
pods. For the packet size is set to 4096 bits, and we set the
link bandwidth to 10Gbps.

We illustrate the packet delay. As shown in Fig. 4(a),
in around 1.8 µs, P-Cube ensures very low delay until the
offered load of 0.81. While reaching this load, the network
becomes saturated and the packet delay increases noticeably
from 1.8 microseconds to around 0.08 ms. Comparing with
DCell, BCube and Fat-tree networks illustrates ETE delay
of DCell, BCube, and Fat-tree saturates at 0.73, 0.65, and
0.57 of the offered load respectively. We observe P-Cube
saturates of offered load higher 8%, 16%, and 24% than
structures DCell, BCube and Fat-tree respectively.

We then evaluate the throughput. As shown in Fig. 4(b),
P-Cube achieved a high throughput of about 4.3Tbps, with
the offered load of 3 µs. After this load, the throughput
increases slightly. Comparing with DCell, BCube, and Fat-
tree networks in the same offered load of 3 µs, the achieved
throughput is about 2.53Tbps, 2.51Tbps, and 2.07Tbps
respectively.

5.3 Summary

P-Cube significantly minimizes the required numbers of
switches and wires compared to Fat-tree, and BCube. In
consequence, P-Cube structures largely reduce the complex-
ity of cabling compared to other structures, especially for
large container data centers. Moreover, P-Cube extremely
outperforms Fat-tree, and BCube structures in terms of the
total cost and the power consumption. In addition to these
benefits, P-Cube considerably outperforms Fat-tree, BCube,

948
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

Table 3 Cost, power consumption, and wiring comparison of different networking structures with
different data centers sizes.

Servers Structures Cost(k$) Power(kw) No. of links Switches No :
No. Switch NIC Switch NIC amount (ports)

Fat-tree 204.8 10.2 20.5 10.2 6144 L1, L2=256(16), L3=128(16)
Leaf-Spine 122.8 10.2 12.3 10.2 4096 L1 = 64(64), L2 = 16(128)

2048 BCube 163.8 40.9 16.4 20.5 6144 512(16)
DCell(2,176) 43.5 43.5 4.3 21.8 4352 136(16)
P-Cube(16,1) 61.4 30.7 6.1 17.9 4032 128(16)1, 16(64)2

Fat-tree 409.6 20.5 40.9 20.5 12288 L1, L2=512(16), L3 = 256(16)
Leaf-Spine 245.7 20.5 24.6 20.5 8192 L1 = 128(64), L2 = 32(128)

4096 BCube 245.7 81.9 24.6 40.9 12288 768(16)
DCell(4,080) 81.6 81.6 8.2 40.8 8160 255(16)
P-Cube(16,2) 163.8 61.4 16.3 35.8 10112 256(16)1, 32(128)2

Fat-tree 819.2 40.9 81.9 40.9 24576 L1, L2=512(32), L3 = 256(32)
Leaf-Spine 677.1 40.9 52.6 40.9 16384 L1 = 128(128), L2 = 32(256)

8192 BCube 1802 163.8 180.2 81.9 32768 5632(16)
DCell(8,448) 168.9 168.9 16.9 84.5 16896 264(32)

P-Cube (32,1) 8 pods 204.8 122.8 20.5 71.7 14208 256(32)1, 16(128)2

Fat-tree 1638 81.9 163.8 81.9 49152 L1, L2=1024(32), L3 = 512(32)
Leaf-Spine 1354 81.9 105.3 81.9 32,768 L1 = 256(128), L2 = 64(256)

16384 BCube 2293 327.7 229.4 163.8 65536 7168(16)
DCell(16,896) 337.9 337.9 33.8 168.9 33792 528(32)
P-Cube (32,1) 677 245.7 52.6 143.3 32512 512(32)1, 32(256)2

1 Internal switches, 2 External switches.

Fig. 3 Cost and power consumption comparison of different data center networks with several servers.

Fig. 4 A comparison of ETE delay and throughput between P-Cube topology and other topologies.

AL-MAKHLAFI et al.: P-CUBE: A NEW TWO-LAYER TOPOLOGY FOR DATA CENTER NETWORKS EXPLOITING DUAL-PORT SERVERS
949

and DCell structures in terms of network throughput and
ETE Delay, where the maximum throughput of P-Cube is
about twice of Fat-tree. Based on the above analysis, we
can observe that the P-Cube structure is more suitable for
constructing large-scale data center networks with low cost
and power consumption.

6. Conclusion

In this paper, we proposed a novel server-centric structure for
data centers named P-Cube that provides high performance,
scalability, fault tolerance, reliability, and low-cost networks.
P-Cube eliminates the need to use high-end switches by ex-
ploiting the built-in dual-port configuration found in most
data center servers. Further, the utilization of commodity
switches and servers make P-Cube a low-cost structure. P-
Cube also provides a higher network capacity with a high bi-
section width and a low stable diameter. It can accommodate
hundreds of thousands of nodes, which proves that P-Cube
can provide high scalability. The specially designed routing
scheme (P-CubeRouting and DFR) aid P-Cube to realize its
maximum theoretical performance and balance the numer-
ous links in the network. At last, we provided numerical
results that show our topology is better than other topologies
in the literature, such as Fat-tree, BCube and DCell, on the
basis of network throughput and latency. Furthermore, the
total cost, complexity of cabling and power consumption of
Fat-tree and BCube structures are significantly higher than
our structure.

Acknowledgments

This work was supported in part by the National Key RD
Program of China under Grant 2018YFE0202800, and Na-
tional Natural Science Foundation of China under Grant
61634004 and 61934002, and the Natural Science Foun-
dation of Shaanxi Province for Distinguished Young Schol-
ars under Grant no 2020JC-26, and the Fundamental Re-
search Funds for the Central Universities under Grant No.
JB190105 and XJS200119, and the Open Project Program
of the State Key Laboratory of Mathematical Engineering
and Advanced Computing under Grant No. 2019A01.

References

[1] S. Ghemawat, H. Gobioff, and S-T. Leung, “The Google file system,”
ACM SIGOPS Oper. Syst. Rev., vol.37, no.5, 2003.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
ACMSIGOPSOper. Syst. Rev., vol.41, no.3, pp.59–72, March 2007.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107–113, Jan.
2008.

[4] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: A dis-
tributed storage system for structured data,” ACM Trans. Comput.
Syst. (TOCS), vol.26, no.2, p.4, June 2008.

[5] D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol.11, no.2007, p.21, Aug. 2007.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM Comput.
Commun. Rev., vol.38, no.4, pp.63–74, Aug. 2008.

[7] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A
scalable and fault-tolerant network structure for data centers,” ACM
SIGCOMM Comput. Commun. Rev., vol.38, no.4, pp.75–86, Aug.
2008.

[8] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Comput.
Commun. Rev., vol.39, no.4, pp.63–74, Aug. 2009.

[9] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H.Wu, Y. Xiong, R. Gao, and
Y. Zhang, “Serverswitch: A programmable and high performance
platform for data center networks,” Nsdi, vol.11, pp.2–2, March
2011.

[10] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D.A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” ACM SIGCOMM Comput. Commun. Rev.,
vol.39, no.4, pp.51–62, 2009.

[11] Y. Sun, J. Chen, Q. Lu, and W. Fang, “Diamond: An improved
fat-tree architecture for large-scale data centers,” J. Commun., vol.9,
no.1, pp.91–98, Jan. 2014.

[12] D. Li, C. Guo, H. Wu, K. Tan, and S. Lu, “FiConn: Using backup
port for server interconnection in data centers,” INFOCOM, vol.9,
pp.2276–2285, April 2009.

[13] Y. Liao, D. Yin, and L. Gao, “DPillar: Scalable dual-port server
interconnection for data center networks,” 2010 Proc. 19th Int. Conf.
on Computer Communications & Networks, pp.1–6, Aug. 2010.

[14] N. Farrington and A. Andreyev, “Facebook’s data center network
architecture,” Proc. 2013 IEEE Optical Int. Conference, pp.49–50,
May 2013.

[15] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and cen-
tralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol.45, no.1, pp.183–197, Sept. 2015.

[16] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible, and high-
performance data center network,” IEEE Trans. Parallel Distrib.
Syst., vol.27, no.11, pp.3351–3365, Feb. 2015.

[17] D. Guo, T. Chen, D. Li, Y. Liu, X. Liu, and G. Chen, “BCN: Expansi-
ble network structures for data centers using hierarchical compound
graphs,” Proc. IEEE INFOCOM, pp.61–65, April 2011.

[18] D. Guo, C. Li, J. Wu, and X. Zhou, “DCube: A family of high
performance modular data centers using dual-Port servers,” Elsevier
J. Comput. Commun., Vol.53, pp.13–25, Feb. 2013.

[19] Z. Chkirbene, S. Foufou, M. Hamdi, and R. Hamila, “Hyper-flatnet:
A novel network architecture for data centers,” Proc. 2015 IEEE Int.
Conf. on Communication Workshop (ICCW), pp.1877–1882, June
2015.

[20] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: A high
performance network structure for modular data center interconnec-
tion,” Proc. 5th Int. Conf. on Emerging networking experiments &
technologies, pp.25–36, Dec. 2009.

[21] Z. Li, Z. Guo, and Y. Yang, “BCCC: An expandable network for
data centers,” IEEE/ACM Trans. Netw., vol.24, no.6, pp.3740–3755,
Dec. 2016.

[22] M. Alizadeh and T. Edsall, “On the data path performance of
leaf-spine data center fabrics,” IEEE Annual Symposium on High-
Performance Interconnects (HOTI), pp.71–74, Aug. 2013.

[23] Z. Li and Y. Yang, “GBC3: A versatile cube-based server-centric
network for data centers,” IEEE Trans. Parallel Distrib. Syst., vol.27,
no.10, pp.2895–2910, Dec. 2015.

[24] T. Wang, Z. Su, Y. Xia, B. Qin, and M. Hamdi, “NovaCube: A low
latency Torus-based network architecture for data centers,” Proc.
2014 IEEE Global Communications Conference (GLOBECOM),
pp.2252–2257, Dec. 2014.

http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/1402946.1402968
https://doi.org/10.1145/1402946.1402968
https://doi.org/10.1145/1402946.1402968
https://doi.org/10.1145/1402946.1402968
http://dx.doi.org/10.1145/1594977.1592577
http://dx.doi.org/10.1145/1594977.1592577
http://dx.doi.org/10.1145/1594977.1592577
http://dx.doi.org/10.1145/1594977.1592577
http://dx.doi.org/10.1145/1594977.1592576
http://dx.doi.org/10.1145/1594977.1592576
http://dx.doi.org/10.1145/1594977.1592576
http://dx.doi.org/10.1145/1594977.1592576
http://dx.doi.org/10.12720/jcm.9.1.91-98
http://dx.doi.org/10.12720/jcm.9.1.91-98
http://dx.doi.org/10.12720/jcm.9.1.91-98
http://dx.doi.org/10.1109/infcom.2009.5062153
http://dx.doi.org/10.1109/infcom.2009.5062153
http://dx.doi.org/10.1109/infcom.2009.5062153
http://dx.doi.org/10.1109/icccn.2010.5560132
http://dx.doi.org/10.1109/icccn.2010.5560132
http://dx.doi.org/10.1109/icccn.2010.5560132
http://dx.doi.org/10.1109/oic.2013.6552917
http://dx.doi.org/10.1109/oic.2013.6552917
http://dx.doi.org/10.1109/oic.2013.6552917
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1145/2829988.2787508
http://dx.doi.org/10.1109/tpds.2016.2533618
http://dx.doi.org/10.1109/tpds.2016.2533618
http://dx.doi.org/10.1109/tpds.2016.2533618
http://dx.doi.org/10.1109/infcom.2011.5935239
http://dx.doi.org/10.1109/infcom.2011.5935239
http://dx.doi.org/10.1109/infcom.2011.5935239
http://dx.doi.org/10.1016/j.comcom.2014.07.003
http://dx.doi.org/10.1016/j.comcom.2014.07.003
http://dx.doi.org/10.1016/j.comcom.2014.07.003
http://dx.doi.org/10.1109/iccw.2015.7247454
http://dx.doi.org/10.1109/iccw.2015.7247454
http://dx.doi.org/10.1109/iccw.2015.7247454
http://dx.doi.org/10.1109/iccw.2015.7247454
http://dx.doi.org/10.1145/1658939.1658943
http://dx.doi.org/10.1145/1658939.1658943
http://dx.doi.org/10.1145/1658939.1658943
http://dx.doi.org/10.1145/1658939.1658943
http://dx.doi.org/10.1109/tnet.2016.2547438
http://dx.doi.org/10.1109/tnet.2016.2547438
http://dx.doi.org/10.1109/tnet.2016.2547438
http://dx.doi.org/10.1109/hoti.2013.23
http://dx.doi.org/10.1109/hoti.2013.23
http://dx.doi.org/10.1109/hoti.2013.23
http://dx.doi.org/10.1109/tpds.2015.2511725
http://dx.doi.org/10.1109/tpds.2015.2511725
http://dx.doi.org/10.1109/tpds.2015.2511725
http://dx.doi.org/10.1109/glocom.2014.7037143
http://dx.doi.org/10.1109/glocom.2014.7037143
http://dx.doi.org/10.1109/glocom.2014.7037143
http://dx.doi.org/10.1109/glocom.2014.7037143

950
IEICE TRANS. COMMUN., VOL.E103–B, NO.9 SEPTEMBER 2020

[25] F. Yan, X. Xue, and N. Calabretta, “HiFOST: A scalable and
low-latency hybrid data center network architecture based on flow-
controlled fast optical switches,” IEEE/OSA J. Opt. Commun. Netw.,
vol.10, no.7, pp.1–14, July 2015.

[26] F. Yan, W. Miao, and N. Calabretta, “On the cost, latency, and
bandwidth of LIGHTNESS data center network architecture,” Proc.
2015 Int. Conf. on Photonics in Switching (PS), pp.130–132, Sept.
2015.

[27] Arista, “Cloud networking: Scaling out datacenter networks,” https://
www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__
Scaling_Out_Data_Center_Networks.pdf, Jan. 2020.

Moeen Al-Makhlafi received the B.E. de-
gree in Mathematical and Computer Science
from IBB University of Engineering and Tech-
nology, in 2010 and anM.E. degree in Computer
Science and Technology from Xidian University
in 2019. He is currently working toward the
Ph.D. degree in the data center, cloud comput-
ing, future Internet architecture in the State key
laboratory of ISN, Xidian University.

Huaxi Gu received the B.E. degree, M.E.
and Ph.D. in Telecommunication Engineering
and Telecommunication and Information Sys-
tems from Xidian University, Xidian in 2000,
2003 and 2005 respectively. He is full Professor
in the State key lab of ISN, Telecommunication
Department, Xidian University, Xidian, China.
His current interests include interconnection net-
works, networks on chip and optical intrachip
communication. He has more than 100 publica-
tions in refereed journals and conferences. He

has been working as a reviewer of IEEE Transaction on Computer, IEEE
Transactions on Dependable and Secure Computing, IEEE system Journal,
IEEE Communication letters, Information Sciences, Journal of Supercom-
puting, Journal of System Architecture, Journal of Parallel and Distributed
Computing, Microprocessors and Microsystems etc.

Xiaoshan Yu received the M.E. degree in
Electronics and Communications Engineering
from Xidian University in 2013 and the Ph.D.
degree in Telecommunication and Information
System from Xidian University in 2016. Now
he is doing postdoctoral programme in the State
key lab of ISN, Xidian University. His main
research interests are related to optical intercon-
nected networks, data center networks.

Yunfeng Lu received the B.E. degrees in
Information Technology from Jilin University,
in 2016. Since 2016, he has been working to-
ward the M.E. degree in telecommunication and
information systems in the State key laboratory
of ISN, Xidian University. The main research
interests of him include: optical interconnected
networks and high performance computing net-
works.

http://dx.doi.org/10.1364/jocn.10.0000b1
http://dx.doi.org/10.1364/jocn.10.0000b1
http://dx.doi.org/10.1364/jocn.10.0000b1
http://dx.doi.org/10.1364/jocn.10.0000b1
http://dx.doi.org/10.1109/ps.2015.7328976
http://dx.doi.org/10.1109/ps.2015.7328976
http://dx.doi.org/10.1109/ps.2015.7328976
http://dx.doi.org/10.1109/ps.2015.7328976
https://www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf

