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SUMMARY We demonstrated 1-Tb/s-class transmissions of field-
deployed large-core low-loss fiber links, which is compliant with ITU-
T G.654.E, using our newly developed real-time transponder consist-
ing of a state-of-the-art 16-nm complementary metal-oxide-semiconductor
(CMOS) based digital signal processing application-specific integrated cir-
cuit (DSP-ASIC) and an indium phosphide (InP) based high-bandwidth
coherent driver modulator (HB-CDM). In this field experiment, we have
achieved record transmission distances of 1122 km for net data-rate 1-
Tb/s transmission with dual polarization-division multiplexed (PDM) 32
quadrature amplitude modulation (QAM) signals, and of 336.6 km for net
data-rate 1.2-Tb/s transmission with dual PDM-64QAM signals. This is
the first demonstration of applying hybrid erbium-doped fiber amplifier
(EDFA) and backward-distributed Raman amplifier were applied to terres-
trial G.654.E fiber links. We also confirmed the stability of signal per-
formance over field fiber transmission in wavelength division multiplexed
(WDM) condition. The Q-factor fluctuations respectively were only less
than or equal to 0.052 dB and 0.07 dB for PDM-32QAM and PDM-64QAM
signals within continuous measurements for 60 minutes.
key words: optical fiber communication, digital coherent transmission,
real-time transmission, field transmission

1. Introduction

Digital signal processing (DSP) and digital coherent tech-
niques have driven an increase in the transmission capacity
of optical communication systems. Digital coherent tech-
nology has been applied not only to long-haul and metro
networks but also to short-reach networks, particularly data-
center interconnects. To meet the demand for multiple ap-
plications, DSP supports multi-rate and multi-modulation
formats. For example, in [1] and [2], DSP application-
specific integrated circuits (ASICs) could treat ∼32-GBaud
polarization-division multiplexed (PDM) quadrature ampli-
tude modulation (QAM) formats with the modulation or-
ders of 4, 8, and 16 for 100, 150, and 200 Gb/s/carrier,
respectively. In addition, up to 600-Gb/s/carrier transmis-
sion experiments have recently been reported with real-time
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Fig. 1 Recent field experiments using DSP-ASIC-integrated real-time
optical transponders.

transponder including 64-GBaud-class DSP-ASIC [3]–[5].
Field experiments using DSP-ASIC-integrated real-

time optical transponders over terrestrial [1], [3], [4], [6]–
[14] and transoceanic [15], [16] links are shown in Fig. 1. To
expand transmission distance with high-order QAM signals,
which require a high optical signal-to-noise ratio (OSNR)
and low fiber nonlinearity, large-core low-loss fiber has
been deployed in terrestrial links (ITU-T G.654.E, effec-
tive area (Aeff): 110µm2) [8]–[11], [14] and transoceanic
links (ITU-T G.654.D, Aeff: 130µm2) [15]. 1-Tb/s-class
transmissions of field-deployed G.654.E fiber links have re-
cently been demonstrated using our newly developed real-
time transponder [4]; we have demonstrated net data-rate
1-Tb/s transmission with dual 0.5-Tb/s PDM-32QAM sig-
nals over 1122 km, and net data-rate 1.2-Tb/s transmission
with dual 0.6-Tb/s PDM-64QAM signals over 336.6 km.
Shown in Fig. 1, these transmission distances of 1122 and
336.6 km are, to the best of our knowledge, the longest in
field experiments using DSP-ASIC-integrated real-time op-
tical transponders with net data-rate > 0.4 Tb/s/carrier. The
signals are generated and detected with our newly developed
transponder that integrates a DSP-ASIC based on 16-nm
complementary metal-oxide-semiconductor (CMOS) tech-
nology [17] and a high-bandwidth coherent driver modula-
tor (HB-CDM) based on indium phosphide (InP) technol-
ogy [18]. The modulation order must be higher than 16 to
realize a capacity of >0.4 Tb/s/carrier with the symbol rate
of ∼64 GBaud. Thus, techniques, e.g., a distributed Raman
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Fig. 2 (a) Setup for field experiments over large-core low-loss G.654.E link, (b) WDM signal spectra
output from WSS and after 1122-km transmission, and (c) Raman gain spectra.

amplifier, should be considered to improve the OSNR of
transmission links. We applied hybrid EDFA and backward-
distributed Raman amplifier to terrestrial G.654.E links for
the first time.

In this paper, we present the transmission experiments
over field deployed G.654.E fiber links using hybrid EDFA
and backward-distributed Raman amplifier. This field trans-
mission using dual-carrier 1-Tb/s-class signal that logically
consists of two wavelength signals was demonstrated with
our newly developed transponder [4]. We used the dual-
carrier signal in order to realize 1-Tb/s-class transmission
using commercially available optical transmitter and re-
ceiver with the minimum number of sub-carriers. In Sect. 2,
the experimental setup are shown for the field experiments.
In Sect. 3, we show the results obtained. Record distances
of 1122 and 336.6 km for dual-carrier 1- and 1.2-Tb/s trans-
missions were achieved using the real-time transponder and
the hybrid EDFA and backward-distributed Raman amplifier
for 112.2-km spans of field-deployed G.654.E fiber links.

2. Experimental Setup

Figure 2(a) shows the setup for our field experiments us-
ing NTT Group’s terrestrial links. The experimental equip-
ment was placed at building A; building B was only for di-
rectly connecting transmission lines. Our newly developed
optical transponder consists of the DSP-ASIC based on 16-
nm CMOS technology [17], an InP-based HB-CDM [18],
high-bandwidth intradyne coherent receiver (HB-ICR), and
micro-integrable tunable laser assemblies (µITLAs) for sig-
nal and local oscillator (LO) sources. The measured sig-
nal was generated in the optical transponder; the electri-
cal signals output from the DSP-ASIC were modulated by
the InP-based HB-CDM in the optical frontend (FE) with
the optical carrier output from a µITLA. The dual-carrier
1- and 1.2-Tb/s signals logically consisted of two 500- and
600-Gb/s signals. The modulation formats of the net rate
500- and 600-Gb/s signals were Nyquist pulse shaped 66-
GBaud PDM-32QAM and 69-GBaud PDM-64QAM, re-

Fig. 3 Frequency response at transmitter side of optical transponder.

spectively. It should be noted that we prepared only one
prototype of the optical transponder thus the carrier fre-
quency was swept to measure the characteristics of the 1-
and 1.2-Tb/s dual-carrier signals. The bit streams of the sig-
nals were sufficiently long pattern based on pseudo-random
binary sequence. The HB-CDM package consists of an InP-
based PDM IQ modulator (IQM), driver integrated circuits
(ICs), RF package, and connection wires to achieve high
E/O bandwidth and characteristics. The HB-CDM has a 3-
dB E/O bandwidth of over 50 GHz [18]. Figure 3 shows
the frequency response at the transmitter side of the optical
transponder. The frequency amplitude and phase response
at the transmitter side were compensated by using an opti-
mized fixed equalizer based on a precise calibration scheme
[19]. The carrier frequency of the measured signal was set to
189.7 and 189.8 THz. The 100-GHz-spaced ten optical car-
riers with frequencies from 189.3 to 190.2 THz were modu-
lated by a lithium niobate (LN) IQM with electrical signals
from a DSP-ASIC after being multiplexed by an arrayed-
waveguide grating (AWG). The wavelength-division multi-
plexing (WDM) signal was input into an 11-km standard
single mode fiber (SSMF) to decorrelate signals. The mea-
sured and WDM signals were multiplexed by a wavelength
selective switch (WSS).
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Fig. 4 Frequency response at receiver side of optical transponder.

The WDM signal (shown in dashed line of Fig. 2(b))
was input into field-deployed large-core low-loss G.654.E
fiber (Aeff: 110µm2) between buildings A and B. In build-
ing B, the transmission lines were connected by only patch
fiber cables. The average optical loss of the transmis-
sion link was 20.7 dB per 112.2-km span (0.184 dB/km) at
1580 nm, which includes losses of field-deployed G.654.E
fiber, fusion splice points of the field-deployed fiber, ca-
ble termination frames (CTFs), and intra-building fibers.
After WDM signal transmission for each 112.2-km span,
the optical loss was compensated for by hybrid EDFA and
backward-distributed Raman amplifier with pump lasers at
1460 and 1480 nm. As shown in Fig. 2(c), we confirmed
wide-band Raman gain spectra with over 4 THz in L-band
using the Raman pumps. The flat Raman gain was obtained
in the tested WDM signal bandwidth of 1 THz. By ade-
quately designing the pump wavelength, flat Raman gain
spectra can be achieved for field-deployed G.654.E fiber.

The measured signal in the WDM signals (shown in
solid line of Fig. 2(b)) was filtered by an optical band-pass
filter (OBPF) after transmitting the field-deployed optical
fiber link. We individually measured the characteristics of
the dual-carrier signals at 189.7 and 189.8 THz by sweep-
ing the carrier frequency. Then, the measured signal was
coherently detected by an ICR in the optical FE with the op-
tical LO output from a µITLA. Finally, the received signal
was equalized, demodulated, and decoded in the DSP-ASIC
consisting of blocks of the fixed equalizer for the precise
calibration of the received signal, an adaptive equalizer for
linear equalization and polarization de-multiplexing, a car-
rier phase recovery, and an LDPC-based soft-decision FEC.
Figure 4 shows the frequency response at the receiver side of
the optical transponder. An optimized fixed equalizer based
on the precise calibration scheme [19] also compensated the
frequency amplitude and phase response at the receiver side.
As shown in Figs. 3 and 4, the optical transmitter and re-
ceiver had sufficient bandwidth for the 66- and 69-GBaud
signals. Since the frequency ripples occurred, we applied
the precise calibration scheme to equalize the frequency rip-
ples.

Fig. 5 (a) Experimental result of dual-carrier 1-Tb/s transmission over
field-deployed G.654.E fiber links and (b) stability measurements of dual-
carrier 1-Tb/s signal performances at 189.7 and 189.8 THz in WDM condi-
tions after 1122-km transmission.

3. Results and Discussion

The net data-rate 1-Tb/s (dual-carrier PDM-32QAM) trans-
mission performances at the center carrier frequencies of
189.7 and 189.8 THz of the WDM signals are shown in
Fig. 5(a). In these transmission experiments, the average
fiber input power was 2.5 dBm/carrier, and the gain of the
backward-distributed Raman amplifier was set to 11 dB for
each 112-km span. Note that the pre-forward error correc-
tion (FEC) Q margin in the results shown in all of the fig-
ures is equivalent to the difference between the pre-FEC Q
factor and pre-FEC Q limit; that is, the pre-FEC Q mar-
gin of zero corresponds to the pre-FEC Q limit. As shown
in Fig. 5(a), pre-FEC Q-factor showed better than the pre-
FEC Q limit and confirmed that the post-FEC bit error rate
(BER) was error-free for each channel and transmission dis-
tance. Thus, we achieved dual-carrier 1-Tb/s transmission
over 1122-km (10 spans × 112.2 km) and 1.2-Tb/s trans-
mission over 336.6-km (3 spans × 112.2 km) field-deployed
G.654.E fiber links. Figure 5(b) shows the variations over
time of the dual-carrier 1-Tb/s signal performances after
1122-km transmission. The carrier frequencies of the sig-
nals are 189.7 and 189.8 THz, which are the center of the
WDM signal. The signal performances were continuously
measured for 60 minutes with an interval of one minute. The
pre-FEC Q margin showed more than zero, and we also con-
firmed that the post-FEC BER was error-free for each inter-
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Fig. 6 (a) Experimental result of dual-carrier 1.2-Tb/s transmission over
field-deployed G.654.E fiber links and (b) stability measurements of the
PDM-64QAM signal performance at 189.8 THz in WDM conditions after
336.6-km transmission.

val measurement. The signals were stably transmitted over
1122 km with a Q-factor fluctuation of less than or equal to
0.052 dB within continuous measurements for 60 minutes.

The net data-rate 1.2-Tb/s (dual-carrier PDM-64QAM)
transmission performances at the center carrier frequencies
of 189.7 and 189.8 THz of the WDM signals obtained in
the transmission experiments are also shown in Fig. 6(a).
In these transmission experiments, the average fiber input
power was 1.5 dBm/carrier, and the gain of the backward-
distributed Raman amplifier was set to 14 dB for each 112-
km span. We observed that the pre-FEC Q margin showed
more than zero, and confirmed that the post-FEC BER was
error-free for each channel and transmission distance. Thus,
we achieved dual-carrier 1.2-Tb/s transmission over 336.6-
km (3 spans × 112.2 km) field-deployed G.654.E fiber links.
Figure 6(b) shows the variation over time of the PDM-
64QAM signal performance after 336.6-km transmission.
The carrier frequency of the signal is 189.8 THz, which is
the center of the WDM signal. The signal performance was
continuously measured for 60 minutes with an interval of
one minute. The pre-FEC Q margin showed more than zero,
and we also confirmed that the post-FEC BER was error-
free for each interval measurement. The signals were stably
transmitted over 336.6 km with a Q-factor fluctuation of less
than or equal to 0.07 dB within continuous measurements
for 60 minutes.

4. Conclusion

We demonstrated record transmission distances of 1122 km
with a net data-rate of 1 Tb/s with dual-carrier PDM-
32QAM signals and of 336.6 km with a net data-rate of
1.2 Tb/s with dual-carrier PDM-64QAM signals using our
newly developed real-time transponder over 112.2-km spans
of field-deployed large-core low-loss fiber, which is com-
pliant with ITU-T G.654.E. Hybrid EDFA and backward-
distributed Raman amplifier were applied to terrestrial
G.654.E fiber links for the first time. The transponder in-
tegrates DSP-ASIC based on 16-nm CMOS technology and
an optical frontend consisting of an HB-CDM based on InP
technology and an HB-ICR. We also demonstrated stable
signal performance over field fiber transmission in WDM
conditions. The Q-factor fluctuation of the dual-carrier 1-
Tb/s signal was less than or equal to 0.052 dB after 1122-
km field-deployed G.654.E fiber transmission within con-
tinuous measurements for 60 minutes. We also confirmed
that the Q-factor fluctuation of PDM-64QAM signal was
less than or equal to 0.07 dB after 336.6-km transmission
within continuous measurements for 60 minutes.
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