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SUMMARY The spread of the Internet of Things (IoT) has led to
the generation of large amounts of data, requiring massive communica-
tion, computing, and storage resources. Cloud computing plays an impor-
tant role in realizing most IoT applications classified as massive machine
type communication and cyber-physical control applications in vertical do-
mains. To handle the increasing amount of IoT data, it is important to
reduce the traffic concentrated in the cloud by distributing the computing
and storage resources to the network edge side and to suppress the latency
of the IoT applications. In this paper, we first present a recent literature re-
view on fog/edge computing and data aggregation as representative traffic
reduction technologies for efficiently utilizing communication, computing,
and storage resources in IoT systems, and then focus on data aggregation
control minimizing the latency in an IoT gateway. We then present a unified
modeling for statistical and nonstatistical data aggregation and analyze its
latency. We analytically derive the Laplace–Stieltjes transform and average
of the stationary distribution of the latency and approximate the average la-
tency; we subsequently apply it to an adaptive aggregation number control
for the time-variant data arrival. The transient traffic characteristics, that is,
the absorption of traffic fluctuations realizing a stable optimal latency, were
clarified through a simulation with a time-variant Poisson input and non-
Poisson inputs, such as a Beta input, which is a typical IoT traffic model.
key words: IoT, fog, edge, data aggregation, QoS, latency, control, com-
munication quality, communication traffic

1. Introduction

With the global spread of the Internet of Things (IoT) ap-
plications and services, the numbers of IoT devices such as
sensors and actuators connected to the Internet are increas-
ing at an unprecedented rate [1]. The spread of IoT has led to
the generation of large amounts of data, which requires mas-
sive system resources, that is, communication, computing,
and storage resources. To adequately deploy IoT systems, a
communication traffic and quality design that balances the
efficient use of these resources and quality of service (QoS)
is an important issue.

Various IoT use cases have been investigated and a few
practical services have already been deployed across wide
ranging fields such as factories, agriculture, healthcare, and
smart cities [2]. IoT systems realizing such IoT use cases
need to support different QoS required, such as reliability,
latency, and bandwidth, for each use case and each usage
scenario. QoS issues in IoT systems have been the subjects
of numerous studies. To categorize QoS approaches in IoT
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systems, White et al. [3] conducted a systematic mapping of
162 selected papers using a number of automated searches
from the most relevant academic databases. They identified
that such approaches most often take into account quantita-
tive quality factors such as the reliability, performance ef-
ficiency, and functional stability among eight quality fac-
tors based on the ISO/IEC quality model for software prod-
ucts [4].

Among the QoS factors, latency is one of the most im-
portant metrics regarding the performance efficiency to real-
ize critical IoT applications such as factory automation and
a smart grid, which require a latency of 0.25–10 ms and 3–
20 ms, respectively [5]. To satisfy such rigorous QoS re-
quirements and realize latency-critical IoT applications, var-
ious communication technologies that suppress the end-to-
end latency and realize an efficient use of system resources
have been proposed.

The 3rd Generation Partnership Project (3GPP) pub-
lished its release 16 of 5th Generation (5G) New Radio (NR)
including enhanced ultra-reliable low-latency communica-
tion (URLLC) [6] for mission critical applications such as
factory automation, transport industry, and electrical power
distribution. The end-to-end latency of factory automation
and power distribution as representative use cases for the
Release 16 NR URLLC evaluation was set to 2 and 5 ms,
respectively [6]. Some of the above-mentioned latency-
critical IoT use cases will be covered by 5G URLLC tech-
nologies. The highly reliable URLLC services, however,
require redundant transmission over the 5G network, which
leads to a further increase in data volume. Furthermore, to
support the URLLC services, it is necessary to use high-
functionality user equipment (UE) as IoT devices. For most
IoT applications classified in massive machine type com-
munication (mMTC) or cyber-physical control applications
in vertical domains [7], it is necessary to take into account
restrictions on the device functions and power consump-
tion. Therefore, without relying on UE functionality, traffic
reduction technologies suppressing the massive volume of
data transmitted and the end–to–end latency play an impor-
tant role in realizing most IoT applications.

One of the effective solutions to a traffic reduction is
fog [1], [8], [9] or edge computing [10]. Fog computing
focuses more on the server and network infrastructure side,
whereas edge computing focuses more on the IoT device
side [10]. Both technologies have several advantages over
traditional cloud computing in certain aspects such as la-
tency, battery consumption, and network bandwidth.
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Another solution to reducing traffic and latency is data
aggregation, which summarizes spatially distributed data
and transmits the aggregated-data to the fog/edge node or
cloud through the Internet. IoT gateways [11] or M2M gate-
ways [12] generally include data aggregation functions to
act as a data bridge between sensors and the fog/edge node
or cloud. Data aggregation can be broadly classified into
statistical and nonstatistical approaches. Statistical aggre-
gation summarizes multiple data into a statistical value us-
ing statistical functions, such as Avg, Sum, Min, and Max.
This type of aggregation is effective with regard to failures
or anomaly detection in wide-area factories or farms using
numerous sensor data. Meanwhile, nonstatistical aggrega-
tion bundles multiple data and combines them into a chunk
without compression. Packet or frame aggregation in wire-
less LAN [13]–[15] and VoIP [16] are typical examples of
nonstatistical data aggregation.

In our previous study [17], we analyzed two fundamen-
tal statistical data aggregation schemes: the constant interval
aggregation (CIA) and constant number aggregation (CNA)
schemes, and derived the Laplace–Stieltjes transform (LST)
of the latency distribution. Furthermore, we clarified the
existence of the optimal aggregation interval and number,
which minimize the latency, and derived simple and accu-
rate estimation formulae for these parameters. In addition,
we analyzed the nonstatistical CNA (nCNA) scheme in [18]
and derived the LST of the latency distribution, an approx-
imation of the average latency, and an estimation formula
that enables us to determine the optimal aggregation number
and an optimal latency that minimizes the average latency.
By applying the above estimation formulae for the statis-
tical and nCNA models, we proposed an adaptive aggre-
gation number control when the arrival rate fluctuates over
time [19], [20].

In our previous analysis of the statistical aggregation
scheme [17], the transmission time of aggregated data was
assumed to have an exponential distribution. However, in
the analysis of the nonstatistical aggregation scheme [18],
it is assumed that the transmission time is a unit distribu-
tion comprising a fixed-length header and the number of
aggregations deployed by the fixed unit data length. That
is, the modeling for both aggregation schemes was not uni-
form, and it was difficult to compare these schemes with
each other under common conditions.

This work is an extension of our previous studies [18],
[20] as we propose a unified model for statistical and non-
statistical data aggregation and analyze its latency. We ana-
lytically derive the LST and average of the stationary distri-
bution of the latency, and approximate the average latency.
Applying the average latency approximation, we propose an
adaptive control based on a boundary value estimation for-
mula that minimizes the average latency with respect to the
time-varying arrival rate. The transient and average charac-
teristics of the proposed control were compared through a
simulation.

The main contributions of this paper are: (1) A uni-
fied modeling and latency analysis that can handle general

constant number data aggregation in IoT gateways, includ-
ing both statistical and nonstatistical schemes, (2) a newly
derived estimation formula for optimal aggregation number
control to minimize latency, and (3) extensive simulation
studies to support the proposed modeling, analysis, and con-
trol, which can realize acceptable performance for latency-
critical IoT applications.

The remainder of this paper is organized as follows:
Section 2 provides a literature review on representative traf-
fic reduction technologies: Fog/edge computing and data
aggregation in IoT systems. Section 3 focuses on data ag-
gregation in IoT gateways and presents the unified modeling
for statistical and nonstatistical data aggregation schemes.
Section 4 analyzes the latency of the unified model and de-
rives the exact and approximation formulae. Section 5 ap-
plies the analytical results to the adaptive control of the ag-
gregation number and evaluates the transient and average
characteristics of the proposed control. Finally, the conclud-
ing remarks are provided in Sect. 6.

2. Traffic Reduction Technologies and Related Studies

2.1 Fog/Edge Computing

Fog/edge computing [1], [8], [9] has been introduced to pro-
vide services by bringing the available computing and stor-
age resources closer to end-users at the edge of the net-
work from the cloud. With fog/edge computing, the massive
data generated by IoT devices can be processed at the net-
work edge instead of utilizing communication resources as
well as computing and storage resources at the centralized
cloud. Fog/edge computing can provide services with lower
latency and greater QoS for IoT applications in comparison
with cloud computing.

Lin et al. [9] conducted a comprehensive overview of
IoT with respect to the architectures, enabling technologies,
security, and privacy issues, and presented the foundation
of fog/edge computing-based IoT and applications. They
also clarified the relation between cyber-physical systems
(CPSs) and IoT. Mouradian et al. [21] presented a compre-
hensive survey on fog computing not only for IoT applica-
tions but also for fields such as content delivery. Piao et
al. [22] provided a comprehensive survey of the recent ad-
vances of edge caching techniques and their corresponding
effects on the network performances in radio access network
for 5G.

ETSI Multi-access edge computing (MEC), formerly
known as mobile edge computing, is an effective architec-
ture for providing low-latency services by deploying com-
puting resources near base stations [23], [24]. Computa-
tion offloading in MEC or fog environments, which assigns
computing tasks to either edge/fog nodes or cloud servers,
has recently gained attention from researchers [25]–[29].
As examples of conducting a quantitative evaluation of the
fog/edge system, Yi et al. [30] built a proof-of-concept fog
computing platform and compared the latency and band-
width provided in the fog and cloud. The round trip time
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(RTT) as a metric of latency was reduced from 18.0 to 1.4
ms, and the up-link throughput was improved from 1.8 to
83.7 Mbps by moving the computing resources from the
cloud to the fog. Furthermore, Gia et al. [31] proposed an
IoT-based health monitoring architecture with fog comput-
ing and showed a reduction in latency of 73% and data size
of up to 93% when using fog computing. Fog/edge comput-
ing does indeed enable reduced traffic, and hence latency, in
IoT systems with respect to cloud computing.

2.2 Data Aggregation

Studies on data aggregation in IoT systems originated in the
field of RFID data aggregation. Chen et al. [32] and the
references therein treat a hierarchical aggregation model for
distributed RFID data streams. They propose a QoS-aware
framework and dynamic aggregation algorithms.

As we reviewed in the previous study [17], statistical
data aggregation has been intensively studied, particularly
in the field of wireless sensor networks (WSNs) [33]–[35].
With respect to the 93 data aggregation techniques listed in
Table 4, in [33], most of the approaches focus on data ag-
gregation protocols based on network architectures, such as
cluster-, tree-, and grid-based networks. The performances
of all of these protocols were evaluated through a simula-
tion for the network models, and the latency characteristics
at each WSN node have not been fully analyzed. In addi-
tion, the latency characteristics of the data aggregation for
MTC defined in 3GPP have been analyzed in [36]–[39].

By contrast, as we also reviewed in the previous stud-
ies [17], [18], nonstatistical aggregation has been modeled
and analyzed in detail using queueing theory [40]–[44].
Hong et al. [40] analyzed a model with a limit on the max-
imum number of packets that can be aggregated in a sin-
gle frame. However, the transmission times of the suc-
cessive frames are dependent, rendering the analysis diffi-
cult. Although the LSTs of the queueing time and the to-
tal system time were formulated, the closed-form solutions
were not provided even for an exponential packet length.
Razi et al. [41] analyzed the CIA scheme, and Chen and
Zhou [42] and Shrader and Ephremides [43] analyzed the
CNA scheme. Even in these analyses, closed-form solu-
tions were not given, and the waiting time approximation of
a GI/G/1 queue was applied because the transmission time
depends on the amount of aggregated data. Kim et al. [44]
precisely analyzed the queueing time for aggregating on–off

traffic sources. However, their model did not include the
queueing time for the transmission of the aggregated pack-
ets.

In the aforementioned related studies, however, anal-
yses were limited to steady state conditions, and the opti-
mal aggregation parameters that minimize latency were not
derived. In addition to the above survey, readers can find
related studies on latency analysis of data aggregation, in-
cluding the relationship with the age of information (AoI)
in [17] and the batch service queue in [18].

In the following sections, we present a unified model

Fig. 1 Constant number aggregation schemes and queueing models.

for statistical and nonstatistical data aggregation and analyze
its latency.

3. Data Aggregation Schemes and Queueing Models

Figure 1(a) illustrates an example of a transition of data dur-
ing the aggregation and transmission processes for the non-
statistical and statistical CNA schemes, where data that ar-
rive in the aggregation process are aggregated until the num-
ber of arrivals reaches a certain number K. We assume that
the aggregated data are immediately sent to the transmission
process after the K-th data arrival.

Data aggregation and transmission processes can be
represented by a tandem queueing model depicted in
Fig. 1(b). The first node is a gate with a buffer, which rep-
resents the aggregation process and opens immediately after
the number of data arrived reaches K. The second node is
a single server first-in-first-out (FIFO) queue, which repre-
sents the transmission process. Latency is the total system
time defined as the duration between the data reaching the
first node and the end of the aggregated data transmission.

In this model, we assume a system with an infinite
buffer for both processes and a Poisson arrival at constant
rate λ for aggregation. The aggregated data can be treated as
a single packet or frame with a header. After queueing dur-
ing the transmission process, the data are transmitted to an
edge device or directly to a cloud server. The transmission
time, h†, per data unit, is assumed to be constant, and the
ratio of header transmission time to h, hereinafter called the
overhead ratio, is denoted by γ. Statistical data aggregation
compresses multiple data into a statistical value of transmis-
sion time h using statistical functions. Meanwhile, nonsta-
tistical data aggregation bundles multiple data and combines
them into a chunk of transmission time Kh without compres-
sion.

Because the service time in the second queue for both
statistical and nonstatistical schemes corresponds to the
transmission time of the aggregated data along with the

†We used the normalized time unit as is common practice in a
queueing analysis.
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header, which is a constant value, we refer to this model
as the dsCNA model, which represents the CNA scheme for
aggregation and the deterministic service time for the trans-
mission.

4. Latency Analysis of the dsCNA Model

In this section, we derive the performance measures for the
queueing model, namely, the system time (sojourn time) per
process and the latency, that is, the sum of the system times
of the aggregation and transmission. We define the random
variables and LSTs for these measures as follows:

W1, F∗1(s): System time during aggregation and its LST;
Wq, F∗q(s): Waiting time during transmission and its LST;
W2, F∗2(s): System time during transmission and its LST;
W = W1 + W2, F∗(s): Latency and its LST.

Throughout this paper, we assume that the systems are sta-
tionary and ergodic and that the random variables are non-
negative.

4.1 System Times during Aggregation and Transmission
Processes

The aggregation process of the dsCNA model corresponds
to that of the CNA model derived in our previous study [17].
The LST and average of the system time distribution in the
aggregation process of the dsCNA model are respectively
given by the following:

F∗1(s) =
λ + s
Ks

{
1 −

(
λ

s + λ

)K}
, Re(s) > 0, (1)

E[W1] =
K − 1

2λ
. (2)

The inter-arrival time distribution of the aggregated-
data to the transmission process for the dsCNA model is
a K-stage Erlang distribution with rate λ/K. Because the
service time is constant, the system time W2 of the dsCNA
model can be analyzed using an EK /D/1 queueing model as
given for the nonstatistical CNA model derived in our pre-
vious study [18]. That is, the waiting time distribution of
the EK /D/1 queue is equivalent to that of the M/D/K queue
under same traffic intensity for both queueing models [45].
Hence, W2 in the dsCNA model can be exactly determined
using the M/D/K queueing model.

The relations among traffic parameters of the EK /D/1
and M/D/K queues are summarized in Table 1, where the
cases of l = 1 and l = K correspond to the statistical and
nonstatistical dsCNA models, respectively. Therefore, the
analysis in this section can handle both models in a unified
manner. Applying the above relations, as we derived in [18],
for Re(s) > 0, the LST F∗2(s) and average E[W2] of the sys-
tem time distribution during transmission are given by the
following:

F∗2(s) =
{K−(l+γ)λh}λK−1s
λK−(λ− s)Ke(l+γ)hs

K−1∏
k=1

{
1−

s
λ(1−zk)

}
, (3)

Table 1 Relations of traffic parameters between EK /D/1 and M/D/K
queues.

E[W2] =
1
λ

{
{(l+γ)λh}2−K(K−1)

2{K −(l+γ)λh}
+

K−1∑
k=1

1
1−zk

}
+(l+γ)λh, (4)

where zk(k = 1, 2, . . . ,K−1) are complex roots of the tran-
scendental equation, 1−zKe(l+γ)λh(1−z) =0, except for z=1 [45].

4.2 LST and Average of Latency Distribution

From Eqs. (1) and (3), the LST of the latency distribution
for the dsCNA model is derived for Re(s) > 0 as follows:

F∗(s) = F∗1(s) · F∗2(s) =
λ + s
Ks

{
1 −

(
λ

λ + s

)K}
·
{K−(l+γ)λh}λK−1s
λK−(λ− s)Ke(l+γ)hs

K−1∏
k=1

{
1−

s
λ(1−zk)

}
. (5)

In addition, from Eqs. (2) and (4), the average latency for
the dsCNA model is given by the following:

E[W] =
{K−(l+γ)λh+1}(l+γ)h

2{K − (l + γ)λh}
+

1
λ

K−1∑
k=1

1
1−zk

. (6)

4.3 Latency Approximation of dsCNA Model

The exact analysis above not only exhibits a problem dur-
ing a complex root calculation; it also presents a no-closed
form with respect to the parameters characterizing the sys-
tem performance. Therefore, as in our previous study on the
latency of the nCNA model in [18], we apply an approx-
imation for the average waiting time for the M/D/s queue
proposed in [46],

E[W̃q(M/D/K)]≈
1
2
{1+ f (K, ρ)g(K, ρ)}E[Wq(M/M/K)], (7)

where

f (K, ρ) =
(1 − ρ)(K − 1)(

√
4 + 5K − 2)

16Kρ
, (8)

g(K, ρ) = 1 − exp
{
−

K − 1
(K + 1) f (K, ρ)

}
, (9)

and E[Wq(M/M/K)] is the exact average waiting time for the
M/M/K queue. This approximation formula has been veri-
fied and confirmed to be highly accurate [18]. That is, the
relative error is less than 1% for ρ ≥ 0.8, the absolute value
of the average waiting time is small, and the effect of the
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Fig. 2 Average system time and latency for nonstatistical dsCNA
model [20].

error on the average delay characteristic is relatively low for
ρ < 0.8. Applying the approximation, we obtained the fol-
lowing approximation formula for the latency of the dsCNA
model:

E[W] ≈
K − 1

2λ
+ E[W̃q((M/D/K)] + (l + γ)h. (10)

Note that Eqs. (3)–(6) and (10) are extensions of those in
Ref. [18] for nonstatistical data aggregation to the unified
model, including statistical data aggregation.

Figure 2 shows the average system times E[W1] and
E[W2] and latency E[W] according to traffic intensity ρ for
the nonstatistical (l = K) dsCNA model with γ = 0, h = 1,
and K = 10. Here, E[W2] ≈ E[W̃q] + (l +γ)h and E[W] were
calculated using the approximations in Eqs. (7) and (10), re-
spectively. This figure shows that E[W1] is inversely pro-
portional to ρ, E[W2] diverges as ρ → 1 as in the average
waiting time of general queueing systems, and the latency,
that is, the sum of these system times, is consequently a con-
vex function of traffic intensity ρ. The convexity leads to the
optimal traffic intensity for minimizing the latency, which is
the focus of the following discussion in this study. Figure 2
also shows the exact values for the average latency E[W]
(indicated by symbol ×). The exact values were calculated
using Eq. (6). From the exact results, we can confirm that
the approximation errors in Eqs. (7) and (10) are negligible.

Figures 3 and 4 illustrate the average latencies accord-
ing to the arrival rate with h = 1.0 and K = 1, . . . , 10 for
nonstatistical and statistical dsCNA models, respectively,
where we set γ = 1.0 for the nonstatistical model and
γ = 0.1 for the statistical model. This is a condition in which
the ratio of the overhead length to the transmitted data length
corresponds to 1/10 in both the statistical and nonstatistical
models for K = 10.

Here, the average delay characteristics for no aggrega-
tion (i.e., K = 1), which can be obtained using the M/D/1
queueing model, are also plotted in both figures. The adap-
tive control that takes into account a no-aggregation case,
which was not dealt with in our previous studies [17]–[19],
is described in the following section.

Fig. 3 Average latency versus arrival rate for nonstatistical dsCNA
model [20].

Fig. 4 Average latency versus arrival rate for statistical dsCNA model.

5. Adaptive Aggregation Number Control and Numer-
ical Results

5.1 Adaptive Control Based on Average Latency Approx-
imation

The results described in the previous section were derived
under stationary arrival conditions. In this section, we
propose the adaptive aggregation number control for the
dsCNA model under the nonstationary arrival cases. A basic
idea for the adaptive control proposed here is that even if the
arrival rate fluctuates, by adaptively changing the aggrega-
tion number according to the average latency characteristics
shown in Figs. 3 and 4, the latency can be controlled at the
minimum value.

Here, we set a constant measurement interval T , and
measure the amount of data that arrive during the aggrega-
tion process, that is, λi in the i-th (i = 1, 2, . . . ) interval. In
our previous study [17], we proposed an adaptive aggregate
number control that applies the optimal aggregate number
estimation formula of the statistical CNA model. Applying
the estimation formula for the optimal aggregate number,
the aggregate number ki+1 in the next interval i + 1 based
on the measured arrival rate in the interval i is calculated
through the following formula:

k̂i+1 = d1.935λi/µe, i = 0, 1, 2, . . . , (11)
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Fig. 5 Minimum aggregation number as a function of arrival rate.

where we assumed an exponential service time with a con-
stant rate µ during the transmission process including the
header.

By contrast, the proposed control in this paper deter-
mines the aggregation number ki+1 in the next i + 1-th inter-
val that minimizes the average latency in Fig. 3 for l = K, or
for l = 1 in Fig. 4 from the arrival rate λi(i = 1, 2, . . . ) in the
interval i. That is, the boundary value λ( j)( j = 1, 2, . . . ) of
the arrival rate that gives the intersection of the same aver-
age latency for K = j and K = j + 1 is calculated in advance
using Eq. (10), and the aggregation number ki+1 of the next
i + 1-th interval that minimizes the average latency is deter-
mined by the following logic:

i f λ( j−1) ≤ λi < λ
( j) then ki+1 = j, (12)

whereλ(0) = 0. Hereafter, we refer to the aggregation num-
ber that minimizes the average latency during each interval
[λ( j−1), λ( j)) as a minimum aggregation number. In the fol-
lowing, we deal with the statistical dsCNA model. For a
nonstatistical case, please refer to the estimation formula 3
in our previous study [20].

Figure 5 shows the relationship between the mini-
mum aggregation numbers and the boundary values λ( j)( j =

0, 1, 2, . . . ) of the arrival rates for h = 1.0 and γ = 0.1, 0.5,
1.0, 2.0, 4.0. These graphs are step functions with right con-
tinuous and unit step widths. The arrival rates giving the left
limits provide the boundary values λ( j)( j = 0, 1, 2, . . . ).

5.2 Estimation Formula for Optimal Aggregation Number

To obtain an estimation formula for the minimum aggrega-
tion number, let each graph in Fig. 5 be regarded as a contin-
uous function according to the potential offered load a = λh,
and let the vertical axis realize, Fig. 5 can be transformed to
Fig. 6. Here, the potential offered load is the offered traffic
to the transmission process assuming no aggregation. Ap-
plying the relationship shown in Fig. 6 and using the least
squares, we derive the estimation formula for the minimum
aggregation number as a quadratic function of a as follows:

k̃ = α(γ)a2 + β(γ)a + 1. (13)

For the range of parameters of 0 ≤ a ≤ 20, 0 ≤ γ ≤ 1.0

Fig. 6 Continuous minimum aggregation number as a function of poten-
tial offered load.

Fig. 7 Estimation accuracy for minimum aggregation number.

as shown in Fig. 6, by approximating these factors α(γ) and
β(γ) as linear functions of γ, and discretizing the real-valued
expression of Eq. (13), we finally obtain the estimation for-
mula for the minimum aggregate number as follows:

K̃ = bα(γ)a2 + β(γ)a + 1c, (14)

where

α(γ) = −0.0076γ − 0.0121 (15)
β(γ) = 1.319γ + 1.722. (16)

Figure 7 shows the estimated values (dotted line) by
Eq. (14) and the calculated values (solid line) by Eq. (10).
We can confirm that the estimation errors are negligible.

Because the estimation formula is based on simple
logic, it can be easily implemented using only counter and
simple arithmetic operations. This is also an advantage
of the proposed control for IoT gateways, where advanced
functionality cannot be expected, and a low power consump-
tion is required.

5.3 Transient and Average Characteristics of Proposed
Control

Because one of the main features of the proposed control
is adaptability to drastic changes in the offered traffic, we
simulated the transient characteristics of the control for two
types of time-variant input models, that is, linear- and step-
types; the arrival rate at the normal state linearly and rapidly
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Fig. 8 Transient characteristics of proposed control for linear–type.

Fig. 9 Transient characteristics of proposed control for step–type.

becomes overloaded and decreases to the normal state ac-
cording to a linear step function, as the dotted black lines
show in Figs. 8 and 9, respectively. The arrival rates for nor-
mal and overloaded states were set to 1.0 and 4.0.

The simulation experiments were run on a workstation
(four core 4 GHz CPU with 8 GB of RAM) using an s4 sim-
ulation system. We used the following parameters in the
simulations.

• measurement interval: T = 10 ms,
• simulation time: Tsim = 3 s,
• h = 1 ms, γ = 0.5, and
• K = 6 for cases without control.

Figures 8 and 9 show the simulation results for the tran-
sient characteristics of the aggregation number and queue
length during the transmission process. These figures in-
dicate that cases without control lead to an increase in the
queue length and latency in the transmission process during
an overload. By contrast, applying the proposed control, the
aggregate number is adaptively controlled according to the
increase or decrease in the arrival rate, and the queue length
during an overload is kept low. However, the queue length
with the proposed control shown in these figures has spikes,
and we investigated the overall distribution of the achieved
latency in the experiments. Figure 10 shows the cumulative
distribution functions (CDF) of the achieved latency for the
linear– and step–type experiments in Figs. 8 and 9, respec-
tively. In this figure, c2, WMAX , W99, and W95 represent the

Fig. 10 CDF of latency for linear– and step–types.

Fig. 11 Average latency as a function of overhead ratio.

squared coefficient of variation, maximum, 99th percentile,
and 95th percentile of latency, respectively. We can confirm
that the spikes of queue length have little effect on the over-
all latency distribution, staying within 15 ms at the maxi-
mum, and demonstrating a low coefficient of variation. That
is, the proposed control achieves stable latency characteris-
tics and can realize acceptable latency requirements of IoT
applications, for example, < 20 ms [7].

Figure 11 shows the average latency and 95% confi-
dence interval calculated from 10 simulation runs for a sim-
ulation time of 3 s according to the overhead ratio γ as a
parameter. The figure also shows the average latency char-
acteristics with control based on Fig. 5 to verify the esti-
mation accuracy of Eq. (14). We can observe that the pro-
posed control achieves stable characteristics close to nearly
the theoretically optimal latency, which can be calculated
by Eq. (10), as the weighted average latency for the normal
state and for the overloaded state. It can also be confirmed
that there is almost no estimation error in Eq. (14). There-
fore, the adaptive control based on the estimation formula
proposed in this paper can be judged to be highly accurate
and effective within the range of the verified parameters.

Figure 12 shows the average latency and 95% confi-
dence interval calculated from 10 simulation runs for the
simulation time of 3 s according to the mean transmission
time 1/µ or (1 + γ)h as a parameter. The figure also shows
the average latency characteristics with control based on
the optimal aggregation number in Eq. (11), as proposed
in our previous study [19], as a comparison with the pro-
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Fig. 12 Comparisons of average latency with our previous study.

posed control. Here, to make the conditions of transmis-
sion time the same for comparison, we assume that h = 1,
and the average transmission times in the previous research,
1/µ = 1.1, 1.5, 2.0, correspond to γ = 0.1, 0.5, 1.0, respec-
tively. We can observe that the average latency can be sup-
pressed to a low level by the proposed control compared to
the previous study. The reason why the average latency of
the step-type input becomes larger than that of the linear-
type is due to the control delay, that is, the arrival rate
changes rapidly in the former case and the waiting time for
transmission temporarily increases.

Finally, we investigate the influence of IoT data arrival
traffic models [47]–[50]. As non-Poisson arrival models
of the aggregation process, we used hyper-exponential and
Beta distribution models. We assume a two-stage hyper-
exponential distribution with balanced mean and its squared
coefficient of variation c2 = 8, and a beta distribution
model as a periodical sensor data arrival model proposed
by 3GPP [47]:

p(t) =
tα−1(TB − t)β−1

Tα+β−1
B Beta(α, β)

, (17)

where p(t) represents the arrival intensity in interval [0,TB],
and Beta(α, β) represents the Beta function. We assume
TB = 10 s, α = 3, and β = 4 as given in [47]. Under
these conditions, the cumulative arrival number A(t) is given
by [48]

A(t) =
20nh(TB − 1)3

T 6 (t + 1)3, (18)

where n represents the number of sensors and h represents
the sensor data size. We assume n = 1000 and h = 1, as
given in [48].

Figure 13 shows the average latency and 95% confi-
dence interval calculated from 10 simulation runs for the
simulation time of 3 s according to the measurement interval
T as a parameter. We can observe that the average latency
of the Beta distribution is more stably suppressed than that
of the hyper-exponential distribution. As a result, we can
confirm that a stable and low-latency control can be realized
by appropriately setting the measurement interval even for
the periodic IoT traffic inputs.

Fig. 13 Average latency for non-Poisson inputs.

6. Conclusions

We first presented a recent literature review on fog/edge
computing and data aggregation as representative traffic re-
duction technologies in IoT systems and provided several
impressive numerical results. We subsequently proposed a
unified modeling for statistical and nonstatistical data aggre-
gation and analyzed its latency. Furthermore, we proposed
and evaluated an adaptive control of data aggregation that
can be applied in IoT gateways. The simulation results for
a time-variant input model including a periodic IoT traffic
model indicate that the proposed scheme adaptively changes
the aggregation number and absorbs the traffic fluctuations,
thereby realizing the minimum stable latency. As the num-
ber of connected IoT devices and the accompanying traffic
will continue to increase, we believe that traffic reduction
technologies have the significant potential to pave the way
toward more comfortable and scalable IoT systems in the fu-
ture. To this end, research on combining fog/edge comput-
ing and hierarchical data aggregation can be an interesting
future study.
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