
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021
791

PAPER Special Section on Future Directions of Research and Development on Communication Quality

An Intent-Based System Configuration Design for IT/NW Services
with Functional and Quantitative Constraints

Takuya KUWAHARA†a), Nonmember, Takayuki KURODA†b), Member, Takao OSAKI†c), Nonmember,
and Kozo SATODA†d), Member

SUMMARY Network service providers need to appropriately design
systems and carefully configuring the settings and parameters to ensure
that the systems keep running consistently and deliver the desired services.
This can be a heavy and error-prone task. Intent-based system design meth-
ods have been developed to help with such tasks. These methods receive
service-level requirements and generate service configurations to fulfill
the given requirements. One such method is search-based system design,
which can flexibly generate systems of various architectures. However, it
has difficulty dealing with constraints on the quantitative parameters of sys-
tems, e.g., disk volume, RAM size, and QoS. To deal with practical cases,
intent-based system design engines need to be able to handle quantitative
parameters and constraints. In this work, we propose a new intent-based
system design method based on search-based design that augments search
states with quantitative constraints. Our method can generate a system that
meets both functional and quantitative service requirements by combining
a search-based design method with constraint checking. Experimental re-
sults show that our method can automatically generate a system that fulfills
all given requirements within a reasonable computation time.
key words: intent-based system configuration, automated system design,
design space exploration, quantitative requirement

1. Introduction

As network services become more complex, network ser-
vice providers are faced with a heavier burden in terms of
deployment and management of the underlying systems.
This mainly stems from the detailed and complex require-
ments of the underlying system/network architecture. Ser-
vice providers need to finely adjust the components of their
systems to ensure consistent cooperative operations, even
though their service-level requirements might be simple. In
practical cases, this creates a heavy burden on the providers
as they need to manually organize the systems to fulfill the
service requirements, dependencies, and constraints derived
from the system components.

To address this issue, researchers have focused on ways
to generate a networked system architecture based on the
service requirements. One practical approach is template-
based design [1]–[3], where the service requirements are
given as the parameters on a prepared system template and

Manuscript received September 1, 2020.
Manuscript revised November 27, 2020.
Manuscript publicized February 4, 2021.
†The authors are with NEC Corporation, Tokyo, 108-8001

Japan.
a) E-mail: kwhr111011@nec.com
b) E-mail: kuroda@nec.com
c) E-mail: t-osaki@nec.com
d) E-mail: satoda@nec.com

DOI: 10.1587/transcom.2020CQP0009

then template-based design engines implement them on an
appropriately adjusted system architecture based on the tem-
plate. While template-based approaches can deploy the de-
sired services easily and quickly, they lack flexibility when
it comes to the system architecture. Manual adjustment is
required if the desired system components are not available
on the templates or if the system architecture deviates from
the templates, which drives up the labor and time costs.

To enable more flexible design method, some model-
driven developments (MDDs) have adopted a more flexi-
ble framework to design systems. MODACLOUDS [4] pro-
vides system developers with a semi-automatic system de-
sign method for cloud computing environments by using ab-
stract service models and a decision support system (DSS)
to analyze service models. SASSY [15] can generate a
system configuration from a service-level architecture de-
scribed in their visual specification language called service
activity schema (SAS). While these methods enable a more
flexible design of the system architecture than template-
based methods, they require information about the desired
service to determine a concrete system configuration and do
not explore a suitable system design when it is unclear how
a given service requirement can be met.

Search-based design [5], [10], [12] is one approach to
accept ambiguous service requirements as input and flex-
ibly design system architectures. Systems and service re-
quirements can be represented by a graph model (called a
topology [12]) that visualizes the system components and
the relationships between them. Unlike a model of systems,
a model of service requirements contains abstract parts. A
search-based design engine concretizes the abstract parts of
a service requirements model by utilizing domain-specific
knowledge and gradually transforms it into a model of com-
pletely concrete system configurations.

As mentioned above, the search-based design approach
collects and uses domain-specific knowledge of domain ex-
perts as a model to translate abstract requirements into a sys-
tem. For example, consider developers of a certain software
“S WA”. They are domain experts on software A. By de-
scribing the input devices, dependent packages, DBs, etc.
that are necessary for the operation of software S WA, they
can define the necessary conditions for its operating envi-
ronment. Suppose that software S WA needs to receive in-
put from a device through API. The developers can define
more specific ways to achieve this, such as setting up API
endpoints and adding an HTTP communication-enabled en-

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

792
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

vironment. By using such domain-specific knowledge, a
search-based design engine can remove the abstract parts
of the service requirements model pertaining to the usage
and functionality of software S WA and transform it into a
more concrete model. In [12], the rules for this transfor-
mation are called refinement rules. By repeatedly applying
appropriate domain-specific knowledge, a search-based de-
sign engine can concretize all the abstract parts of a given
service requirement and obtain a completely concrete sys-
tem configuration.

Unlike template-based designs, which require the
preparation of a model of the entire system, the search-
based design collects domain-specific knowledge models.
For example, the definition of a model for software S WA
includes information about which components are required
for its operation, but does not include information about the
operating environment and the other requirements of those
components. As mentioned above, the search-based design
domain-specific knowledge model does not restrict the en-
tire applicable service requirements to a specific form, as it
concretizes only those requirements that are focused on the
target domain. The above mechanism enables search-based
design to offer a flexible design that matches diverse service
requirements, which is difficult to do with template-based
automated design.

As we mentioned above, a service developer can iden-
tify the desired system configuration that satisfies the func-
tional service requirements by using search-based design.
However, developers typically also have a lot of quantita-
tive service requirements that specify the limitation of cost,
upper-bound of available RAM, data-handling capacity and
so on. One effective approach to address quantitative re-
quirements is constraint-based system design, which ob-
tains a suitable system architecture by solving a constrained
optimization problem on the numerical parameters of sys-
tems. Constraint-based design is a domain-specific method
such as QoS-aware composition of Web services [13], op-
timized service placement [14], and optimized VNF-node
placement [18] and is not a generic system design method.

As opposed to constraint-based design, it is difficult for
existing search-based methods to deal with quantitative re-
quirements. They can handle the functional requirements,
which can be tested simply by checking a local part of the
systems, and thus enable complete concretization by repeat-
edly rewriting each abstract part. In contrast, the quantita-
tive requirement of a system often requires a global view-
point when testing its consistency.

For example, consider a case where a search-based de-
sign engine is going to deploy two services in the same
infrastructure. Even if these two services are unrelated in
terms of functionality, they share network/computational re-
sources in the infrastructure and so their available resources
are in a trade-off relationship. However, in existing search-
based design methods, these two systems are independently
concretized due to their functional irrelevancy, so the en-
gine cannot balance the two amounts of resource usage and
may output systems that do not satisfy the quantitative con-

straints.
In this paper, we propose a novel search-based system

design method that can deal with both the functional and
quantitative service requirements at the same time. We ex-
tend the existing search-based design by associating topolo-
gies and refinement rules with additional quantitative con-
straints, called constrained topologies and constrained re-
finement rules, respectively. To refine a constrained topol-
ogy by a constrained refinement rule, our design engine as-
sociates the topology with the quantitative constraints of the
rule, performs consistency checking of the quantitative con-
straints of the refined topology, and accepts the topology as
a search target only if the constraint is found to be consis-
tent. This technique enables our method to proceed with the
search process while always associating a global quantita-
tive constraint with each topology. As a result, our search-
based engine searches only topologies that satisfy all the
quantitative constraints necessary for the normal operation
of systems and generates a system configuration that satis-
fies both the functional and quantitative requirements.

This paper describes the theoretical methodology of
our search-based design method and reports the results of
evaluations using a prototype. In Sect. 2, we formalize
the fundamental framework of search-based design, and in
Sect. 3, we illustrate our motivating example. Section 4 de-
scribes our search-based design method. In Sect. 5, we re-
port our case studies and the results. We conclude in Sect. 6
with a brief summary and mention of future work.

2. Search-Based System Design

Our method is based on Weaver, the search-based system
designer proposed by Kuroda et al. [12]. In this section, we
briefly describe Weaver’s data format and algorithm.

2.1 Overview

The overview of Weaver is shown in Fig. 1. Graphs in the
rectangular boxes are topologies and the arrows between
them are refinements. Weaver deals with systems including
abstract parts called topologies (described in Sect. 1). First,

Fig. 1 Overview of weaver [12].

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
793

it receives a customer’s service requirement in the format
of a topology. Second, the given service requirement is re-
peatedly converted by applying refinements until all abstract
parts in the service requirement are concretized and a com-
pletely concrete topology is obtained. This refinement pro-
cedure is performed by creating a search tree whose root
node is the service requirement. Finally, Weaver outputs the
obtained completely concrete topology as a system configu-
ration.

2.2 Data Format

In this section, we define the data formats used in Weaver.

2.2.1 Types and Topology

A topology is a fundamental graph format representing sys-
tems. Its design was inspired by OASIS TOSCA [17].
While a system specification of TOSCA represents a con-
crete system configuration, the topology data format gives
us a unified representation for service requirements, service
configurations, and partially refined service requirements.
A topology consists of components and relationships as de-
fined below.

First, we introduce component types and relationship
types. A relationship type is simply defined as an identifier.
A component type is defined as a pair v = (name, req).
The name is an identifier specifying v and the req is a set
of relationship types, called requirement fields of the type.
Each rtype ∈ req means that the component v requires that
there is exactly one relationship v −

�� ��rtype→ •. When it is
clear from the context, we simply refer to the component
and relationship types as “types”.

The component types are divided into abstract compo-
nent types and concrete component types. Concrete compo-
nent types correspond to concrete system components such
as actual hardware and software. Abstract component types
correspond to abstract components such as “some applica-
tion” and “some server”. The relationship types are also
divided into abstract relationship types and concrete rela-
tionship types.

The deriving relation “t1 ≺ t2” is defined between two
component types, which intuitively means t1 is a specialized
type of t2. In addition, we define a binary relation t1 � t2 that
means t1 is derived from or equal to t2.

A component “v : ctype” is defined by an identifier v
and a component type ctype. A relationship “vsrc −

�� ��rtype→
vdst” is defined by two components vsrc, vdst and a relation-
ship type rtype. When components and relationships have a
concrete type, they are said to be concrete. Otherwise, they
are said to be abstract.

Now, we can formalize a topology as follows. A topol-
ogy is defined as a pair t = (V, E), where V is a set of com-
ponents and E is a set of relationships on V . A topology rep-
resents a structure of services such as TOSCA in the form of
a directed typed graph. We denote a set of all components
in a topology t by V(t) and a set of all relationships in t by

E(t).

2.3 Refinement

A refinement is a procedure to convert topologies by ap-
plying refinement rules. A refinement rule is defined as a
pair of topologies r = (tlhs, trhs) where tlhs and trhs are called
the left-hand side and right-hand side of r, respectively. A
refinement rule r = (tlhs, trhs) needs to satisfy the follow-
ing conditions; (1) When tlhs has a component v : ctype1,
trhs has a component v : ctype2 such that ctype2 � ctype1
holds, and (2) all identifiers of components are placeholders
{1}, {2}, . . . , {n}. Here, we define the size of r as n.

A matching is a mapping from placeholders {1}, {2},
. . . , {n} to identifiers. A matching is defined as a sequence
of identifiers m = id{1}, id{2}, . . . , id{n} and means a mapping
defined as m({k}) = id{k}.

We can define an action r[m] by pairing a refinement
rule r = (tlhs, trhs) and a match m. The action r[m] is said
to be applicable to a topology t if and only if the follow-
ing conditions are fulfilled: (1) The size of r is equal to the
length of m. (2) For all components ({k}, ctyper) ∈ V(trhs), if
a component ({k}, ctypel) is in V(tlhs), then (m({k}), ctypet)
is in V(t) such that ctypet � ctypel holds and ctyper �

ctypet or ctypet � ctyper holds. (3) For all components
({k}, ctyper) ∈ V(trhs), if a component ({k}, ctypel) is not in
V(tlhs), then a component with the identifier m({k}) is not in
V(t). (4) For all relationships {i}−

�� ��rtype→{j}∈ E(tlhs), a

relationship m({i}) −
�� ��rtype→ m({j}) is in E(t).

When r[m] is applicable to t, we can define a refine-
ment process as the following four steps; (1) Remove a re-
lationship m({i}) −

�� ��rtype→ m({j}) from E(t) if {i}−
�� ��rtype

→{j} < E(trhs), (2) add a new component (m({i}), ctype) to
V(t) if ({i}, ctype) ∈ V(trhs) \ V(tlhs), (3) add a new rela-
tionship m({i}) −

�� ��rtype→ m({j}) to E(t), if {i}−
�� ��rtype→

{j} ∈ E(trhs) \ E(tlhs), and (4) modify the type of a compo-
nent (m({i}), ctype) ∈ V(t) to ctyper if ctyper ≺ ctype and
({i}, ctyper) ∈ V(trhs).

We denote the converted t by the action r[m] by r[m](t).

Example 1. Fig. 2 shows an example of the refinement
where topology t1 is transformed into topology t2 by rule
SENDVIDEO and match mexpl = camera, vs. We assume
that deriving relation VideoSurveillance � App holds
and so node {2} of type App corresponds to vs of type
VideoSurveillance.

Because rule SENDVIDEO means that relationship
sendVideo between {1} and {2} can be replaced by
connectTo[HTTP], sendVideo between camera and vs in
topology t1 is replaced by connectTo[HTTP].

2.4 System Configuration

As stated in Sect. 2.1, the goal of search-based design is
to generate a system configuration for a given service re-
quirement. Formally, a system configuration is defined as

794
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

Fig. 2 Refinement of the topology t1.

a completely concrete topology. A topology t is said to be
completely concrete when the following conditions are ful-
filled: (1) All v ∈ V(t) and all e ∈ E(t) are concrete. (2)
For all v = (idv, reqv) ∈ V(t), if rtype is in reqv, then there is
exactly one component v′ ∈ V(t) and relationship v −

�� ��rtype
→ v′∈ E(t).

2.5 Search-Based Design Algorithm

As shown in Fig. 1, Weaver performs a tree search with
topologies as nodes and refinements as edges. Topologies
occurred in the process of tree search are called search can-
didates. Weaver chooses one search candidate and repeats
operation of adding the results of applying applicable refine-
ments to the search candidate to the search tree to discover
a system configuration satisfying a given service require-
ments.

3. Motivating Example

Our motivating example consists of services for video
surveillance and health checking for cameras. This example
is also used as the running example in Sect. 4. We assume
that a customer has network cameras and wants to install a
new video surveillance system for security. For simplicity,
the customer has only one camera.

Figure 3 shows all component types used in our mo-
tivating example and deriving relations between them. As
shown in Fig. 3, component types are represented as icons.
Each balloon associated with a component type indicates re-
quirement fields of the type. For example, the type App is
defined as a pair (App, {HOST}).

Fig. 3 Component types used in our motivating example.

Fig. 4 tM.in: a service requirement of our motivating example.

The functional requirement of our motivating example
is as follows. Its topology tM.in is shown in Fig. 4. Each
circle in Fig. 4 represents a component in tM.in, contains an
icon that represents the component’s type and is labeled by
its identifier and type. Each double-lined arrow in Fig. 4
represents a concrete relationship in tM.in. Each single-lined
arrow in Fig. 4 represents an abstract relationship in tM.in.

The component camera of type Camera and intra_nw
of type Switch represent the network camera and the
L2 switch, respectively. This part represents cus-
tomer’s environment. The two components vs of type
VideoSurveillance and hc of type HealthChecker rep-
resent applications newly deployed. The functional require-
ments of these services are represented as the two abstract
relationships of types sendVideo and checkStatus. The
relationship sendVideo means that camera sends recorded
video data to vs. The relationship checkStatusmeans that
hc performs a regular health check of camera.

In addition to the functional requirement tM.in, we as-
sume the following quantitative requirement QR.

QR〈1〉 The budget is within 2000 dollars.

QR〈2〉 vs and hc require 7 and 2 gigabytes of RAM to pro-
vide stable operation, respectively.

QR〈3〉 Server_A and Server_B have 6 and 14 gigabytes
of RAM, respectively.

QR〈4〉 The price of Server_A and Server_B is 800 and
1200 dollars, respectively.

Note that requirement QR〈1〉 is imposed by the customer
while requirements QR〈2〉, QR〈3〉 and QR〈4〉 are derived
from the nature of the software (i.e., vs and hc) and the
hardware (i.e., Server_A and Server_B).

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
795

Fig. 5 A set of refinement rules to refine our motivating example.

Figure 5 shows a list of refinement rules† used in the

†For simplicity, we only show the minimum necessary refine-
ment rules to be used in the example.

example. Rules SETTING-SENDVIDEO and SETTING-
CHECKSTATUS resolve sendVideo and checkStatus,
respectively, set values to the properties of the appli-
cation, and impose connectTo[TCP]. Rule RESOLVE-
CONNECT-TCP resolves connectTo[TCP] and imposes
connectTo[IP]. Rule RESOLVE-CONNECT-IP-1 also
resolves connectTo[IP] and connects a Machine com-
ponent and a Switch component with a concrete rela-
tionship LAN. Rule RESOLVE-CONNECT-IP-2 resolves
connectTo[IP] by using an existing connection between
a Machine component and a Switch component. Rule
DEPLOY-APP-1 adds a new Machine component and con-
nects an App component and the Machine component with a
HOST relationship. Rule DEPLOY-APP-2 connects an App
component and a Machine component with a HOST relation-
ship. Rules USE-SERVER-A and USE-SERVER-B con-
cretize the type of a Machine component to Server_A and
Server_B, respectively.

Figure 6 shows only a part of a search tree showing the
search procedure of the basic search-based design method
for service requirement tM.in, extracting only paths lead-
ing to completely concrete topologies. The entire search
tree branches into all states generated by applicable refine-
ments and has much more intermediate states than the one
shown in Fig. 6. As shown in Fig. 6, we can obtain six com-
pletely concrete topologies tM.out.1 . . . tM.out.6 by using the ba-
sic search-based design method described in Sect. 2. How-
ever, tM.out.1, tM.out.3, tM.out.4, and tM.out.6 violate the quantita-
tive requirements.

In existing research on graph rewriting, a mechanism
for including quantitative conditions in refinement rules has
been proposed, and some graph rewriting tools (e.g., LM-
Ntal [19], GROOVE [16]) have actually introduced such
a mechanism. However, our motivating example does not
correctly detect quantitative requirement violations by this
method, because refinement rules can only describe quanti-
tative conditions of a local part of graph.

For example, according to the aforementioned mecha-
nism, the rule DEPLOY-APP-1 would describe constraint
QR〈2〉 and the rule USE-SERVER-A would describe con-
straint QR〈3〉 and QR〈4〉, respectively, and QR〈2〉 and
QR〈3〉 would be individually judged when each rule is
applied. However, in order to detect quantitative con-
straint violations in the topology tM.out.1, QR〈2〉 and QR〈3〉
must be referenced simultaneously and a decision must be
made that “application sv cannot be deployed to machine
machine<1>”. For this reason, an existing graph rewriting
framework for quantitative constraints cannot output a sys-
tem design that satisfies all the quantitative requirements in
the motivating example case.

Therefore, to correctly detect a violation of the quanti-
tative constraints, we need a mechanism that can simultane-
ously check all the quantitative constraints imposed on the
topologies. We implement such a mechanism in our pro-
posed method, as discussed in the next section.

796
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

Fig. 6 Six completely concrete topologies obtained by refining tM.in.
(t1 . . . t13 are intermediate topologies occurring in the search process.)

4. Proposed Method

In this section, we extend the existing Search-based system
design and propose a new method that can discover sys-

tem configurations that meet service requirements, includ-
ing both functional and quantitative requirements. The fea-
tures of our method is the following three points.

• By associating constraints on numeric values to
topologies, our method can include constraints that
cannot be expressed in the graph format in the search
state.

• By introducing set variables in addition to numeric
variables, we were able to express the concept of ac-
cumulated value, such as the amount of memory used,
the amount of network traffic and so on.

• By performing satisfiability check of quantitative con-
straints and pruning search states that violates quantita-
tive constraints, our search algorithm can discover sys-
tem configurations satisfying both functional and quan-
titative constraints effectively.

Here, we present the details of our design method.
First, we explain how to integrate quantitative requirements
with topologies and refinement rules. Second, we describe
our new search-based design method. Finally, we explain a
method to check the satisfiability of the quantitative require-
ments.

4.1 Constrained Topology and Refinement

In this section, we formalize constrained topologies and re-
finements. First, we need to formalize quantitative con-
straints. We define quantitative constraints as a set of formu-
lae over numerical constants and two kind of variables: set
variables and numerical variables. Note that set variables
and numerical variables are disjoint, the domain of numeri-
cal variables is non-negative numbers, and the domain of set
variables is sets of numerical variables, not sets of numbers.

Definition 1. A quantitative constraint c is a set of 〈formula〉
defined as follows.

〈formula〉 ::=〈set formula〉|〈num formula〉
〈num formula〉 ::=〈term〉 = 〈term〉

| Σ〈set variable〉 ≤ 〈term〉
| 〈term〉 ≥ 〈term〉 | 〈term〉 ≤ 〈term〉

〈set formula〉 ::=〈num variable〉 ∈ 〈set variable〉
| 〈set variable〉 ⊆ 〈set variable〉

〈term〉 ::=〈constant〉 | 〈num variable〉
| 〈term〉 + 〈term〉 | 〈term〉 × 〈term〉

The symbols +,×,≤,≥, ∈ and ⊆ mean “summation”,
“multiplication”, “less than or equal”, “greater than or
equal”, “is in”, and “is subset of”, respectively.

A set of all 〈set variable〉 in c are denoted by S c and a
set of all 〈num variable〉 in c are denoted by Nc.

A set of all 〈set formula〉 in c are called the set-part of
c and a set of all 〈num formula〉 in c are called the num-part

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
797

of c.

We define the satisfiability of the quantitative con-
straints. A quantitative constraint c is satisfiable when the
following checking procedure succeeds.

1. Calculate the minimum solution of the set-part of c
(i.e., the minimum assignment of sets of numerical
variables to set variables µc : S c → {V | V ⊆ Nc}) such
that all 〈set formula〉 are fulfilled under the assignment.

2. Replace all “ΣS ≤ 〈term〉” with “v1 + · · ·+vn ≤ 〈term〉”,
where µc(S) = {v1, . . . , vn}.

3. Check the existence of a solution of the num-part of c
(i.e., an assignment of non-negative numbers to numer-
ical variables Mc : Nc → R≥0) such that all 〈formula〉
in c are fulfilled under the assignment.

When a quantitative constraint c is satisfiable by µc and Mc,
we call (µc,Mc) a solution of c.

Example 2. Let’s look at an example of a quantitative con-
straint, where x, y and z represent a num variable and P ,Q
and R represent a set variable.

cs = {x ≥ 3, y + 1 ≥ x, z ≤ y,ΣR ≤ y,
x ∈ P, z ∈ Q, P ⊆ R, Q ⊆ R}

The above quantitative constraint cs consists of eight for-
mulae and is satisfiable by a solution ({P 7→ {x} , Q 7→ {y},
R 7→ {x, y}}, {x 7→ 3, y 7→ 4, z 7→ 1}).

c f = {x ≥ 3, y + 1 ≥ x, z ≥ y,ΣR ≤ y,
x ∈ P, z ∈ Q, P ⊆ R, Q ⊆ R}

The above quantitative constraint c f is not satisfiable. This
is because the formulae ΣR ≤ y are replaced with x + z ≤ y

and x + z ≤ y, and z ≥ y are contradictory.

We attach quantitative constraints to a topology to rep-
resent constraints on the quantitative parameters of compo-
nents. A topology t attached with a quantitative constraint c
is called a constrained topology and denoted (t, c). We can
represent quantitative requirements on topologies by attach-
ing quantitative constraints, as in the following example.

Example 3. As stated in Sect. 3, the topology represent-
ing the functional requirement of our motivating example
is tM.in. Now we also represent the quantitative requirement
of our motivating example by attaching the following quan-
titative constraints cM.in:

cM.in = {ΣBudget ≤ 2000,
vs.req RAM = 7, hc.req RAM = 2}

where Budget is a set variable to contain the prices
of all newly installed components, and vs.req RAM and
hc.req RAM are numerical variables to represent the re-
quired RAM of vs and hc, respectively.

Fig. 7 The topology t7 shown in Fig. 6.

Let us provide another example. Figure 7 is the topol-
ogy t7 occurred in Fig. 6. To represent a quantitative re-
quirement on topology t7, the following quantitative con-
straint c7 is attached to t7.

c7 = {ΣBudget ≤ 2000,
vs.req RAM = 7, hc.req RAM = 2,
machine<1>.price ∈ Budget,

vs.req RAM ∈ machine<1>.Used RAM,

hc.req RAM ∈ machine<1>.Used RAM,

Σmachine<1>.Used RAM

≤ machine<1>.limit RAM,

machine<1>.price ∈ Budget}

The quantitative constraint c7 includes cM.in and four
additional formulae. machine<1>.Used RAM is a set vari-
able to contain all RAM used by applications installed
on machine<1>, machine<1>.limit RAM is a numeri-
cal variable to represent the limitation of available RAM,
and machine<1>.price is a numerical variable to rep-
resent the price of machine<1>. These additional formu-
lae mean that vs and hc require the RAM of machine<1>,
the summation of machine<1>.Used RAM is restricted to
machine<1>.limit RAM, and a certain budget is needed
to install machine<1>.

We also attach quantitative constraints to a refinement
rule. A refinement rule r attached to a quantitative constraint
c is called a constrained refinement rule and denoted (r, c).
A quantitative constraint attached to a refinement rule of size
n can use a variable that includes placeholders {1} . . . {n}
as a substring. We can replace placeholders {1} . . . {n} in a
quantitative constraint c by using a matching m = v1, . . . , vn.
We denote the replaced quantitative constraint by c[m].

As discussed later, a constrained refinement rule im-
poses the attached quantitative constraint to the target of re-
finement.

Example 4. The following two quantitative constraints
cUSE-A and cUSE-B are attached to rule USE-SERVER-A and
USE-SERVER-B, respectively.

cUSE-A = {{1}.price = 800, {1}.limit RAM = 6}
cUSE-B = {{1}.price = 1200, {1}.limit RAM = 14}

798
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

Constraints cUSE-A and cUSE-B determines {1}’s price and
RAM limitation as those of Server A and Server B, re-
spectively.

Let us illustrate additional examples. The following
two quantitative constraints cDEPLOY-APP-1 and cDEPLOY-APP-2 are
attached to rules DEPLOY-APP-1 and DEPLOY-APP-2,
respectively.

cDEPLOY-APP-1 = {{2}.price ∈ Budget,

{1}.req RAM ∈ {2}.Used RAM,

Σ{2}.Used RAM ≤ {2}.limit RAM}

cDEPLOY-APP-2 = {{1}.req RAM ∈ {2}.Used RAM}

The quantitative constraints cDEPLOY-APP-1 and cDEPLOY-APP-2

represent a quantitative requirement for the right-hand
side of DEPLOY-APP-1 and DEPLOY-APP-2, respectively.
The quantitative constraint cDEPLOY-APP-2 is only one formula,
{1}.req RAM ∈ {2}.Used RAM, which means an App com-
ponent {1} requires the RAM of a Machine component {2}.
In addition, the quantitative constraint cDEPLOY-APP-1 has two
more formulae: {2}.price ∈ Budget means that the in-
stallation cost of a new Machine component {2} comes out
of the customer’s budget Budget, and Σ{2}.Used RAM ≤

{2}.limit RAM means that the available RAM of {2} is re-
stricted to {2}.limit RAM.

We call a person who defines refinement rules a rule
modeler. The quantitative constraints for each refinement
rule are defined by a rule modeler along with its graph trans-
formation rule, and associated with the rule. For exam-
ple, consider the case where a rule modeler defines USE-
SERVER-A as a rule to convert the type of node {1} from
abstract type Machine to concrete type Server_A. In this
case, the rule modeler associates the quantitative constraint
cUSE-A in Example 4 with USE-SERVER-A as a constraint
that sets undefined parameters (cf. RAM limit, etc...) of
{1} to concrete Server_A’s values.

Example 5. In Sect. 3, we only discussed the quantita-
tive requirements for memory usage and monetary cost, but
other quantitative requirements can be also handled in our
motivating example as follows.

CPU clock rate. For example, a constraint that
the operation of application hc requires CPU clock rate
of 3.2 GH or higher can be expressed by adding con-
straint hc.req clockRate = 3.2 to the quantitative
requirement cM.in and associating additional constraint
{1}.req clockRate ≤ {2}.clockRate to refinement
rule DEPLOY-APP-1 and DEPLOY-APP-2. In addition,
by associating additional constraint {1}.clockRate =

2.0 to refinement rule USE-SERVER-A and constraint
{1}.clockRate = 3.6 to refinement rule USE-SERVER-B,
we can express quantitative condition “application hc can-
not work correctly on Server_A, while it can work correctly
on Server_B.”

Network traffic. Network traffic can be handled in
the same way as the amount of memory used. For exam-
ple, consider the case where camera C uses 1 Mbps of traf-

fic when sending video to application vs. In this case, we
can express network traffic as constraints by associating the
following constraint cTCP with refinement rule RESOLVE-
CONNECT-TCP.

cTCP = {{1}.tf ∈ ({1},{2}).all TCP tf∑
({1},{2}).all TCP tf

≤ ({1},{2}).TCP tf}

Here, variable {1}.tf means the amount of traffic re-
quired for sending the video data of camera {1}, variable
({1},{2}).all TCP tf is a set variable including num vari-
ables of all TCP communications between camera {1} and
application {2}, and variable ({1},{2}).TCP tf means the
amount of traffic required to make all TCP communications
between camera {1} and application {2}.

Constraint cTCP represents the amount of network traf-
fic of TCP communication, but similarly, constraints on the
amount of network traffic of other network layers can also
be represented.

Now we explain the procedure for refining constrained
topologies. Let (t, ct) be a constrained topology, (r, cr) be a
constrained refinement rule, and m be a matching such that
the action r[m] is applicable to t. The procedure for refining
(t, ct) by (r, cr) and m is defined as follows:

1. Obtain r[m](t) by the plain refinement procedure de-
scribed in Sect. 2.

2. Check the satisfiability of ct ∪ cr[m]. (If ct ∪ cr[m] is
not satisfiable, this refinement procedure fails.)

3. Attach ct ∪ cr[m] to r[m](t).

We obtain a constrained topology (r[m](t), ct ∪ cr[m])
and denote it by (r, cr)[m]((t, ct)).

Example 6. Let us consider the refinement of the con-
strained topology (t7, c7) by a constrained refinement
rule (USE-SERVER-B, cUSE-B) and a matching m =

machine<1>. First, as shown in Fig. 6, refinement by USE-
SERVER-B and m converts t7 into tM.out.2. Second, c7 is
merged with the following quantitative constraint cUSE-B[m].

cUSE-B[m] = {machine<1>.price = 1200,
machine<1>.limit RAM = 14}

As a result, the following constraint cM.out.2 is obtained.

cM.out.2 = {ΣBudget ≤ 2000,
vs.req RAM = 7, hc.req RAM = 2,
machine<1>.price ∈ Budget,

vs.req RAM ∈ machine<1>.Used RAM,

hc.req RAM ∈ machine<1>.Used RAM,

Σmachine<1>.Used RAM

≤ machine<1>.limit RAM

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
799

machine<1>.price ∈ Budget,

machine<1>.price = 1200,
machine<1>.limit RAM = 14}

Finally, the satisfiability of cM.out.2 is checked. The
following assignment (µM.out.2,MM.out.2) satisfies cM.out.2, so
cM.out.2 is proven to be satisfiable and this refinement proce-
dure succeeds.

µM.out.2 = {machine<1>.Used RAM 7→

{vs.req RAM, hc.req RAM}}

MM.out.2 = {vs.req RAM 7→ 7, hc.req RAM 7→ 2,
machine<1>.price 7→ 1200,
machine<1>.limit RAM 7→ 14}

Next, we introduce a failure case of the refine-
ment procedure. Consider the refinement of the con-
strained topology (t7, c7) by a constrained refinement
rule (USE-SERVER-A, cUSE-A) and a matching m =

machine<1>. In this case, in the second step of the refine-
ment procedure, the following constraint cM.out.1 is obtained.

cM.out.1 = {ΣBudget ≤ 2000,
vs.req RAM = 7, hc.req RAM = 2,
machine<1>.price ∈ Budget,

vs.req RAM ∈ machine<1>.Used RAM,

hc.req RAM ∈ machine<1>.Used RAM,

Σmachine<1>.Used RAM

≤ machine<1>.limit RAM

machine<1>.price ∈ Budget,

machine<1>.price = 800,
machine<1>.limit RAM = 6}

The quantitative constraint cM.out.1 is not satisfiable,
because the formula

Σmachine<1>.Used RAM

≤ machine<1>.limit RAM

is replaced by

vs.req RAM + hc.req RAM

≤ machine<1>.limit RAM

and is in conflict with the following equalities.

vs.req RAM = 7, hc.req RAM = 2,
machine<1>.limit RAM = 6

Thus, this refinement procedure is failed.
This failure means that the refinement of t7 by USE-

SERVER-A and the matching m = machine<1> shown in
Fig. 6 does not occur. Therefore, our method does not output
the topology tM.out.1 that violates the RAM requirements of
the applications.

4.2 Search Algorithm on Constrained Topologies

In this section, we propose a new search-based design algo-
rithm that performs a tree search on constrained topologies
by means of constrained refinement rules in a similar way to
the method described in Sect. 2. The key difference here is
that our algorithm refines a quantitative constraint in addi-
tion to a topology and excludes candidates from the search
if the quantitative constraint is not satisfiable.

Algorithm 1 shows our search-based design algorithm.
It receives a constrained topology representing the service
requirement and repeatedly applies the new refinement pro-
cedure to the constrained topology. The function σ in line 3
is called a tree-search strategy receiving search candidates
T and returning a subset of {((t, ct), (r, cr),m) | (t, ct) ∈
T, r[m] is applicable to t}. This function chooses targets of
refinement in each iteration. By line 9, a quantitative con-
straint is updated, and by line 10, a constrained topology
can be added to search candidates only when the quantita-
tive constraint is proven to be satisfiable. In our algorithm,
all quantitative constraints given as customer requirements
and added by quantitative refinement rules are propagated
to child nodes of the search tree and are checked for con-
sistency when new search candidates are added to the tree.
Therefore, by using this algorithm, we can reliably obtain
only completely concretized topologies that satisfy both the
functional and quantitative requirements.

Here, we explain why our algorithm performs con-
straint checking on all intermediate states. In fact, by replac-
ing conditional expressions of the if statements located in
lines 10 and 11, constraints is only checked for completely
concrete topologies and the number of constraint checks is
reduced. However, if a search algorithm ignores the satisfi-
ability of quantitative requirements during search process, it
may result in a large number of topologies that satisfy func-
tional requirements but violate quantitative requirements.
For example, the problem used in Sect. 5 with n = 7 has
342 concrete configurations that satisfy the functional re-
quirements, but only one of them satisfies the quantitative
requirements. Since it takes a considerable amount of time
to arrive at a concrete configuration, it is very inefficient to
generate and test these concrete configurations one by one
at random. Due to the above reason, we adopted a method
that detects the violation of quantitative requirements in in-
termediate states and removes them from search candidates,
as in the proposed method.

Example 7. Figure 8 shows a part of the search process
when constrained topology (tM.in, cM.in) is given as input of
Algorithm 1. Each ti is the same topologies shown in Fig. 6
and each ci is the quantitative constraint attached to ti.

Let us focus on constrained topology (t7, c7). Topology
t7 is shown in Fig. 7 and constraint c7 is shown in Exam-
ple 6.

As shown in Fig. 6, USE-SERVER-A[machine<1>]
is applicable to t7 and tM.out.1 is generated as a re-

800
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

sult of refinement of t7 and violates quantitative re-
quirement QR〈2〉. In contrast, as we stated in Ex-
ample 6, constraint c7 ∪ cUSE-A[machine<1>] is not
satisfiable and the refinement procedure of (t7, c7) by
(USE-SERVER-A, cUSE-A)[machine<1>] is failed.

On the other hand, as we stated in Example 6, con-
straint c7 ∪ cUSE-B[machine<1>] is satisfiable. So the con-
strained topology (tM.out.2, cM.out.2) is generated as a result
of refinement of (t7, c7).

Similarly, t10 and tM.out.6 in Fig. 6 do not occur
in Fig. 8 because c11 ∪ cUSE-A[machine<1>] and c13 ∪

cUSE-B[machine<2>] is not satisfiable, respectively. As a re-
sult, Algorithm 1 can output only tM.out.2 and tM.out.5 from
tM.out.1, . . . , tM.out.6 as system configurations that satisfy all
the requirements in the motivating example.

Algorithm 1 Tree Search on Constrained Topologies
Input: Requirement (t0, c0)
Output: Service configuration tsc, or “Failed”
1: T ← {(t0, c0)}
2: loop
3: E← σ(T)
4: if E = ∅ then
5: return “Failed”
6: end if
7: for ((t, ct), (r, cr),m) ∈ E do
8: t′ ← r[m](t)
9: c′ ← ct ∪ cr[m]

10: if c′ is satisfiable then
11: if t′ is completely concrete then
12: return t′

13: end if
14: T ← T ∪ {(t′, c′)}
15: end if
16: end for
17: end loop

4.3 Efficient Algorithm of Constraint Checking

In this section, we present constraint checking, which is a
technique to judge whether a given quantitative constraint is
satisfiable at line 10 in Algorithm 1. To check the satisfiabil-
ity of a quantitative constraint c by the procedure described
in Sect. 4.1, we need a way to obtain µc, which is the mini-
mum assignment of the set-part of c, and a way to check the
satisfiability of the num-part of c. Our definition of quanti-
tative constraints is a very general one, so there are several
available methods for resolving them.

First, we calculate the set-part of a given quantitative
constraint. Assignment of values to set variables that satisfy
given set constraints is easily calculated by the round-robin
iterative algorithm [11].

Second, a problem to check the satisfiability of nu-
merical constraints is called a non-linear real arithmetic
(NRA) problem, and there are many algorithms [7] and
tools [6], [8], [9] to resolve it. One of these is Z3 [8], a
state-of-the-art tool developed by Microsoft. We use Z3 in

Fig. 8 A part of search process of Algorithm 1.

our prototype to check the satisfiability of the num-part of a
quantitative constraint.

By using the round-robin algorithm and an external
tool for solving NRA, we obtain a naı̈ve algorithm Cnaı̈ve.
However, it is generally very time-consuming to solve NRA
problems, and thus it is inefficient to run an NRA solving
process in each loop iteration of Algorithm 1.

To address this issue, we propose an efficient constraint
checking algorithm Copt that omits a part of the satisfiabil-
ity checking for numerical constraints. Algorithm 2 shows
the procedure of Copt, which is based on the following fact
pertaining to our quantitative constraints.

Fact 1. Let c1 and c2 be quantitative constraints. If c1 is a
subset of c2 and c2 is satisfiable, c1 is satisfiable.

Fact 1 enables us to omit a part of the satisfiabil-
ity checking. That is, when a quantitative constraint cs is

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
801

proven to be satisfiable, we can judge that all subsets of cs
are satisfiable as well, without performing additional con-
straint checking. In addition, when a quantitative constraint
c f is proven to be not satisfiable, we can judge that all super-
sets of c f are also not satisfiable. By using Fact 1, algorithm
Copt memoizes the results of constraint checking to SATs
and UNSATs and can omit a part of the constraint checking
by using these memoized checking results.

Algorithm 2 Efficient numerical constraint checking Copt

Input: A num-part of a quantitative constraint cnum and global variables
SATs and UNSATs

Output: Satisfiability of cnum: true or false
1: for all cs ∈SATs do
2: if cnum ⊆ cs then
3: return true
4: end if
5: end for
6: for all c f ∈UNSATs do
7: if c f ⊆ cnum then
8: return false
9: end if

10: end for
11: result← output of an external checking tool for cnum
12: if result then
13: SATs← SATs ∪{cnum}

14: else
15: UNSATs← UNSATs ∪{cnum}

16: end if

5. Evaluation

We implemented our search-based design algorithm in
Python 3 and executed it on a server with Intel-Xeon (3.60
GHz) and 32 GB of memory. We prepared two proto-
type tools, Topt and Tnaı̈ve, for implementing our method.
Tool Topt implements checking algorithm Copt described
in Sect. 4, and tool Tnaı̈ve implements checking algorithm
Cnaı̈ve. We tested the effectiveness of algorithm Copt by com-
paring the evaluation results of Topt and Tnaı̈ve. We adopted
Z3 [8] as a solver to check satisfiability of the num-part of a
quantitative constraint.

We conducted the experiment under scenarios based on
our motivating example described in Sect. 3 and added dif-
ficulty by having the tools find the appropriate system de-
signs. We applied our prototype tool to experimental in-
puts and evaluated whether the desired system configuration
could be obtained. We also examined the time efficiency.

5.1 Evaluation Setup

5.1.1 Service Requirement

The experiment used the same components as the motivating
example described in Sect. 3, and also used the same quan-
titative requirements QR〈2〉, QR〈3〉 and QR〈3〉; (QR〈2〉)
nodes VideoSurveillance and HealthChecker require
7 and 2 gigabytes of RAM, respectively, (QR〈3〉) Server_A

Fig. 9 A topology tEval.n used in evaluation.

and Server_B have 6 and 14 gigabytes of RAM, respec-
tively, and (QR〈4〉) the price of Server_A and Server_B is
800 and 1200 dollars, respectively.

Figure 9 shows a topology tEval.n used as a ser-
vice requirement in the evaluation. While the motivat-
ing example tM.in has only one camera, topology tEval.n
has n(≥ 1) cameras, and the number of video surveil-
lance applications needs to be scaled up accordingly.
The video surveillance application we used can handle
more than one camera, but 3 gigabytes of RAM per
camera is required in addition to 7 gigabytes of RAM
for basic usage. The topology tEval.n has a vs compo-
nent of type VideoSurveillanceService, whereas the
motivating example tM.in has a vs component of type
VideoSurveillance. The VideoSurveillanceService
type intuitively represents a service function composed of
multiple components of type VideoSurveillance.

The following constraint cEval.n is attached to tEval.n.

cEval.n = {hc.req RAM = 2,ΣBudget ≤ Costmin(n)}

Here, Costmin(n) is defined as

Costmin(n) :=

1200i if n = 2i − 1
1200i + 800 if n = 2i.

The value of Costmin(n) is the minimum budget required to
build a system satisfying the service requirement tEval.n.

5.1.2 Refinement Rules

The refinement rules used in the evaluation are basically the
same as those introduced in Sect. 3, except for the two points
described below.

First, the following quantitative constraint cSETTING-SENDVIDEO

is attached to rule SETTING-SENDVIDEO. The con-
straint cSETTING-SENDVIDEO is intended to take into account the
additional required RAM when a new camera is added to
the target of the VideoSurveillance components.

cSETTING-SENDVIDEO = {{1}.req RAM = 3,
{1}.req RAM ∈ {2}.consumed RAM}

Second, we add the two rules SCALE-UP-1 and
SCALE-UP-2, which are shown in Fig. 10. By using either
of these rules, the component VideoSurveillanceService

802
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

Fig. 10 Two additional rules used in evaluation.

can generate a new component of type VideoSurveillance
and assign a request from a camera (i.e., sendVideo) to
components of type VideoSurveillance.

The following quantitative constraint cSCALE-UP-1 is at-
tached to rule SCALE-UP-1.

cSCALE-UP-1 = {{3}.base RAM = 7,
Σ{3}.consumed RAM ≤ {3}.req RAM,

{3}.base RAM ∈ {3}.consumed RAM}

The quantitative constraint cSCALE-UP-2 = ∅ is attached to
rule SCALE-UP-2.

5.1.3 Expected System Configuration

Figure 11 shows an expected system configuration tRes.n ob-
tained by refining (tEval.n, cEval.n).

When n is equal to 2i(i = 1, 2, . . .), the “Type A” topol-
ogy shown in Fig. 11 is the only system configuration that
satisfies the requirement (tEval.n, cEval.n). Alternatively, when
n is equal to 2i − 1(i = 1, 2, . . .), the “Type B” topology
shown in Fig. 11 is the only system configuration that satis-
fies the requirement (tEval.n, cEval.n). We expect our prototype
tools to output the topology tRes.n by applying our search-
based design method to requirements (tEval.n, cEval.n).

5.2 Results

Our prototype tool could successfully generate the topology
tRes.n from each (tEval.n, cEval.n) for n = 1, . . . , 7. Tables 1
and 2 list the evaluation results. The “Total time [sec]” col-
umn shows the total time it took for the tools to find the
topology tRes.n. The “Time to check [sec]” column shows
the summation of the time it took for the tools to check the
satisfiability of the quantitative constraints at each refine-
ment. The “# of check” column shows the total number of

Fig. 11 A topology tRes.n expected as an output of our algorithm.

Table 1 Evaluation results of Topt.

n Total time [sec] Time to check [sec] # of check
1 1.22 0.44 24
2 2.19 1.14 62
3 5.48 3.52 180
4 11.89 8.25 391
5 36.26 24.53 961
6 219.6 130.97 3453
7 2622.49 1706.42 21829

Table 2 Evaluation results of Tnaı̈ve.

n Total time [sec] Time to check [sec] # of check
1 3.66 2.81 161
2 6.01 4.91 287
3 15.64 13.58 756
4 34.45 31 1590
5 152.49 140.49 6248
6 1389.12 1297.19 47868
7 12302.64 11345.12 407035

satisfiability checks performed while the tools searched the
topology tRes.n.

As shown, checking algorithm Copt was much more ef-
ficient than naı̈ve checking algorithm Cnaı̈ve. Algorithm Copt
could reduce the computation time of the checking by 73.3–
89.9% and the number of checks by 75.4–94.6% compared
to the conventional algorithm.

6. Conclusion

We have presented a search-based system design method
that receives the functional and quantitative service require-
ments at the same time and generates a system configura-
tion that satisfies them both. Our method propagates con-

KUWAHARA et al.: AN INTENT-BASED SYSTEM CONFIGURATION DESIGN FOR IT/NW SERVICES WITH FUNCTIONAL AND QUANTITATIVE CONSTRAINTS
803

straints over the quantitative parameters of system compo-
nents along with a search process to find the system config-
uration and chooses only topologies with consistent quanti-
tative constraints as search candidates. We also proposed an
efficient constraint checking algorithm for checking the con-
sistency of quantitative constraints during the search process
and showed that it decreases the computation time for con-
straint checking.

Although the proposed method can deal with quantita-
tive constraints, it still has many limitations and challenges.
In particular, there are three major challenges. First, Prepar-
ing and maintaining constrained refinement rules often re-
quires a high degree of expertise or a high human cost.
For example, if we want to add additional constraints on
different quantitative parameters to the motivating exam-
ple, we have to add constraints to all the relevant refine-
ment rule. Second, it is not clear what kinds of constraints
should be handled in order to express practical quantita-
tive requirements. We should experiment with handling a
greater variety of quantitative requirements in more various
scenarios. The third is the time cost of constraint checking:
even though we have achieved a significant improvement in
checking efficiency as shown in Sect. 5, the time spent on
constraint checking still takes up a large part of the compu-
tation time. We plan to enhance constraint checking mecha-
nism by using characteristics of quantitative requirements.

Acknowledgments

This work was conducted as part of the project entitled
“Research and development for innovative AI network inte-
grated infrastructure technologies (JPMI00316)” supported
by the Ministry of Internal Affairs and Communications,
Japan.

References

[1] Kustomize - kubernetes native configuration management. https://
kustomize.io/

[2] Network orchestration & edge networking — cloudify. https://
cloudify.co/

[3] Openstack docs: Heat orchestration template (HOT) guide. https://
docs.openstack.org/heat/rocky/template guide/hot guide.html

[4] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C. Nechifor, D. Petcu, A. Ger-
icke, and C. Sheridan, “MODAClouds: A model-driven approach
for the design and execution of applications on multiple clouds,”
2012 4th International Workshop on Modeling in Software Engi-
neering (MISE), pages 50–56, June 2012.

[5] L. Baresi, R. Heckel, S. Thöne, and D. Varro, “Style-based model-
ing and refinement of service-oriented architectures,” Softw. Syst.
Model., vol.5, pp.187–207, 2006.

[6] C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanović, T.
King, A. Reynolds, and C. Tinelli, “CVC4,” G. Gopalakrishnan and
S. Qadeer, eds., Computer Aided Verification, pp.171–177, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[7] G.E. Collins, “Quantifier elimination for real closed fields by cylin-
drical algebraic decompostion,” H. Brakhage, ed., Automata Theory
and Formal Languages, pp.134–183, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1975.

[8] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools and

Algorithms for the Construction and Analysis of Systems, LNCS,
vol.4963, pp.337–340, April 2008.

[9] B. Dutertre, “Yices 2.2,” A. Biere and Ro. Bloem, eds., Computer
Aided Verification, pp.737–744, Springer International Publishing,
Cham, 2014.

[10] Á. Hegedüs, Á. Horváth, I. Ráth, and D. Varró, “A model-
driven framework for guided design space exploration,” 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011), pp.173–182, 2011.

[11] J.B. Kam and J.D. Ullman, “Global data flow analysis and iterative
algorithms,” J. ACM, vol.23, no.1, pp.158–171, 1976.

[12] T. Kuroda, T. Kuwahara, T. Maruyama, K. Satoda, H. Shimonishi,
T. Osaki, and K. Matsuda, “Weaver: A novel configuration designer
for IT/NW services in heterogeneous environments,” 2019 IEEE
Global Communications Conference (GLOBECOM), pp.1–6, 2019.

[13] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for web services composition,”
IEEE Trans. Softw. Eng., vol.30, no.5, pp.311–327, 2004.

[14] A.M. Maia, Y. Ghamri-Doudane, D. Vieira, and M.F. de Castro,
“Optimized placement of scalable IoT services in edge computing,”
2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp.189–197, 2019.

[15] D. Menascé, H. Gomaa, S. Malek, and J. Sousa, “SASSY: A frame-
work for self-architecting service-oriented systems,” IEEE Softw.,
vol.28, no.6, pp.78–85, Jan. 2012.

[16] A. Rensink, I. Boneva, H. Kastenberg, and T. Staijen, “User man-
ual for the GROOVE tool set,” https://groove.ewi.utwente.nl/wp-
content/uploads/usermanual1.pdf, 2009.

[17] M. Rutkowski, L. Boutier, and C. Lauwers, “TOSCA simple profile
in YAML version 1.2,” https://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.ht
ml, 2019.

[18] G. Sallam and B. Ji, “Joint placement and allocation of virtual net-
work functions with budget and capacity constraints,” IEEE IN-
FOCOM 2019 - IEEE Conference on Computer Communications,
pp.523–531, 2019.

[19] K. Ueda, “LMNtal as a hierarchical logic programming language,”
Theor. Comput. Sci., vol.410, no.46, pp.4784–4800, Nov. 2009.

Takuya Kuwahara received his master’s
degree of information science and technology
from Graduate School of Information Science
and Technology, The University of Tokyo in
2015 and has been engaged in research on for-
mal methods for program verification. He joined
in NEC Corporation in 2015. Now he is work-
ing on researches for automation technology for
ICT system design and operation.

https://kustomize.io/
https://kustomize.io/
https://cloudify.co/
https://cloudify.co/
https://docs.openstack.org/heat/rocky/template_guide/hot_guide.html
https://docs.openstack.org/heat/rocky/template_guide/hot_guide.html
http://dx.doi.org/10.1109/mise.2012.6226014
http://dx.doi.org/10.1109/mise.2012.6226014
http://dx.doi.org/10.1109/mise.2012.6226014
http://dx.doi.org/10.1109/mise.2012.6226014
http://dx.doi.org/10.1109/mise.2012.6226014
http://dx.doi.org/10.1109/mise.2012.6226014
https://doi.org/10.1007/s10270-006-0001-4
https://doi.org/10.1007/s10270-006-0001-4
https://doi.org/10.1007/s10270-006-0001-4
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1109/ase.2011.6100051
http://dx.doi.org/10.1109/ase.2011.6100051
http://dx.doi.org/10.1109/ase.2011.6100051
http://dx.doi.org/10.1109/ase.2011.6100051
http://dx.doi.org/10.1145/321921.321938
http://dx.doi.org/10.1145/321921.321938
http://dx.doi.org/10.1109/globecom38437.2019.9014133
http://dx.doi.org/10.1109/globecom38437.2019.9014133
http://dx.doi.org/10.1109/globecom38437.2019.9014133
http://dx.doi.org/10.1109/globecom38437.2019.9014133
http://dx.doi.org/10.1109/tse.2004.11
http://dx.doi.org/10.1109/tse.2004.11
http://dx.doi.org/10.1109/tse.2004.11
https://ieeexplore.ieee.org/document/8717931
https://ieeexplore.ieee.org/document/8717931
https://ieeexplore.ieee.org/document/8717931
https://ieeexplore.ieee.org/document/8717931
http://dx.doi.org/10.1109/ms.2011.22
http://dx.doi.org/10.1109/ms.2011.22
http://dx.doi.org/10.1109/ms.2011.22
https://groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf
https://groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf
https://groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html
http://dx.doi.org/10.1109/infocom.2019.8737400
http://dx.doi.org/10.1109/infocom.2019.8737400
http://dx.doi.org/10.1109/infocom.2019.8737400
http://dx.doi.org/10.1109/infocom.2019.8737400
http://dx.doi.org/10.1016/j.tcs.2009.07.043
http://dx.doi.org/10.1016/j.tcs.2009.07.043

804
IEICE TRANS. COMMUN., VOL.E104–B, NO.7 JULY 2021

Takayuki Kuroda received M.E and Ph.D.
degreed from the Graduate School of Informa-
tion Science, Tohoku University, Sendai, Japan
in 2006 and 2009. He joined NEC Corporation
in 2009 and has been engaged in research on
model-based system management for Cloud ap-
plication and Software-defined networks. As a
visiting scalar in the Electrical Engineering and
Computer Science department at the Vanderbilt
University in Nashville, he studied declarative
approach of automated workflow generation for

ICT system update. Now he is working on research for automation tech-
nologies for system design, optimization and operation.

Takao Osaki received Ph.D. from the
Graduate School of Science, Osaka University,
Osaka, Japan in 1999. He joined NEC Cor-
poration in 1999 and has been engaged in re-
search and development on requirement engi-
neering and enterprise computer system integra-
tion.

Kozo Satoda received his B.E and M.E
degrees in electrical engineering from Kyoto
University in 1991 and 1993 respectively. He
joined NEC in 1993. He has received best paper
award of IEEE CQR workshop 2010, best pa-
per award of IEEE CCNC 2017, IEICE Commu-
nications Society Excellent Paper Award 2016,
63rd Electrical Science and Engineering Promo-
tion Awards and 2016 IPSJ Industrial Achieve-
ment Award. His research interests include mul-
timedia communication, streaming and mobile

traffic management. He is a member of IEICE, IPSJ and IEEE.

