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SUMMARY We propose a spectrum regeneration and demodulation
method for multiple direct RF undersampled real signals by using a new al-
gorithm. Many methods have been proposed to regenerate the RF spectrum
by using undersampling because of its simple circuit architecture. How-
ever, it is difficult to regenerate the spectrum from a real signal that has a
band wider than a half of the sampling frequency, because it is difficult to
include complex conjugate relation of the folded spectrum into the linear
algebraic equation in this case. We propose a new spectrum regeneration
method from direct undersampled real signals that uses multiple clocks and
an extended algorithm considering the complex conjugate relation. Simu-
lations are used to verify the potential of this method. The validity of the
proposed method is verified by using the simulation data and the measured
data. We also apply this algorithm to the demodulation system.
key words: direct undersampling, real signal, sub-nyquist, spectrum re-
generation, compressed sensing, IoT, demodulation

1. Introduction

Recently, the market of the Internet of Things (IoT) [1]
has become wider as is well known. The communica-
tion systems of IoT applications are almost wireless sys-
tems because the arrangement of equipments in the industry
changes frequently. The cognitive wireless system [2], [3]
using software-radio is a promising technology for IoT. One
wireless frequency channel is used in a vacant band by
searching a vacant spectrum band in this case. A spectrum
monitor is necessary for this kind of system. Many spectrum
regeneration methods [4]–[25] have been studied that use
analog to digital converters (ADCs) for this kind of monitor
as shown in Table 1. The fundamental solution is the direct
Nyquist sampling method because of its simple architecture.
However, a high-speed sampling ADC is necessary for the
wideband signal. Many signal mixing applications [4]–[15]
are studied for this problem. This method is a useful solu-
tion except for the disadvantage of some additional mixers
and some local oscillators. Direct undersampling technol-
ogy is also useful with a low sampling rate and a simple cir-
cuit architecture. The special spectrum regeneration method
is necessary in this case. Some direct undersampling meth-
ods to regenerate the RF spectrum are proposed. The se-
lected sampling frequency method [16] is useful when RF
bandwidth is narrow. However, RF bandwidth has a wide-
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range in almost any case. Multiple coset phase sampling
method [17], [18] is useful for wideband signal, however,
the precise control for different phase is necessary. Multiple
sampling frequency method [19]–[21] is useful for a wide-
band signal if the sampled signals after ADC are treated as
real. However, the sampled signals are treated as a complex
signal or simple signal ignoring spectrum folding in these
conventional cases. We need to set IQ-baseband-mixer with
the circuit complexity in order to obtain these complex sig-
nals. Power spectrum estimation methods [22]–[25] are use-
ful when only power (not complex) spectrums are required.

We propose a direct undersampling method treating
real signals after multiple ADCs to regenerate the wider
band complex spectrum than the half of Nyquist frequency
without any mixer. The direct undersampling signals should
be treated as real sampled signals. There are three problems
in this case.
(1) There are both forward and backward frequency direc-
tions for even and odd folding spectrums.
(2) Each even and odd folded spectrum element of the same
RF frequency has a relation to the complex conjugate.
(3) Folded spectrum element has a convolution value of
these two complex conjugate elements at wrap frequency.

Generally, it is difficult to include the complex conju-
gate transformation in the general linear algebraic equation.
Therefore, it is difficult to make an algorithm in the for-
mer real signal case because the condition includes a com-
plex conjugate relation. We propose a new reconstruction
method by using an extended algorithm based on the com-
press sensing [26] including a relation of a complex conju-
gate, a folding direction for folded spectrums and a convo-
lution of even/odd spectrums at wrap frequency. We apply
this technique for wireless IoT band to verify the effective-
ness of this method using simulation and measured data. We
also apply this technique to a demodulation system in order
to confirm feasibility of software tunable function without
IF or baseband filter or high frequency ADC.

2. Spectrum Regeneration Method

A proposed spectrum regeneration system using multiple
clocks (sampling frequency f s) undersampling ADC is
shown in Fig. 1. We apply the Fast Fourier Transform (FFT)
for the multiple real signals in order to transform to under-
sampled complex spectrums. We will explain our ideas at
first. We consider the simple condition of original spectrums

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



SHIBA et al.: A SPECTRUM REGENERATION AND DEMODULATION METHOD FOR MULTIPLE DIRECT UNDERSAMPLED REAL SIGNALS
1261

Table 1 Comparison of spectrum regeneration system.

Fig. 1 Frequency spectrum regeneration system.

Fig. 2 Relation between undersampling spectrums and original RF spec-
trums.

and undersampling spectrums as shown in Fig. 2. A rela-
tion between original RF complex spectrums x1, x2, x3, x4
and undersampling spectrums y1, y2 are expressed by simple
equations,(

y1
y2

)
=

(
x1 + x3
x2 + x4

)
. (1)

This equation can be expressed by using equation,(
y1
y2

)
=

(
1x1 + 0x2 + 1x3 + 0x4
0x1 + 1x2 + 0x3 + 1x4

)

=

(
1 0 1 0
0 1 0 1

) (
x1 x2 x3 x4

)
. (2)

We define a desired frequency spectrum vector (x), a mea-
sured undersampled frequency spectrum vector (y) and a
sparse coefficient matrix (A)

(y) =

(
y1
y2

)
, (x) =

(
x1 x2 x3 x4

)
,

(A) =

(
1 0 1 0
0 1 0 1

)
, (3)

we can obtain a linear algebraic equation,

(y) = (A)(x). (4)

We expand n-th order (x) and m-th order (y). Even if n is
higher than m, we can obtain a sparse solution by the com-
pressed sensing algorithm [26]. It is important how to treat
folded spectrums in this real undersampled signal case. We
adjust a total sampling time Tt for each kth clock ADC so
that a spectrum frequency resolution

∆ f =
1
Tt

=
f sk

Nsk
, (5)

become a constant. Here f sk is sampling frequency and Nsk
is the number of sampling points of k-th ADC respectively.
We transform each frequency f to digitized value

f d =
f

∆ f
, (6)

to set digitized frequencies corresponding to (x) and (y) vec-
tor to the same grids. Partial (x) vector is defined as(

x(l)
n(l)

)
=

(
x(l)

1 , x
(l)
2 , · · · , x

(l)
2n(l)−1, x

(l)
2n(l) , · · · , x

(l)
2N(l)−1, x

(l)
2N(l)

)
,

(7)
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and there are N(l) elements for band l. Each element is a
complex value corresponding to digitized frequency vector(

f x d(l)
n(l)

)
=
(

f x d(l)
1 , f x d(l)

1 , · · · , f x d(l)
N(l) , f x d(l)

N(l)

)
. (8)

Here, each element x(l)
m(l) are paired as

x(l)
2q−1 = x(l)

2q (2q ≤ N(l), q: nature number), (9)

corresponding to a folding number Q which is defined by

Q = b( f x dn) / (Nsk/2)c . (10)

An element of x(l)
2q−1 is corresponding to Q=zero or even

number of a folded spectrum and an element of x(l)
2q is cor-

responding to Q=odd number of folded spectrum. We set
the complex conjugated pair elements for Q=odd or even
number to the neighbor elements of (x). A partial (y) vec-
tor is defined as regeneration from undersampling by using
compressed sensing method.(

y(k)
m(k)

)
=

(
y(k)

1 , y(k)
2 , · · · , y(k)

m(k) , · · · , y
(k)
M(k)

)T
, (11)

for a measured spectrum by k-th clock undersampling ADC.
The number of y(k)

m(k) is M(k). A digitized frequency vector
corresponding to

(
y(k)

m(k)

)
is also defined as(

f y d(k)
m(k)

)
=

(
0, 1, · · · , f y d(k)

m(k) , · · · , f y d(k)
M(k) = Nsk/2

)T

(12)

We make total (x) and (y) connecting partial (x) and (y) vec-
tors. We also make a maximum digitized frequency vector
( f y d maxm) as(

f y d max
m

)
= {(Ns1/2, · · · ,Ns1/2) , · · · , (Nsk/2, · · · ,Nsk/2)} .

(13)

We set each element of (A) to 1 when folded frequency cor-
responding to (x) is the same as the frequency corresponding
to (y). An example relation between the original RF spec-
trum and the undersampled spectrum transformed by FFT
from the real signal of clock 1 ADC is shown in Fig. 3. Ele-
ment value (1 or 0) of (A) is decided by Q. If Q correspond-
ing to Band:1 frequency is even, we set 1 for a coefficient of
x(1)

2n(1)−1 and If Q corresponding to Band:2 frequency is odd,
we set 1 for a coefficient of x(2)

2n(2) . Frequency directions be-
tween undersampled and original spectrum are opposite for
Band:2 (Q=odd number) in this case. The second exam-
ple for clock 2 at a wrap frequency is shown in Fig. 4. We
show a special example that the target frequency is wrap fre-
quency at boundary even and odd Q areas. We set 1 for the
both even and odd elements of (A) corresponding to coeffi-
cients of x(1)

2n(1)−1, x(1)
2n(1) and x(2)

2n(2) , x(2)
2n(2)−1.

We also define a sub-number vector (Tr) correspond-
ing to each measured sampling frequency step for (y) as

(Trm) ={(
1, · · · ,M(1) = Ns1/2+1

)
, · · · ,

(
1, · · · ,M(K) = Nsk/2+1

)}T
,

(14)

Fig. 3 Relation between the original RF and undersampling spectrum
transformed from real signals.

Fig. 4 Relation between the original RF and undersampling spectrum at
wrap frequency transformed from real signals.

in order to make (A). We define each element of (A) as

Am,n =

{
1 at condition B
0 others , (15)

condition B
when (Q = 0 or even number) and (m = odd number)

and Trm = R + 1,
or
when (Q = odd number) and (m = even number)

and Trm = f y d maxm + 1 − R,
or
when (Q = 0 or even number) and (m = even number)

and R = 0 and Trm = 1,
or
when (Q = odd number) and (m = odd number)

and R = 0 and Trm = f y d maxm + 1. (16)

Here,

R = f x dn mod f y d maxm(= Nsk/2). (17)

An example about (A) setting with explain is shown in
Fig. 5. We have prepared all parameters to apply an ex-
tended compressed sensing algorithm and to reconstruct
spectrums. We use the Alternating Direction Method of
Multipliers (ADMM) for the compressed sensing adding the
routine

x2q−1 →
(
x2q−1 + x2q

)
/2

x2q →
(
x2q + x2q−1

)
/2, (18)

to equalize even and odd folded spectrums from the direct
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Fig. 5 Procedure how to make (x), (y) vector and (A) matrix for spectrum.

Fig. 6 Original RF spectrums for simulation.

undersampled real signal.

3. Simulation for Verifying Proposed Method

We apply our proposed method to wireless IoT example. We
use three ADCs and the parameters are
(a) Ns1 = 3822, f s1 = 500 MHz, (b) Ns2 = 3136, f s2 =

f s1Ns2/Ns1,
(c) Ns3 = 2496, f s3 = f s1Ns3/Ns1
Then sampling time Tt becomes 7.644µs for all ADCs.
Three wireless IoT bands (Band1: 920 MHz Band, Band2:
2.4 GHz Band, Band3: 5 GHz Band) are set for example.
We add white noise (condition: NF (noise figure) = 5 dB,
Gain (system gain) = 70 dB). Original spectrums are shown
in Fig. 6. Regenerated spectrums are shown in Fig. 7. The

Fig. 7 Reconstruction spectrums by using the proposed method.

regenerated spectrums are in good agreements with the orig-
inal spectrums. We consider succeeding in the regeneration
of spectrums.

4. Example Using Wireless IOT Measurement Data

We use some measured data of three desired wireless IoT
bands for a signal source to verify the availability of the
proposed method by using simulation. Measurement system
for actual wireless IoT examples of RFID (920 MHz band),
Bluetooth (2.4 GHz band) and Wireless LAN (5 GHz band)
signals are shown in Fig. 8. We use a wideband antenna to
obtain three (RFID, Bluetooth, Wireless LAN) mixed sig-
nals. A total system block for this evaluation is shown in
Fig. 9. We need digital data for our algorithm simulation.
We convert from an analog signal to digital high-speed sam-
pling data by using an 80 GHz sampling oscilloscope. Un-
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Fig. 8 Measurement system for RFID (920 MHz band), Bluetooth
(2.4 GHz band) and Wireless LAN (5 GHz band).

Fig. 9 Measurement and spectrum-regeneration system without a
triplexer bandpass filter for RFID (920 MHz band), Bluetooth (2.4 GHz
band) and Wireless LAN (5 GHz band).

Fig. 10 Regenerated spectrum power density results for RFID (920 MHz
band), Bluetooth (2.4 GHz band) and Wireless LAN (5 GHz band) mea-
sured signals from undersampling spectrum by using the proposed method
without a triplexer bandpass filter.

dersampling signals are made from these data by using in-
terpolation and we apply FFT to these undersampling real
signals. We apply the same ADC condition as chapter 3 and
the proposed algorithm of Sect. 2 to the FFT data and we can
obtain a regenerated spectrum. Obtained results of spec-
trums are shown in Fig. 10. Characteristics of the peak to
sidelobe ratios are relatively low because of noise-aliasing.
Especially peaks to sidelobes for 5 GHz is lower. Results of
Peak (peak level)/U (maximum sidelobe level): 10 dB and

Fig. 11 Measurement and spectrum-regeneration system with a triplexer
bandpass filter for RFID (920 MHz band), Bluetooth (2.4 GHz band) and
Wireless LAN (5 GHz band).

Fig. 12 Frequency characteristics of a triplexer bandpass filter using
spectrum-regeneration system.

Fig. 13 Regenerated spectrum power density results for RFID (920 MHz
band), Bluetooth (2.4 GHz band) and Wireless LAN (5 GHz band) mea-
sured signals from undersampling spectrum by using the proposed method
with a triplexer bandpass filter.

Peak/Uave (average sidelobe level): 18 dB for 5 GHz band
are obtained. This peak to sidelobe ratio is almost decided
from peak and noise level. We consider that this peak to
sidelobe is not enough for IoT spectrum control system and
demodulation system.

Therefore, we set a filter before ADCs to suppress
aliasing noise as shown in Fig. 11. Obtained measurement
data are filtered by a triple bandpass filter (triplexer BPF)
which characteristics are shown in Fig. 12, to suppress alias-
ing noise. We apply our spectrum regeneration method to
this spectrum. Each obtained spectrum for desired bands 1
to 3 is shown in Fig. 13. Each RF spectrums are obtained
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by the regeneration process. Results of Peak/U: 23 dB and
Peak/Uave: 33 dB for 5GHz band are obtained. We consider
that the peak sidelobe ratio is sufficient for IoT spectrum
control system and demodulation system, because these val-
ues are over than 14 dB and sufficient 10−4 bit error rate is
obtained at S/N 14 dB for QPSK example at our simulation
of chapter 5. 10−4 bit error rate can become almost error-
free by using error-collection method. We consider that we
can succeed to regenerate spectrum in this case when using
measured data.

5. Simulation Example of Demodulation

The regenerated frequency spectrum by using this proposed
method has complex information. Therefore, we can select
frequency and band, and we can obtain demodulated data by
software from these complex spectrums. An advantage of
this demodulation method is that the perfectly tunable func-
tion of a receiver can be obtained only using low frequency
sampling ADCs and a top filter without IF and baseband fil-
ters. A demodulation system from an undersampled signal
by using this proposed algorithm is shown in Fig. 14. The
conditions of ADCs are the same as chapter 3. A mixing
carrier S mix(t) is expressed as

S mix(t) = e j{−2π( f o−d f )t+dphase}. (19)

Here f o is a RF signal carrier frequency and d f is a fre-
quency compensation value and dphase is a phase compen-
sation value, respectively. An aim of this chapter study
is only to evaluate a demodulation function of the pro-
posed method, therefore we select simple BPSK and QPSK
modulation without secondary modulation. Three bands
( f0 = 923.6 MHz, B (signal bandwidth) = 0.2 MHz, f0 =

2.432 GHz, B = 20 MHz, f0 = 5.6 GHz, B = 20 or
200 MHz) signals are added to simulation input. We think
we can demodulate any band, because we obtain all com-
plex information for demodulation. We think that we can
demodulate all bands. We select f0 = 5.6 GHz signal for
demodulation in this report. We select phase information at
a center timing of acquisition data clock for demodulated
data. Demodulation results for BPSK transmitted signals
(B = 20 MHz, 63-bit m-sequence data) without noise us-
ing the proposed algorithm is shown in Fig. 15. We succeed
to obtain demodulation data using low sampling frequency
ADCs without IF and baseband filters. A demodulated data
is shown in Fig. 16. Blue solid line is a demodulated data

Fig. 14 Demodulation system using regenerated spectrum from under-
sampled signal by using proposed algorithm.

and red cross points are transmitted 63-bit data. Obtained
data are coincident with the original data.

We add a white noise (several level) to transmitted sig-
nals as shown in Fig. 14. An obtained result for a relation be-
tween Bit-error rate and signal to noise ratio (S/N) for BPSK
transmitted signals ( f o = 5.6 GHz, B = 200 MHz, 1000-
bit partial m-sequence data) using the proposed algorithm is
shown in Fig. 17. Blue solid line is the theoretical curve for
BPSK synchronous demodulation and red cross points are
statistical results using this method. Obtained differences

Fig. 15 Demodulation results for BPSK transmitted signals (B=20 MHz)
using the proposed algorithm.

Fig. 16 Demodulation data for BPSK transmitted signals (B=20 MHz)
using the proposed algorithm.

Fig. 17 Relation between Bit-error rate and signal to noise ratio (S/N)
for BPSK transmitted signals (B=100 MHz) using the proposed algorithm.
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Fig. 18 Relation between Bit-error rate and signal to noise ratio (S/N)
for QPSK transmitted signals (B=100 MHz) using the proposed algorithm.

from theoretical values are about 1.6 to 2.4 dB for S/N axis.
We also apply this proposed algorithm to the QPSK modu-
lation system. An obtained result for a relation between Bit-
error rate and signal to noise ratio (S/N) for QPSK transmit-
ted signals ( f o = 5.6 GHz, B = 200 MHz, 2000-bit partial
m-sequence data) using the proposed algorithm is shown in
Fig. 18. Blue solid line is the theoretical curve for QPSK
synchronous demodulation and red cross points are statis-
tical results using this method. Obtained differences from
theoretical values is about 1.3 to 2.9 dB for S/N axis. We
consider that the demodulation method using this algorithm
is succeeded.

6. Conclusion

We proposed a spectrum regeneration method for a direct
undersampled real signal considering the spectrum folding
direction, the complex conjugate relation and the convolu-
tion of even/odd spectrums at wrap frequency by using the
extended algorithm. We showed the capability of the pro-
posed spectrum regeneration method by using the simula-
tion and the measured data. The availability of this proposed
method is verified by the results. We also successfully ob-
tained demodulated data from the regenerated spectrum.
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