
IEICE TRANS. COMMUN., VOL.E104–B, NO.2 FEBRUARY 2021
149

PAPER
Packet Processing Architecture with Off-Chip Last Level Cache
Using Interleaved 3D-Stacked DRAM∗

Tomohiro KORIKAWA†a), Akio KAWABATA†b), Members, Fujun HE††c), Nonmember, and Eiji OKI††d), Fellow

SUMMARY The performance of packet processing applications is de-
pendent on the memory access speed of network systems. Table lookup
requires fastmemory access and is one of themost common processes in var-
ious packet processing applications, which can be a dominant performance
bottleneck. Therefore, in Network Function Virtualization (NFV)-aware
environments, on-chip fast cache memories of a CPU of general-purpose
hardware become critical to achieve high performance packet processing
speeds of over tens of Gbps. Also, multiple types of applications and
complex applications are executed in the same system simultaneously in
carrier network systems, which require adequate cache memory capacities
as well. In this paper, we propose a packet processing architecture that
utilizes interleaved 3 Dimensional (3D)-stacked Dynamic Random Access
Memory (DRAM) devices as off-chip Last Level Cache (LLC) in addition
to several levels of dedicated cache memories of each CPU core. Entries
of a lookup table are distributed in every bank and vault to utilize both
bank interleaving and vault-level memory parallelism. Frequently accessed
entries in 3D-stacked DRAM are also cached in on-chip dedicated cache
memories of each CPU core. The evaluation results show that the proposed
architecture reduces the memory access latency by 57%, and increases the
throughput by 100%while reducing the blocking probability but about 10%
compared to the architecture with shared on-chip LLC. These results indi-
cate that 3D-stacked DRAM can be practical as off-chip LLC in parallel
packet processing systems.
key words: cache memory, communication system, memory architecture,
network function virtualization

1. Introduction

The performance of packet processing applications is de-
pendent on memory accesses speed of network systems. Ta-
ble lookup requires fast memory accesses and is one of the
most common processes in various packet processing appli-
cations. Thus table lookup can be a dominant performance
bottleneck in a system without fast memories. Network
Function Virtualization (NFV) is transforming the tradi-
tional purpose-built hardware systems into commercial-off-
the-shelf (COTS) hardware system such as x86 CPU-based
general-purposes servers.

Fast cache memories inside a CPU of general-purpose

Manuscript received February 17, 2020.
Manuscript revised May 21, 2020.
Manuscript publicized August 6, 2020.
†The authors are with Network Service Systems Laboratories,

NTT Corporation, Musashino-shi, 180-8585 Japan.
††The authors are with Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
∗A part of this paper was presented at IEEE HPSR 2019 [24].

a) E-mail: tomohiro.koorikawa.xa@hco.ntt.co.jp
b) E-mail: akio.kawabata.un@hco.ntt.co.jp
c) E-mail: he.fujun.76z@st.kyoto-u.ac.jp
d) E-mail: oki@i.kyoto-u.ac.jp
DOI: 10.1587/transcom.2020EBP3017

hardware become critical to achieve high performance packet
processing over tens of Gbps. Development of virtualization
technology such as Intel (R) Data Plane Development Kit
(DPDK) [1] and Single Root I/OVirtualization (SR-IOV) [2]
and the increased performance of COTS hardware are sig-
nificantly advancing NFV. There are several software packet
forwarding applications that can achieve more than tens of
Gbps processing by intensively using cache memories of a
CPU [4], [5].

A carrier network comprises complex and various net-
work functions such as the Broadband Network Gateway
(BNG) function to terminate Point to Point Protocol (ppp)
sessions from end-users, packet filtering functions or mitiga-
tion functions to enhance network security level, and Quality
of Service (QoS) controlling functions to dynamically sat-
isfy the Service Level Agreement (SLA).Moreover, multiple
grades and types of network services are required to support
each subscriber’s communication demand, which makes a
carrier network more complex than typical data center net-
works.

In NFV-aware carrier network systems, multiple types
of applications with different characteristics or applications
comprising multiple functions are executed in the same sys-
tem simultaneously. These multi-tenant, NFV-aware carrier
network systems must accommodate huge lookup tables of
various packet processing applications in fast on-chip cache
memories to achieve over tens of Gbps, which is not pos-
sible with the current COTS hardware architecture due to
insufficient capacity of on-chip cache memories. Moreover,
expanding the capacity of the on-chip cache memories is
expensive due to the physical space limitations of the semi-
conductor chip. Therefore, next NFV-aware carrier network
systems require off-chip cache memories with larger capac-
ity in which huge lookup tables of various packet processing
applications can be accommodated.

Instead of using on-chip cache memories with small
memory capacity, the work in [6], [28] presented the packet
processing architecture that uses interleaved 3 Dimensional
(3D)-stacked Dynamic Random Access Memory (DRAM)
devices, which brings larger memory capacity and more
memory parallelism. On the other hand, we need to un-
derstand the performance dependency on having or not hav-
ing the on-chip cache memories when combining each CPU
core’s on-chip dedicated cache memories, an on-chip shared
cache memory of a modern multi-core CPU, and the off-chip
3D-stacked DRAM before we design the hardware/software
details to build the real system.

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

150
IEICE TRANS. COMMUN., VOL.E104–B, NO.2 FEBRUARY 2021

This paper proposes a packet processing architecture
that utilizes interleaved 3D-stacked DRAM devices as off-
chip Last Level Cache (LLC) in addition to several levels of
on-chip dedicated cache memories of each CPU core [24].
Entries of a lookup table are distributed in every bank and
vault to utilize both bank interleaving and vault-level mem-
ory parallelism. Frequently accessed entries in 3D-stacked
DRAM are also cached in on-chip dedicated cache mem-
ories of each CPU core. The evaluation results show that
the proposed architecture reduces the memory access la-
tency by 57%, and increases the throughput by 100% with
reducing blocking probability about 10% compared to the
architecture with shared on-chip LLC. These results indicate
that 3D-stacked DRAM can be practical as off-chip LLC in
parallel packet processing.

The rest of this paper is organized as follows. Sec-
tion 2 provides the background knowledge of DRAM sys-
tem, 3D-stacked DRAMdevices, and cache memory system.
Sections 3 and 4 present the proposed architecture and its
modeling. Section 5 presents performance evaluations of
the proposed architecture. Section 6 describes related work.
Section 7 discusses the limitations and the future directions.
Finally, Sect. 8 concludes this paper.

2. Background

2.1 Memory System in COTS System

Thememory system in COTS system consists of memory re-
questors, memory controllers, and DRAMmemory devices.
Memory requestors are CPUs or Direct Memory Accesses
(DMAs) that read data frommemory devices or write data to
memory devices. A memory controller and memory devices
are connected via a command bus and a data bus. Both buses
are accessible in parallel, whichmeans that one requestor can
use the command bus while another requestor uses the data
bus simultaneously. Modern DRAM systems have multiple
channels which can be accessed independently. Each chan-
nel comprises banks that can be accessed in parallel if there
is no collision on either the command bus or the data bus.
Therefore by issuing read commands to one bank to another,
these banks can be interleaved to increase memory access
performance as shown in Fig. 1.

2.2 3D-Stacked DRAM

3D-stacked DRAM is a memory device that vertically stacks
DRAM layers by using Through Silicon Via (TSV) technol-
ogy. Hybrid Memory Cube (HMC) and High Bandwidth
Memory (HBM) are well-known examples of 3D-stacked
DRAM devices. As discussed in [6], [28], HMC has more
memory channels than HBM. Thus we use HMC in this pa-
per as well. Figure 2 shows the schematic structure of an
HMC. The vertical units called vaults correspond to chan-
nels in the traditional DRAM, and are accessible in parallel.
Inside a vault, each DRAM layer has several banks.

Fig. 1 Schematic diagram of DRAMbank interleaving. (a)Without bank
interleaving. (b) With bank interleaving.

Fig. 2 Schematic structure of Hybrid Memory Cube.

2.3 Cache Memory System

A multi-core CPU has several levels of on-chip cache mem-
ories. Usually, there are one or two levels of dedicated cache
memories corresponding to eachCPU core, and there is a last
level cache (LLC) which is shared every CPU core inside the
same CPU. For the dedicated caches in different levels, the
one with lower level has smaller capacity and faster speed.
The LLC has lager capacity and slower speed compared to
any dedicated cache. Figure 3 describes a schematic mecha-
nismof cachememory systems and off-chipmemory, namely
DRAMs in COTS servers or HMCs in the proposed architec-
ture. Any data is transferred between the off-chip memory
and each level of cache in a certain block of data, called
a cache line. The cache line is introduced to enhance the
hit probabilities of cache memories by using space locality
of the data; the data around the target data are likely to be
accessed next. If there is not enough space in each level
of the cache memory when loading the data from off-chip
memory or other levels of cache memories, a certain cache
line is evicted to the next level of cache memory or dropped
according to the cache replacement policy of the correspond-
ing system. Usually, the least recently used (LRU) cache line

KORIKAWA et al.: PACKET PROCESSING ARCHITECTURE WITH OFF-CHIP LAST LEVEL CACHE USING INTERLEAVED 3D-STACKED DRAM
151

Fig. 3 Schematic mechanism of cache memory systems and main mem-
ory.

or a randomly selected cache line is replaced.

3. Proposed Architecture

Figure 4 shows the proposed architecture. It consists of
a multi-core CPU that includes on-chip several levels of
cache memories dedicated to each CPU core, an FPGA, an
HMC, a DRAM, and network interfaces. Incoming packets
are processed as follows. (1) Packets entering the network
interfaces are directly sent to and buffered in the DRAM by
using DMA. The packet descriptor of each incoming packet
is randomly distributed to the queue of each CPU core. (2) A
CPUcore reads the header information of a packet buffered in
the DRAM and looks up tables held in the cache memories
of the CPU or HMC to determine the next action for the
packet. (3) After finishing lookup and determining the next
action, the CPU core sends the packet outside the proposed
architecture via the network interface that corresponds to the
action.

The HMC acts like an off-chip LLCwith larger capacity
in the proposed architecture. In the HMC, lookup table data
is distributed as shown in [6], [28]. The original table is
divided into some partial tables inside a set of a vault and
a bank so that the original table comprises partial tables in
a vault. Then, the whole table data in a vault is copied to
other vaults. The number of partial tables equals the number
of banks in each vault, and the number of copies equals the
total number of banks of the HMC.

An FPGA is used to connect the CPUs to the HMC as
well as to distribute memory requests using a hash function
to the appropriate vault/bank sets. The CPU and the FPGA
are linked via inter-chip connections such as Intel Quick Path
Interconnect (QPI) or Ultra Path Interconnect (UPI), which
is used in the integrated type of CPU + FPGA device and
discrete type of FPGA devices, as presented in [7]–[9], [29].

4. System Model

We consider the three system models shown in Fig. 5, in-
cluding the proposed architecture, to understand the per-
formance dependency on having or not having the on-chip

cache memories when the 3D-stacked DRAM is combined
with the modern multi-core CPU. Figure 5 shows system
models of the proposed architecture, the reference architec-
ture with on-chip LLC and HMC, and reference architecture
without any on-chip cache and with HMC. Figure 5(a) is
the system model of the proposed architecture. The off-chip
HMC is combined with the multi-core CPU, where each
CPU core has on-chip dedicated Level 1 (L1) and Level 2
(L2) cache memories. Figure 5(b) shows the system model
of the reference architecture, where the off-chip HMC is
combied with the multi-core CPU with L1/L2 cache memo-
ries of each CPU core and on-chip shared LLC. Figure 5(c)
is the system model of the reference architecture, where the
off-chip HMC is combined with the multi-core CPU without
any on-chip cache memories. The on-chip caches in CPU
store the copies of frequently used data based on the least
recently used (LRU) approach.

In the proposed architecture, when a packet enters the
system, it is randomly assigned to one of the CPU cores
regardless of CPU core state. After its assignment to the
CPU core, the packet is enqueued into the corresponding
queue of the assigned CPU core and is processed following
the first come first served (FCFS) policy. The total number of
requests, which includes waiting requests for all the queues
and the requests being processed by the CPU cores, is limited
in the system. The processed request firstly accesses the
dedicated caches in increasing order of cache levels, where
the L1 cache is firstly accessed. If the corresponding table
entry of request is not found, which is called a miss hit, in
any level of cache, the request access the next level of cache
if there is; otherwise, the request is transferred to a queue to
wait for being distributed to the appropriate vault/bank set
of the HMC.

In the system model of the architecture with on-chip
LLC and HMC, a miss hit request of L2 cache is transferred
to a queue to wait for the access to the LLC. If it is a miss hit
for a request in LLC, the request is transferred to the HMC.
In the system model of the architecture without any cache
and with HMC, every request directly transferred to a queue
to wait for the access to the HMC.

The table lookup model in HMC was presented in [6],
[28]. Note that at any time, only one request is processed by
each CPU core; the processing of request is completed when
its corresponding table entry is found, which is called a hit,
in any part of the system. All the requests from different
CPU cores access the HMC or on-chip LLC as the FCFS
policy.

After the hit, the copy of cache line, which includes the
corresponding table entry of the request, is stored in the L1
cache of corresponding CPU core as the most recently used
content. For any level cache of the corresponding CPU core,
if it is a miss hit, the LRU content in the cache is evicted
to the next level cache. For example, if the corresponding
table entry of the request is found in the HMC, the cache line
including it is copied to the L1 cache of the corresponding
CPU core, and the LRU content in the L1 cache is evicted to
the L2 cache. Meanwhile, the LRU content in the L2 cache

152
IEICE TRANS. COMMUN., VOL.E104–B, NO.2 FEBRUARY 2021

Fig. 4 Proposed architecture.

Fig. 5 System model of each architecture. (a) System model of proposed
architecture. (b) Systemmodel of architecturewith on-chip LLC. (c) System
model of architecture without any cache and with HMC.

is dropped. In the system model of the architecture with
on-chip LLC and HMC, the LRU content in the L2 cache
is evicted to the on-chip LLC, and the LRU content in the
on-chip LLC is dropped.

Let C denote the number of CPU cores in the system.
Let N represent the total number of entries in the system. The
maximum number of requests in the system is represented
by K . A request incoming to the system is blocked if the
number of accommodated requests in the system is K . The
size of each queue associated with each CPU core is at least
K , which means that no loss of request occurs in each queue.
The size of queue associated with the on-chip LLC or HMC
controller is considered to be equal with the number of CPU
cores, C. The memory capacities of L1 cache, L2 cache,
on-chip LLC, and HMC are considered as ML1, ML2, MLLC,
and MHMC, respectively. Let B denote the size of cache line.
The size of each table entry is represented by b. B/b table
entries are copied to the L1 cache when there is a miss hit.

5. Performance Evaluation

5.1 Traffic Model

To evaluate the effectiveness of caching, some studies use
the actual traffic traces, such as the works in [14]–[16], and
others generate the synthetic traces with considering the con-
tent popularity, such as the works in [17], [18], where the
content in traffic, such as the Web page requests and the IP
addresses lookup requests, is considered to follow a Zipf-like
distribution [19]. It indicates a behavior of the traffic that a
few most popular contents are requested in high probabili-
ties, and a large proportion of contents are requested in low
probabilities.

KORIKAWA et al.: PACKET PROCESSING ARCHITECTURE WITH OFF-CHIP LAST LEVEL CACHE USING INTERLEAVED 3D-STACKED DRAM
153

In our traffic model, we assume that a request arrives
at the IP lookup system based on a Poisson arrival process
with the average rate of λ. Let I represent the total num-
ber of IP addresses stored in the system, which are sorted
in decreasing order of popularity. We assume that the re-
quested content follows a Zipf-like distribution, where the
relative probability of requesting for the ith most popular IP
address is expressed as 1

iα , which leads to the probability

with normalizing constant as
1
iα∑I

i=1
1
iα
. Note that the Poisson

and Zipf-like distributions in our trafficmodel are orthogonal
or independent from each other.

The value of α in the Zipf-like distribution varies for
different traffic traces [19]. It is reported that the special
case of α = 1, which is known as the strict Zipf’s law, is not
appropriate for the content distributions in traffics, such as
the Web page requests and the IP addresses lookup requests.
Typically, the value of α is in the range of 0 < α < 1. α in
traces from a homogeneous environment appears to be larger
than that in traces from amore diversified user population. In
other words, as α increases, more requests are concentrated
on a few most popular contents. In our paper, we set the
value of α as 0.83 [19].

In HMC, we assume that the probability of accessing
each HMC bank is the same when the content popularity
is considered. We adopt the table lookup model presented
in [6], where requests are randomly assigned to HMC banks.

5.2 System Assumption

We introduce our assumptions of the system model for the
simplicity of the numerical simulations.

We assume that the processing times of caches and
HMC follow exponential distributions. The processing time
includes the searching time in cache memories and the
DRAM access latency due to DRAM specific behavior such
as precharging the row buffer when accessing another row.
We assume that the processing rate of the interleaved banks
in the off-chip 3D-stacked DRAM is 0.7 times of that of
without bank interleaving.

We also assume the steady condition in which there is
no memory write request such as updating the table, which
allows us to ignore cache coherency. In addition, the CPU
reads data from each level of cache or the HMC in 8-byte
groups.

We assume that the total number of entries, N , the
maximum number of memory requests in the system, K ,
and the memory capacities of each level of cache memory,
ML1, ML2, MLLC, are smaller than those of today’s COTS
systems. These assumptions allow us to finish the numerical
simulations within a practical time. Without this assumption
on the memory capacity of each cache and the number of
table entries, the numerical simulations do not finish in a
reasonable time. For instance, if we set ML1 = 64 [KiB],
ML2 = 512 [KiB], MLLC = 28 [MiB], the estimated time to
obtain a one-plot result is at least one month by using our
simulation environment that is described in Sect. 5.4.

5.3 Blocking Probability and Average Waiting Time

Let R represent a set of requests incoming to the system
during a certain period time. |R| denotes the total number of
requests in R. The number of rejected requests that come to
the system during the period is represented by |Rb |, where Rb
denotes the set of rejected requests. Blocking probability Pb,
which is a probability that a request incoming to the system is
rejected, is defined by Pb =

|Rb |
|R | . Throughput, λe, is defined

by λe = λ(1 − Pb). For accepted request r ∈ R\Rb, let tr
represent its waiting time to be processed by corresponding
CPU core. Average effective waiting time, We, is defined
by We =

∑
r∈R\Rb tr

|R |− |Rb |
. The sets of requests which are hit in

the L1 caches, the L2 caches, and the LLC, are represented
by RL1, RL2, and RLLC, respectively. Hit probabilities in
the L1 caches, the L2 caches, and the LLC, are defined by
PL1 =

|RL1 |
|R | , PL2 =

|RL2 |
|R | , and PLLC =

|RLLC |
|R | , respectively.

In our numerical analysis, we consider an HMC with
two banks and S vaults. The processing rates of HMC vault
with and without memory interleaving are µ and µ1, respec-
tively. Let ρ be a traffic load, which is defined by ρ = λ

Sµ .
We consider the Internet Protocol (IP) address lookup

based on DIR-24-8-BASIC [21] for the benchmark of the
packet processing, where the size of each entry is 2 byte.
Thus we set b = 2 [B]. We consider that the multi-core
CPU has C = 28 CPU cores, and the off-chip HMC has
S = 32 vaults. The memory capacity of the off-chip HMC
is considered to be MHMC = 4 [GiB], which is large enough
to store all the entries in the system. We set the service rates
of each level of cache memory and that of the off-chip HMC
as µL1 = 100, µL2 = 50, µLLC = 10, µ = µ1 = 1, according
to the works in [32]–[34]. Based on the aforementioned
descriptions and assumptions, we set K = 100, α = 0.83,
ML1 = 128 [B], ML2 = 512 [B], MLLC = 4096 [B], N =
2 × 104, and µ2 = 0.7. We use ρ = 0.7 unless otherwise
stated.

5.4 Numerical Simulation Results

We use Intel Xeon Silver 4216 2.10GHz 16-core CPU with
128GBmemory to run the simulations based on Python 3.7.

Figure 6 shows the blocking probabilities for the
proposed architecture, the architecture with on-chip
LLC and HMC, and the architecture without any on-
chip cache; the set of values of ρ is considered as
{0.1, 0.2, 0.3, · · · , 1.8, 1.9, 2.0}. We observe that as the traffic
load increases, the blocking probability increases for every
architecture. The blocking probability of the architecture
with on-chip LLC and HMC increases rapidly compared to
those of the other two architectures. This indicates that the
shared LLC becomes a bottleneck due to the concentration
of memory accesses from multiple CPU cores as the traffic
load increases. When ρ = 0.7, the blocking probabilities for
the proposed architecture and the architecture without any
on-chip cache are less than 10−1.

154
IEICE TRANS. COMMUN., VOL.E104–B, NO.2 FEBRUARY 2021

Fig. 6 Blocking probability depending on traffic load for different archi-
tectures.

Fig. 7 Blocking probability depending on memory capacity of L1 cache
for different architectures.

Figure 7 shows the blocking probabilities for the pro-
posed architectures, the architecture with on-chip LLC and
HMC, and the architecture without any on-chip cache; the
set of memory capacities of L1 cache ML1 is considered as
{128, 192, 256, 384, 512} [B]. We observe that the proposed
architecture outperforms the other two architectures. In ad-
dition, the blocking probabilities are almost independent of
the memory capacity of L1 cache, which does not need to
increase the expensive memory capacity of L1 cache.

Figures 8, 9, and 10 show the blocking probabilities,
average effective waiting times, and throughputs for the pro-
posed architecture, the architecture with on-chip LLC and
HMC, and the architecture without any on-chip cache, re-
spectively; the set of numbers of entries in each cache line
is considered as {1, 2, 4, 16, 32, 64}. We observe that the
proposed architecture reduces the memory access latency
by 57%, and increases the throughput 100% with reducing
blocking probability about 10% compared to the architecture
with on-chip shared LLC when B/b = 32. In addition, if
the proposed architecture can use smaller cache lines with
smaller B/b, the performance of proposed architecture can
be improved.

6. Related Work

Several software-based packet processing schemes for COTS

Fig. 8 Blocking probability depending on number of entries in each cache
line for different architectures.

Fig. 9 Average effective waiting time depending on number of entries in
each cache line for different architectures.

Fig. 10 Throughput depending on number of entries in each cache line
for different architectures.

server have been proposed [3]–[5], [20]. RouteBricks [3] is
the first software-based router application to leverage the
parallel processing offered by modern multi-core CPUs.
Lagopus [4] is a DPDK-enabled OpenFlow switch that can
achieve over 10Gbps performance with more than 1 M flow
entries. These approaches significantly improve packet pro-
cessing performance compared to previous software schemes
running on single-core CPUs and DPDK. However, their
performance directly depends on the cache memory of the

KORIKAWA et al.: PACKET PROCESSING ARCHITECTURE WITH OFF-CHIP LAST LEVEL CACHE USING INTERLEAVED 3D-STACKED DRAM
155

CPUs, which unfortunately is too small to support carrier-
scale packet processing given the huge multiple tables in-
volved. PacketShader [20] consolidates parallel processing
by using Graphics Processing Unit (GPU). However, their
work makes the constraining assumption of homogeneous
packet processing to leverage the GPU’s Single Instruction
Multiple Data (SIMD) performance, and so does not suit
carrier-scale packet processing. Poptrie [5] is fast software
IP routing table lookup; it offers over 200 M lookups per
second with just a single CPU core. The IP address lookup
performance itself is sufficient for carrier-scale packet pro-
cessing. However, this software is also dependent on the
small cache memories inside the CPU.

A packet matching system using HMC was studied
in [22]. However, no discussion is made on leveraging vault-
level parallelism and bank interleaving of HMC, since the
main problem targeted by the work is implementing a fast
packet matching circuit in FPGA. CasHMC [23] is a cycle-
accurate simulator for HMC. This simulator does not con-
sider bank interleaving and cache memories of CPUs, and
the simulation results are valid only current HMC devices.

Several studies use cache bypassing approach to re-
duce memory access latency when the data locality is not
high [25]–[27]. The memory requests that bypassed the
cache memories directly go to the main memory of the sys-
tem. However, these studies do not consider using paral-
lelism of main memory, which may increase the blocking
probability.

There are several approaches to skip the on-chip LLC as
presented in [30], [31]. These approaches allow the requests
that miss the on-chip L2 cache to directly access the off-chip
3D-stacked DRAM, which may be used to implement the
proposed architecture in the absence of on-chip LLC.

7. Discussion

As we describe in Sect. 1, the 3D-stacked DRAM in the pro-
posed architecture improves packet processing performance
based on the memory parallelism of the device. Thus, be-
fore we design the hardware/software details, we firstly focus
on the memory parallelism of the system architectures, in
which the CPU cache memories and the 3D-stacked DRAM
are combined. In particular, we build the simulator to un-
derstand the performance dependency on the combination
of each CPU core’s on-chip dedicated cache memories, an
on-chip shared cache memory, and the off-chip 3D-stacked
DRAM, in terms of the memory parallelism. Therefore, al-
though the cache sizes in the simulator are smaller than those
of today’s CPUs, we observe the advantage of the proposed
architecture over the conventional architecture in terms of
the memory parallelism by using the queueing model-based
simulator.

Additionally, while we showed the table lookup as an
example of packet processing whose performance depends
on thememory access speed, we observe that the proposed ar-
chitecture increases the overall memory access parallelism,
which usually improves the performance of NFV applica-

tions. We also suppose that the performance improvement
of a specificNFV application by using the proposed architec-
ture depends on how data of the NFV application is located
in the memory and the memory access characteristics of the
NFV application.

In our future study, we plan to incorporate the hard-
ware/software details of the CPUs, the 3D-stacked DRAM,
and the operating system in the packet processing architec-
ture, where the results of this work will be a reference for
more complex models and simulators that require lots of
system parameters and complex parameter tuning. Also, the
data structure and the memory access characteristics of a
specific NFV application will become worth incorporated.

8. Conclusion

This paper proposed an architecture that utilizes 3D-stacked
DRAM as an off-chip LLC in addition to several levels of
on-chip dedicated cache memories of each CPU core to sup-
port fast packet processing operations such as table lookup.
In the proposed architecture, entries of a lookup table are
distributed in every bank and vault to utilize both bank in-
terleaving and vault-level memory parallelism. Frequently
accessed entries in 3D-stacked DRAM are also cached in on-
chip dedicated cache memories of each CPU core. We eval-
uated the performance of proposed architecture with con-
sidering several system parameters. The evaluation results
showed that the proposed architecture reduced the memory
access latency by 57%, and increased the throughput 100%
with reducing blocking probability about 10% compared to
the architecture with shared on-chip LLC. This indicated
that 3D-stacked DRAM can be practical as off-chip LLC in
parallel packet processing.

References

[1] Intel Data Plane Development Kit. http://dpdk.org/
[2] PCI-SIG Single Root I/O Virtualization (SR-IOV) Support in Intel

Virtualization Technology for Connectivity. https://www.intel.com
[3] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannac-

cone, A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Ex-
ploiting parallelism to scale software routers,” Proc. ACM SIGOPS,
pp.15–28, 2009.

[4] Lagopus switch, a high performance software OpenFlow 1.3 switch.
http://www.lagopus.org/

[5] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population
count for fast and scalable software IP routing table lookup,” SIG-
COMMComput. Commun. Rev., vol.45, no.4, pp.57–70, Aug. 2015.

[6] T. Korikawa, A. Kawabata, F. He, and E. Oki, “Carrier-scale packet
processing system using interleaved 3D-stacked DRAM,” IEEE In-
ternational Conference on Communications, 2018.

[7] N. Oliver, R.R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco,
A. Grier, N. Ijih, Y. Liu, P. Marolia, H. Mitchel, S. Subhaschandra,
A. Sheiman, T. Whisonant, and P. Gupta, “A reconfigurable com-
puting system based on a cache-coherent fabric,” 2011 International
Conference on Reconfigurable Computing and FPGAs, pp.80–85,
Nov. 2011.

[8] Y. Watanabe, Y. Kobayashi, T. Takenaka, T. Hosomi, and
Y. Nakamura, “Accelerating NFV application using CPU-FPGA
tightly coupled architecture,” ICFPT, pp.136–143, Dec. 2017.

[9] D.J. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,

http://dpdk.org/
https://www.intel.com
https://www.intel.com
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1629575.1629578
http://www.lagopus.org/
http://www.lagopus.org/
http://dx.doi.org/10.1145/2829988.2787474
http://dx.doi.org/10.1145/2829988.2787474
http://dx.doi.org/10.1145/2829988.2787474
http://dx.doi.org/10.1109/icc.2018.8422638
http://dx.doi.org/10.1109/icc.2018.8422638
http://dx.doi.org/10.1109/icc.2018.8422638
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/reconfig.2011.4
http://dx.doi.org/10.1109/fpt.2017.8280131
http://dx.doi.org/10.1109/fpt.2017.8280131
http://dx.doi.org/10.1109/fpt.2017.8280131
http://dx.doi.org/10.1145/3174243.3174258

156
IEICE TRANS. COMMUN., VOL.E104–B, NO.2 FEBRUARY 2021

J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P.H. Leong,
“A customizable matrix multiplication framework for the Intel
HARPv2 Xeon+FPGA platform: A deep learning case study,” Proc.
ACM/SIGDA FPGA, pp.107–116, 2018.

[10] K. Lahiri, A. Raghunathan, and S. Dey, “Evaluation of the traffic-
performance characteristics of system-on-chip communication archi-
tectures,” VLSI Design 2001 Fourteenth International Conference on
VLSI Design, pp.29–35, 2001.

[11] I.Y. Bucher and D.A. Calahan, “Models of access delays in multi-
processor memories,” IEEE Trans. Parallel Distrib. Syst., vol.3, no.3,
pp.270–280, 1992.

[12] G.V. Varatkar and R. Marculescu, “On-chip traffic modeling and
synthesis for MPEG-2 video applications,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol.12, no.1, pp.108–119, 2004.

[13] V. Soteriou, H. Wang, and L. Peh, “A statistical traffic model for on-
chip interconnection networks,” 14th IEEE International Symposium
on Modeling, Analysis, and Simulation, pp.104–106, 2006.

[14] E. Cohen and H. Kaplan, “Proactive caching of DNS records: Ad-
dressing a performance bottleneck,” Computer Networks, vol.41,
no.6, pp.707–726, 2003.

[15] T. Chiueh and P. Pradhan, “High-performance IP routing table lookup
using CPU caching,” IEEE INFOCOM’99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, vol.41, no.6,
pp.707–726, 2003.

[16] S. Ihm and V.S. Pai, “Towards understanding modern web traffic,”
Proc. 2011 ACM SIGCOMM conference on Internet measurement
conference, pp.295–312, 2011.

[17] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance
and the effectiveness of caching,” IEEE/ACM Trans. Netw., vol.10,
no.5, pp.589–603, 2002.

[18] C. Wang, L. Xiao, Y. Liu, and P. Zheng, “DiCAS: An efficient dis-
tributed caching mechanism for P2P systems,” IEEE Trans. Parallel
Distrib. Syst., vol.17, no.10, pp.1097–1109, 2006.

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and Zipf-like distributions: Evidence and implications,”
INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol.1,
pp.126–134, 1999.

[20] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated software router,” SIGCOMM Comput. Commun. Rev.,
vol.40, no.4, pp.195–206, Aug. 2010.

[21] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” IEEE INFOCOM’98, vol.3, pp.1240–1247,
March 1998.

[22] D. Rozhko, G. Elliott, D. Ly-Ma, P. Chow, and H.-A. Jacobsen,
“Packet matching on FPGAs using HMC memory: Towards one
million rules,” Proc. ACM/SIGDA FPGA, pp.201–206, 2017.

[23] D.I. Jeon and K.S. Chung, “CasHMC: A cycle-accurate simulator
for hybrid memory cube,” IEEE Comput. Arch. Lett., vol.16, no.1,
pp.10–13, Jan. 2017.

[24] T. Korikawa, A. Kawabata, F. He, and E. Oki, “Packet process-
ing architecture with off-chip LLC using interleaved 3D-stacked
DRAM,” 2019 IEEE 20th International Conference on High Per-
formance Switching and Routing (HPSR), Xi’An, China, pp.1–6,
2019.

[25] Y. Huangfu and W. Zhang, “Hardware-based and hybrid L1 data
cache bypassing to improve GPU performance,” 2015 IEEE 17th
International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cy-
berspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, New York, NY,
pp.972–976, 2015.

[26] S. Gupta, H. Gao, and H. Zhou, “Adaptive cache bypassing for in-
clusive last level caches,” 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing, Boston, MA, pp.1243–1253,
2013.

[27] G. Sun, C. Zhang, P. Li, T. Wang, and Y. Chen, “Statistical cache
bypassing for non-volatile memory,” IEEE Trans. Comput., vol.65,
no.11, pp.3427–3440, Nov. 2016.

[28] T. Korikawa, A. Kawabata, F. He, and E. Oki, “Carrier-scale packet
processing architecture using interleaved 3D-stacked DRAM and its
analysis,” IEEE Access, vol.7, pp.75500–75514, 2019.

[29] Intel Product Brief, “Enabling UPI and PCIe Gen4 acceler-
ators,” https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/solution-sheets/stratix-10-dx-product-brief.pdf

[30] T.S. Warrier, K. Raghavendra, and M. Mutyam, “SkipCache: Ap-
plication aware cache management for chip multi-processors,” IET
Computers & Digital Techniques, vol.9, no.6, pp.293–299, 2015.

[31] J. Kong and K. Lee, “A DVFS-aware cache bypassing technique
for multiple clock domain mobile SoCs,” IEICE Electron. Express,
vol.14, no.11, pp.1–12, 2017.

[32] R. Hadidi, B. Asgari, B.A. Mudassar, S. Mukhopadhyay,
S. Yalamanchili, and H. Kim, “Demystifying the characteristics of
3D-stacked memories: A case study for hybrid memory cube,” IEEE
International Symposium on Workload Characterization (IISWC),
Seattle, WA, pp.66–75, 2017.

[33] R. Hadidi, B. Asgari, J. Young, B.A. Mudassar, K. Garg, T. Krishna,
and H. Kim, “Performance implications of NoCs on 3D-stacked
memories: Insights from the hybrid memory cube,” 2018 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Belfast, pp.99–108, 2018.

[34] Intel(R) 64 and IA-32 Architectures Optimization Reference Man-
ual, https://software.intel.com/sites/default/files/managed/9e/bc/64-
ia-32-architectures-optimization-manual.pdf

Tomohiro Korikawa is a researcher of Net-
work Service Systems Laboratories in Nippon
Telegraph and Telephone Corporation (NTT),
Tokyo, Japan. He received the B.S., M.S. de-
grees from Waseda University, Tokyo, Japan, in
2012, 2014, respectively. In 2014, he joined
Nippon Telegraph and Telephone Corporation
(NTT), Tokyo, Japan, where he is researching
network system architecture and network design.

Akio Kawabata is an executive research
engineer, project manager of Network Service
Systems Laboratories in Nippon Telegraph and
Telephone Corporation (NTT), Tokyo, Japan.
He received the B.E., M.E. and Ph.D. degrees
from theUniversity of Electro-Communications,
Tokyo, Japan, in 1991, 1993 and 2016, respec-
tively. He is also associated with the Department
of Communication Engineering and Informatics
at the University of Electro-Communications in
Tokyo, Japan for research activities. In 1993, he

joined Nippon Telegraph and Telephone Corporation (NTT) Communica-
tion Switching Laboratories, Tokyo, Japan, where he has been engaging to
develop switching systems, and researching network design and switching
system architecture. He served as a senior manager of R&D Department at
NTT East since 2011 until 2014.

http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1109/icvd.2001.902636
http://dx.doi.org/10.1109/icvd.2001.902636
http://dx.doi.org/10.1109/icvd.2001.902636
http://dx.doi.org/10.1109/icvd.2001.902636
http://dx.doi.org/10.1109/71.139201
http://dx.doi.org/10.1109/71.139201
http://dx.doi.org/10.1109/71.139201
http://dx.doi.org/10.1109/tvlsi.2003.820523
http://dx.doi.org/10.1109/tvlsi.2003.820523
http://dx.doi.org/10.1109/tvlsi.2003.820523
http://dx.doi.org/10.1109/mascots.2006.9
http://dx.doi.org/10.1109/mascots.2006.9
http://dx.doi.org/10.1109/mascots.2006.9
http://dx.doi.org/10.1016/s1389-1286(02)00424-3
http://dx.doi.org/10.1016/s1389-1286(02)00424-3
http://dx.doi.org/10.1016/s1389-1286(02)00424-3
http://dx.doi.org/10.1109/infcom.1999.752162
http://dx.doi.org/10.1109/infcom.1999.752162
http://dx.doi.org/10.1109/infcom.1999.752162
http://dx.doi.org/10.1109/infcom.1999.752162
http://dx.doi.org/10.1109/infcom.1999.752162
http://dx.doi.org/10.1145/2068816.2068845
http://dx.doi.org/10.1145/2068816.2068845
http://dx.doi.org/10.1145/2068816.2068845
http://dx.doi.org/10.1109/tnet.2002.803905
http://dx.doi.org/10.1109/tnet.2002.803905
http://dx.doi.org/10.1109/tnet.2002.803905
http://dx.doi.org/10.1109/tpds.2006.137
http://dx.doi.org/10.1109/tpds.2006.137
http://dx.doi.org/10.1109/tpds.2006.137
http://dx.doi.org/10.1109/infcom.1999.749260
http://dx.doi.org/10.1109/infcom.1999.749260
http://dx.doi.org/10.1109/infcom.1999.749260
http://dx.doi.org/10.1109/infcom.1999.749260
http://dx.doi.org/10.1109/infcom.1999.749260
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.1109/infcom.1998.662938
http://dx.doi.org/10.1109/infcom.1998.662938
http://dx.doi.org/10.1109/infcom.1998.662938
http://dx.doi.org/10.1145/3020078.3021752
http://dx.doi.org/10.1145/3020078.3021752
http://dx.doi.org/10.1145/3020078.3021752
http://dx.doi.org/10.1109/lca.2016.2600601
http://dx.doi.org/10.1109/lca.2016.2600601
http://dx.doi.org/10.1109/lca.2016.2600601
http://dx.doi.org/10.1109/hpsr.2019.8807993
http://dx.doi.org/10.1109/hpsr.2019.8807993
http://dx.doi.org/10.1109/hpsr.2019.8807993
http://dx.doi.org/10.1109/hpsr.2019.8807993
http://dx.doi.org/10.1109/hpsr.2019.8807993
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/hpcc-css-icess.2015.248
http://dx.doi.org/10.1109/ipdps.2013.16
http://dx.doi.org/10.1109/ipdps.2013.16
http://dx.doi.org/10.1109/ipdps.2013.16
http://dx.doi.org/10.1109/ipdps.2013.16
http://dx.doi.org/10.1109/tc.2016.2529621
http://dx.doi.org/10.1109/tc.2016.2529621
http://dx.doi.org/10.1109/tc.2016.2529621
http://dx.doi.org/10.1109/access.2019.2920877
http://dx.doi.org/10.1109/access.2019.2920877
http://dx.doi.org/10.1109/access.2019.2920877
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/solution-sheets/stratix-10-dx-product-brief.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/solution-sheets/stratix-10-dx-product-brief.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/solution-sheets/stratix-10-dx-product-brief.pdf
http://dx.doi.org/10.1049/iet-cdt.2014.0150
http://dx.doi.org/10.1049/iet-cdt.2014.0150
http://dx.doi.org/10.1049/iet-cdt.2014.0150
http://dx.doi.org/10.1587/elex.14.20170324
http://dx.doi.org/10.1587/elex.14.20170324
http://dx.doi.org/10.1587/elex.14.20170324
http://dx.doi.org/10.1109/iiswc.2017.8167757
http://dx.doi.org/10.1109/iiswc.2017.8167757
http://dx.doi.org/10.1109/iiswc.2017.8167757
http://dx.doi.org/10.1109/iiswc.2017.8167757
http://dx.doi.org/10.1109/iiswc.2017.8167757
http://dx.doi.org/10.1109/ispass.2018.00018
http://dx.doi.org/10.1109/ispass.2018.00018
http://dx.doi.org/10.1109/ispass.2018.00018
http://dx.doi.org/10.1109/ispass.2018.00018
http://dx.doi.org/10.1109/ispass.2018.00018
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf

KORIKAWA et al.: PACKET PROCESSING ARCHITECTURE WITH OFF-CHIP LAST LEVEL CACHE USING INTERLEAVED 3D-STACKED DRAM
157

Fujun He is currently pursuing the Ph.D.
degree at Kyoto University, Kyoto, Japan. He
received the B.E. and M.E. degrees from Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 2014 and 2017, re-
spectively. He was an exchange student in The
University of Electro-Communications, Tokyo,
Japan, from 2015 to 2016. His research interests
include modeling, algorithm, optimization, re-
source allocation, survivability, and optical net-
works.

Eiji Oki received the B.E. and M.E. degrees
in instrumentation engineering and the Ph.D. de-
gree in electrical engineering from Keio Univer-
sity, Yokohama, Japan, in 1991, 1993, and 1999,
respectively. He was with Nippon Telegraph and
Telephone Corporation (NTT) Laboratories, To-
kyo, from 1993 to 2008, and The University of
Electro-Communications, Tokyo, from 2008 to
2017. From 2000 to 2001, he was a Visiting
Scholar at the Polytechnic Institute of New York
University, Brooklyn. In 2017, he joined Kyoto

University, Japan, where he is currently a Professor. His research interests
include routing, switching, protocols, optimization, and traffic engineering
in communication and information networks.

