
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021
507

PAPER
Multicast Routing Model to Minimize Number of Flow Entries in
Software-Defined Network

Seiki KOTACHI†a), Student Member, Takehiro SATO†, Member, Ryoichi SHINKUMA†, and Eiji OKI†, Fellows

SUMMARY The Software-defined network (SDN) uses a centralized
SDN controller to store flow entries in the flow table of each SDN switch;
the entries in the switch control packet flows. When a multicast service is
provided in an SDN, the SDN controller stores a multicast entry dedicated
for a multicast group in each SDN switch. Due to the limited capacity of
each flow table, the number of flow entries required to set up a multicast tree
must be suppressed. A conventional multicast routing scheme suppresses
the number of multicast entries in one multicast tree by replacing some
of them with unicast entries. However, since the conventional scheme
individually determines a multicast tree for each request, unicast entries
dedicated to the same receiver are distributed to various SDN switches if
there are multiple multicast service requests. Therefore, further reduction
in the number of flow entries is still possible. In this paper, we propose a
multicast routing model for multiple multicast requests that minimizes the
number of flow entries. This model determines multiple multicast trees
simultaneously so that a unicast entry dedicated to the same receiver and
stored in the same SDN switch is shared by multicast trees. We formulate
the proposed model as an integer linear programming (ILP) problem. In
addition, we develop a heuristic algorithm which can be used when the ILP
problem cannot be solved in practical time. Numerical results show that the
proposed model reduces the required number of flow entries compared to
two benchmark models; the maximum reduction ratio is 49.3% when the
number of multicast requests is 40.
key words: SDN, multicast, flow entry, integer linear programming

1. Introduction

Multicast communication supports applications that send the
same information to multiple receivers, such as video con-
ferencing and collaborative work applications, and reduces
the traffic load in the network. In Internet protocol (IP) mul-
ticast [1]–[3], multicast groups are managed and identified
by IP addresses. Receivers join and become members of
multicast groups by using the Internet group management
protocol (IGMP) [4], [5]. Since each router autonomously
determines the route on which multicast packets are trans-
mitted, the sender of a multicast service cannot control the
transmission route of the packets. Furthermore, the sender
cannot manage the members of the multicast group.

Software-defined network (SDN) has attracted attention
due to its superior packet flow control functionality [6], [7].
The sender of a multicast service can take control of the
multicast group by using the SDN technology. In an SDN,
the SDN controller creates flow entries that determine the

Manuscript received April 17, 2020.
Manuscript revised September 1, 2020.
Manuscript publicized November 13, 2020.
†The authors are with the Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606-8501 Japan.
a) E-mail: skotachi@icn.cce.i.kyoto-u.ac.jp
DOI: 10.1587/transcom.2020EBP3064

operation of SDN switches. Flow entries are stored in a
flow table of each SDN switch. The procedure for providing
multicast communication in an SDN is described below. The
sender first specifies the receivers as a multicast group, and
sends the receivers’ IP addresses to the SDN controller. The
SDN controller then assigns a new IP address to themulticast
group, and determines the packet transfer route from the
sender to the receivers. The route connecting the sender and
each receiver forms themulticast tree of themulticast service.
After determining the multicast tree, the SDN controller
stores flow entries for the multicast tree in SDN switches
located on the tree. The SDN controller then notifies the
sender of the IP address assigned to the multicast group.
The sender sends the multicast packets to the notified IP
address. The SDN switches forward the packets according
to the flow entries stored in the flow tables. Finally, the
packets are forwarded to the receivers in the multicast group.

SDN switches have limited flow table capacity, so their
efficiently use is essential [8], [9]. When a multicast service
request arises, flow entries for the IP address allocated to the
multicast group of the multicast service request are stored
in the appropriate SDN switches. Hereafter, a flow entry
for unicast is called a unicast entry, and that for multicast is
called a multicast entry. Unicast entries andmulticast entries
are collectively called flow entries. A multicast entry is
specific to a multicast group and cannot be shared with other
multicast and unicast services. Although using multicast
entries leads to more effective use of flow table capacity
than forwarding packets to all receivers via unicast, flow
table capacity can become scarce by using only multicast
entries when multiple multicast services are established. If
a receiver participates in multiple multicast groups, there is
a chance of reducing the number of required flow entries
by using unicast entries instead of multicast entries since
unicast entries can be shared by multiple services. SDN
switches use ternary content addressable memory (TCAM).
While TCAM excels in packet high-speed processing, it is
more expensive per megabit and consumes more power than
random access memory (RAM) [10], [11]. This makes it
difficult to increase the capacity of TCAM used in the SDN
switch; the number of flow entries that can be stored in the
flow table is restricted. For the above reasons, there is a
need to efficiently use the limited flow table capacity when
accommodating multicast services.

Humernbrum et al. [12] presented a scheme for de-
termining the multicast tree that suppresses the number of
required multicast entries and the type of flow entries stored

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

508
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

in each node for one multicast request in the SDN. In this
scheme, unicast entries are stored in SDN switches, instead
of multicast entries, in the section between each receiver and
the nearest branch point to that receiver. This suppresses the
total number of multicast entries stored in the SDN switches
in the network. However, in this scheme, whenmultiple mul-
ticast services are requested, unicast entries dedicated to the
same receiver can be distributed to various SDN switches.
As a result, the scheme cannot effectively reduce the total
number of flow entries.

Lin et al. [13] presented a locality-aware multicast ap-
proach (LAMA) that determines multicast trees and the type
of flow entries stored with the aim of suppressing their total
number. In LAMA, an SDN controller first clusters the mul-
ticast senders located in the vicinity into the same multicast
cluster. For each multicast cluster, the SDN controller se-
lects the SDN switch that has the fewest hops to all multicast
senders as its rendezvous point (RP), and then constructs
a shortest-path multicast tree from the RP to its receivers.
The controller stores flow entries in the SDN switches on
the multicast tree of each cluster. In the switches located
between each sender and the corresponding RP, the con-
troller stores flow entries dedicated to each sender of the
cluster. In the switches located between the RP and re-
ceivers, the controller stores flow entries dedicated to each
cluster. LAMA suppresses the number of stored flow entries
since flow entries dedicated to each cluster, which includes
multiple senders, are used instead of flow entries dedicated
to each sender. However, if the number of senders that can
be clustered is small due to a large number of hops between
senders, LAMA cannot efficiently suppress the total number
of flow entries since the number of clusters is large.

This paper proposes a routing model that can determine
multicast trees simultaneously while minimizing the total
number of flow entries for multiple multicast requests. In
this model, a unicast entry for the same receiver can be
shared among multiple multicast trees in an SDN switch.
The proposed model minimizes the total number of flow
entries regardless of the number of hops between senders.
We formulate the problem of determining multicast trees
while minimizing the total number of flow entries as an
integer linear programming (ILP) problem. We solve the ILP
problem to compare the proposedmodelwith two benchmark
models in terms of the total number of flow entries required
to accommodate multiple multicast trees. The results show
that the proposed model reduces the total number of flow
entries more effectively than the benchmark models.

This paper is an extended version of [14]. The ex-
tensions to the work in [14] are as follows. We prove the
NP-completeness of the decision version of the multicast
tree routing problem in the proposed model. We develop
a heuristic algorithm for the proposed model that runs in
practical time. We evaluate the number of flow entries and
computational time.

The rest of the paper is organized as follows. Section 2
describes the conventional scheme. Section 3 describes the
proposed model. Section 4 evaluates the total number of

flow entries by applying the proposed model. Finally, we
summarize this paper in Sect. 5.

2. Conventional Scheme

In the research [12], a scheme for determining the multicast
tree that suppresses the number of required multicast entries
and the type of flow entries stored in each node for a single
multicast request was presented. The scheme assumes that
the multicast tree is a shortest path tree (SPT) in terms of hop
number. A multicast entry is stored in a node if multicast
packets destined to two or more receivers pass through the
node. Figure 1 shows an example of its operation in multi-
cast communication. In Fig. 1, the multicast group includes
receivers 0 and 1. “multi” represents a multicast entry and
“uni (Receiver x)” represents a unicast entry dedicated to
receiver x. The red arrow indicates the multicast tree. At
first, the tree is constructed by using only multicast entries.
Then, multicast entries in nodes 1 and 7 are replaced by a
unicast entry dedicated to receiver 0 and multicast entries in
nodes 3, 4 and 8 are replaced by unicast entries dedicated to
receiver 1. Rewriting the destination IP address of a multi-
cast packet addressed to the multicast group to the IP address
of each receiver in node 0 yields multicast communication
to receivers 0 and 1. The multicast packet is transmitted in
the same way as a unicast packet in the section between node
0 and each receiver.

In the scheme, the tree that minimizes the number of
hops from the sender to each receiver is used as the multicast
tree. The authors developed the branch-aware modification
(BAM) algorithm to search the SDN switches at which uni-
cast entries should be stored instead of multicast entries in a
multicast tree. By applying the BAM algorithm to an SPT,
the flow entries stored in each SDN switch are determined.
There can be multiple SPTs for one combination of sender
and receivers. The authors compared the performance in
terms of the number of multicast entries by using the fol-
lowing algorithms. The first algorithm finds an SPT so as to
decrease the number of hops between receivers on the tree.

Fig. 1 Operation of multicast communication in SDN (rewriting destina-
tion IP address of packet in node 0.)

KOTACHI et al.: MULTICAST ROUTING MODEL TO MINIMIZE NUMBER OF FLOW ENTRIES IN SOFTWARE-DEFINED NETWORK
509

Fig. 2 Example of multicast trees yielded by EBSPT algorithm.

This algorithm is called the destination driven SPT (DDSPT)
algorithm. The second algorithm finds an SPT so as to in-
crease the number of hops between receivers on the tree.
This algorithm is called the early branching SPT (EBSPT)
algorithm. The DDSPT algorithm was developed in [15]
and the EBSPT algorithm was developed by modifying the
DDSPT algorithm in [12]. An SPT obtained by the EBSPT
algorithm tends to branch at nodes closer to the sender node
than that found by the DDSPT algorithm. Therefore, the
SPT obtained by the EBSPT algorithm tends to have many
links where a flow to a single receiver is transferred. When
the BAM algorithm is applied to the above SPTs, the EB-
SPT algorithm can achieve fewer multicast entries than the
DDSPT algorithm. In the scheme, the type of flow entries
stored in each node is determined by applying the EBSPT
algorithm and the BAM algorithm to a multicast request.

In general networking operation, there may be multiple
multicast requests. When we apply the scheme to multiple
multicast requests, we need to individually compute each
multicast tree. Figure 2 shows an example of providing two
multicast trees when there are two multicast requests and the
EBSPT algorithm is applied to each multicast request. In
Fig. 2, multicast group 0 includes sender 0 and receivers 0
and 1, and multicast group 1 includes sender 1 and receivers
1 and 2. “multi” represents a multicast entry and “uni (Re-
ceiver x)” represents a unicast entry dedicated to receiver
x. The red and green arrows show multicast trees 0 and
1, respectively. At first, each of the trees is constructed by
using only multicast entries. Then, in multicast tree 0, mul-
ticast entries in nodes 1 and 7 are replaced by unicast entries
dedicated to receiver 0, and multicast entries in nodes 3, 4
and 8 are replaced by unicast entries dedicated to receiver 1.
On the other hand, in multicast tree 1, multicast entries in
nodes 1, 2 and 8 are replaced by unicast entries dedicated to
receiver 1, andmulticast entries in nodes 3 and 9 are replaced
by unicast entries dedicated to receiver 2. In multicast tree 0,
by rewriting the destination IP address of a multicast packet
addressed to multicast group 0 to the IP address of each re-
ceiver in node 0, multicast communication from sender 0 to
receivers 0 and 1 is realized. In multicast tree 1, by rewriting

the destination IP address of a multicast packet addressed to
multicast group 1 to the IP address of each receiver in node 0,
multicast communication from sender 1 to receivers 1 and 2
is realized. If unicast entries dedicated to the same receiver
are set in the same node by different multicast trees, only
one unicast entry dedicated to the receiver is stored in the
node and shared by the different multicast trees. However, in
Fig. 2, unicast entries dedicated to receiver 1 are distributed
to nodes 1, 2, 3, and 4. Only the unicast entry stored in node
8 is shared by multicast trees 0 and 1. If the flow from sender
1 to receiver 1 in multicast tree 1 is changed to the route that
traverses nodes 5, 0, 1, 4, and 8, the unicast entry dedicated
to receiver 1 stored in node 4 can be shared by multicast trees
0 and 1. This indicates that, in the example of Fig. 2, unicast
entries cannot be shared effectively; there still remains the
possibility of reducing the number of flow entries.

3. Proposed Model

3.1 Model Description

We describe the proposed model in this section. The pro-
posed model determines multicast trees that minimizes the
total number of flow entries when multiple multicast service
requests occur in an SDN, under the constraint that different
multicast trees are allowed to share a unicast entry dedicated
to the same receiver stored in the same node.

We assume that a sender host and a receiver host are
connected to a node with zero hop. A node connected by
a sender host is called a sender node and that connected by
a receiver host is called a receiver node. For simplicity, we
assume that the maximum number of senders or receivers
directly connected to one SDN switch in a single multicast
tree is one.

Directed graph G(V, E) represents the SDN as a set of
nodes V and a set of links E. A set of multicast trees is
denoted by R. A set of receivers in multicast tree r ∈ R is
denoted by Kr . The set of receivers in all multicast trees is
denoted by K , where K =

⋃
r ∈R Kr . The sender node of

multicast tree r ∈ R is denoted by sr ∈ V , and the node of
receiver k ∈ K is denoted by dk ∈ V .

We explain how to set flow entries by using Fig. 3,
which shows two multicast trees in a ten-node network; a
red arrow for multicast tree 0 and a green arrow for multicast
tree 1. Receivers 0, 1, and 2 are located at nodes 7, 8, and
9, respectively (d0 = 7, d1 = 8, d2 = 9). In multicast tree
0, the sender node is node 5 (s0 = 5). The set of receivers
in multicast tree 0, K0, consists of receivers 0 and 1. In
multicast tree 1, the sender node is node 6 (s1 = 6). The
set of receivers in multicast tree 1, K1, consists of receivers
1 and 2. In multicast tree 0, multicast entries dedicated to
this tree are set in nodes 5, 0, 1, 4, 7, and 8. Here, multicast
packets from sender s0 are correctly transferred to receiver
d0 by the following operations.

• Rewrite the destination IP address of the packets to that
of d0 at node 1

510
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

Fig. 3 Example of multicast trees yielded by proposed model.

• Replace the multicast entry stored in node 7 with a
unicast entry for d0

In the same way, the multicast entries set in nodes 4 and 8
can be replaced with unicast entries for d1. In multicast tree
1, multicast entries dedicated to this tree are set in nodes 6, 0,
3, 4, 8, and 9. As with multicast tree 0, the multicast entries
in nodes 4 and 8 can be replaced with unicast entries for
d1, and the multicast entry in node 9 can be replaced with a
unicast entry for d2. When we simultaneously accommodate
these multicast trees 0 and 1 in the SDN, considering the
case where all flow entries stored in the SDN switches are
multicast entries, the total number of flow entries is 12.
However, by replacing the flow entries stored in nodes 7,
4, 8, and 9 with unicast entries for each receiver, multicast
trees 0 and 1 can share the unicast entries stored in nodes
4 and 8, and the total number of flow entries is 10. When
multiplemulticast trees are accommodated in the SDNas this
example, the total number of flow entries can be reduced by
replacing multicast entries with unicast entries and sharing
the unicast entries among multiple multicast trees.

Note that we mainly focus on the number of flow en-
tries in the proposed model since the flow table capacity
can become a bottleneck to operate SDN networks, as de-
scribed in Sect. 1. The proposed model can output multicast
trees that branch near the source node since the proposed
model stores unicast entries in SDN switches if it promotes
the sharing of unicast entries among multiple multicast trees
and suppresses the total number of flow entries. There-
fore, the proposed model can yield packet transmission with
lower efficiency than when multicast trees branch as close
the destination nodes as possible. The proposed model can
be expanded to consider packet transmission efficiency by
adding additional parameters and constraints. Similarly, the
proposed model can be expanded to include other network
limitations, such as latency and throughput.

3.2 ILP Formulation

We formulate the proposed model to determine multicast

trees presented in Sect. 3.1 as an ILP problem.
We define decision variables and parameters used in

this formulation as follows. xrv is a binary decision variable
that is set to 1 if a multicast entry of multicast tree r ∈ R
is stored in node v ∈ V , and 0 otherwise. ykv is a binary
decision variable that is set to 1 if a unicast entry for receiver
k ∈ K is stored in node v ∈ V , and 0 otherwise. qrkuv
is a binary decision variable that is set to 1, in multicast
tree r ∈ R, if the packet flow for receiver k ∈ Kr passes
through link (u, v) ∈ E, and 0 otherwise. wruv is a binary
decision variable that is set to 1 if link (u, v) ∈ E is included
in multicast tree r ∈ R, and 0 otherwise. zrkv is a binary
decision variable that is set to 1 if one or more flow entries
for receiver k ∈ Kr in multicast tree r ∈ R are stored in node
v ∈ V , and 0 otherwise. e is a sufficiently small positive
number.

The objective function to minimize is given as:

Min
∑
r ∈R

∑
v∈V

xrv + (1 − e) ×
∑
k∈K

∑
v∈V

ykv . (1)

The first term represents the total number of multicast entries
stored in all nodes in all multicast trees. The second term
excluding (1 − e) represents the total number of unicast en-
tries for each receiver stored in all nodes. By multiplying the
second term by a number slightly smaller than one, unicast
entries are stored with high priority when the total number
of flow entries does not change, no matter whether the flow
entry stored in the node is a multicast entry or a unicast entry.

The constraints are given by (2)–(12), as shown below.∑
u∈V :(v,u)∈E

qrkvu −
∑

u∈V :(u,v)∈E

qrkuv

=

1 if v = sr, v , dk

−1 if v = dk, v , sr
0 otherwise,

∀v ∈ V,∀r ∈ R,∀k ∈ Kr

(2)

qrkuv + qrkvu ≤ 1,∀(u, v), (v, u) ∈ E,∀r ∈ R,∀k ∈ Kr

(3)

Equation (2) preserves the packet flow from sender to re-
ceiver. Equation (3) is a constraint that does not allow a
packet flow to return to the previous hop node.

qrkuv ≤ wruv,∀(u, v) ∈ E,∀r ∈ R,∀k ∈ Kr (4)
wruv ≤

∑
k∈Kr

qrkuv,∀(u, v) ∈ E,∀r ∈ R (5)∑
u∈V :(u,v)∈E

wruv ≤ 1,∀r ∈ R,∀v ∈ V (6)∑
u∈V :(u,v)∈E

qrkuv = zrkv,∀v ∈ V\{sr },∀r ∈ R,∀k ∈ Kr

(7)∑
u∈V :(sr ,u)∈E

qrksru = zrksr ,∀r ∈ R,∀k ∈ Kr (8)

Equations (4) and (5) represent the link utilization in each

KOTACHI et al.: MULTICAST ROUTING MODEL TO MINIMIZE NUMBER OF FLOW ENTRIES IN SOFTWARE-DEFINED NETWORK
511

multicast tree. Equation (6) indicates that the number of
nodes from which packets are transferred to node v ∈ V is at
most one in multicast tree r ∈ R. This constraint prohibits
the existence of loops in multicast tree r ∈ R. Equations (7)
and (8) indicate whether there is a flow entry for receiver
k ∈ Kr of multicast tree r ∈ R in each node.

2 × xrsr ≤
∑
k∈Kr

∑
u∈V :(sr ,u)∈E

qrksru,∀r ∈ R (9)

2 × xrv ≤
∑
k∈Kr

∑
u∈V :(u,v)∈E

qrkuv,∀v ∈ V\{sr },∀r ∈ R

(10)

Equations (9) and (10) indicate whether a multicast entry is
stored in each node.

zrkv − xrv ≤ ykv,∀v ∈ V,∀r ∈ R,∀k ∈ Kr (11)

Equation (11) indicates whether a unicast entry is stored in
each node.

zrku−xru+qrkuv−1 ≤ ykv,∀(u, v) ∈ E,∀r ∈ R,∀k ∈ Kr

(12)

Equation (12) indicates, when a unicast entry for receiver
k ∈ Kr is stored in a node once in multicast tree r ∈ R,
unicast entries for receiver k ∈ Kr are stored in all nodes
from the node to receiver k’s node. This constraint prohibits
a packet once transferred by using unicast entries from being
transferred again through the use of multicast entries.

3.3 NP-Completeness

We prove that the decision version of the multicast tree rout-
ing problem in the proposed model is NP-complete. We
define the multicast tree routing problem to minimize the
number of flow entries (MTR-M) as follows:

Definition: When network topology G(V, E), a set of
multicast service requests R, a source node sr ∈ V of each
service r ∈ R, a set of receivers K , a set of receivers Kr of
each service r ∈ R, and the nodes dk ∈ V of each receiver
k ∈ K are given, is there any routing of multicast trees for
|R| service requests such that the total number of flow entries
is at most f ?

Theorem: The MTR-M problem is NP-complete.
Proof: First, we show that theMTR-Mproblembelongs

to NP.When an instance ofMTR-Mproblem is given, we can
calculate the total number of multicast entries in O(|R| |V |)
and the total number of unicast entries in O(|K | |V |). There-
fore, we can verify whether the total number of flow entries is
at most f in polynomial time O((|R| + |K |) |V |). Therefore,
the MTR-M problem belongs to NP.

Next, we show that the minimum Steiner tree problem
under the condition that all edge weights are equal, which is
a known NP-complete problem [16], can be reduced to the
MTR-M problem in polynomial time. The minimum Steiner
tree problem as a decision problem is defined as: given
undirected graph G′(V ′, E ′), a set of vertices T ⊆ V ′, and

weights of edges in E ′, is there any tree in G′ that includes
all the vertices of T ⊆ V ′ and whose sum of edge weights is
at most g?

We construct an instance of the MTR-M problem from
any instance of the minimum Steiner tree problem. An in-
stance of theMTR-Mproblem is constructedwith the follow-
ing algorithm, which runs in polynomial timeO(|V ′ |+ |E ′ |).

1. Let undirected graph G′(V ′, E ′) correspond to network
topology G(V, E). Each undirected link in E ′ is con-
verted to two directed links that connect the same pair
of nodes in E at different directions.

2. Set |R| = 1. Let the number of receivers in r ∈ R be
|K | = |Kr | = |T | − 1.

3. Let one of the nodes in T ⊆ V ′ be the sender node of
multicast request r , sr ∈ V , and the other |T | − 1 nodes
in T ⊆ V ′ be the receiver nodes of multicast request r ,
dk ∈ V , where k = 1, 2, · · · , |Kr |.

4. Let the weight of all edges be 1.
5. Let f be g + 1.

If the instance of the minimum Steiner tree problem is
a Yes instance, there is a tree that includes all the vertices of
T ⊆ V ′ in G′ and whose sum of edge weights is at most g.
At this time, in the corresponding MTR-M instance, there
is a route that connects the sender node of the multicast
request, sr ∈ V , and the receiver nodes of r , dk ∈ V , where
k = 1, 2, · · · , |Kr |. Since we consider one multicast request,
a unicast entry dedicated to receiver node dk ∈ V is stored in
each node on themulticast tree if a flow to one receiver passes
through the node, and amulticast entry dedicated tomulticast
request r ∈ R is stored in each node on the multicast tree
if a flow to two or more receivers passes through the node.
The total number of flow entries placed on the network is
at most g + 1 = f . This shows that there is a multicast
tree assignment in which the total number of flow entries is
at most f . Therefore, the corresponding MTR-M problem
instance is a Yes instance.

Conversely, if the MTR-M instance is a Yes instance,
there is a multicast tree routing for |R| service request (|R| =
1) in which the total number of flow entries is at most f .
Moreover there are at most f nodes that have a unicast or
multicast entry in the network. Let W ⊆ V denote a set of
these nodes. Let F ⊆ E denote a set of links in the multicast
tree. Graph G′′(W, F) is a subgraph of G. G′′ includes
at most f nodes. This means that, in the corresponding
instance of the minimum Steiner tree problem, there is a
tree containing all the vertices of T ⊆ V ′. Since all edge
weights are 1, the sum of edge weights of the tree is at most
f − 1 = g. Therefore, the corresponding instance of the
minimum Steiner tree problem is a Yes instance.

In summary, the MTR-M problem belongs to NP and
the minimum Steiner tree problem, which is a known NP-
complete problem, can be reduced to the MTR-M problem
in polynomial time. Therefore, the MTR-M problem is NP-
complete. �

512
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

4. Heuristic Algorithm

As the scale of the problem grows, the ILP problem intro-
duced in Sect. 3.2 can become intractable. In this section,
we present a heuristic algorithm, named the “two-step algo-
rithm,” to obtain multicast trees by using the proposedmodel
in a practical time even when the problem scale is large.

4.1 Overview

Algorithm 1 shows the two-step algorithm. This algorithm
determines routes of all pairs of sender and receiver in all
multicast requests before the type of flow entries stored in
each node is determined. This algorithm is composed of two
steps.

The first step consists of lines 1 to 13 in Algorithm 1.
This step determines all muticast trees so that as many links
where flows to the same receiver pass through as possible
are overlapped for different multicast requests. Using these
trees promotes the sharing of unicast entries dedicated to the
same receiver among different multicast requests.

The second step consists of lines 14 to 34 in Algo-
rithm 1. This step determines the type of flow entries stored
in each node for realizing all multicast requests. We deter-
mine the type of flow entries stored in each node so that the
total number of flow entries is as small as possible by shar-
ing unicast entries dedicated to the same receiver between
different multicast requests.

4.2 Step 1 in Two-Step Algorithm

Step 1 starts by computing a multicast tree for every receiver
node by assuming that sender nodes and receiver nodes are
interchanged. We call this multicast tree “an interchanged
tree” hereafter. Next, we determine multicast trees for origi-
nal multicast requests by computing paths on which a sender
node and receiver nodes of each original multicast request
are connected via “interchanged trees.” The details of step 1
in the two-step algorithm are explained as follows.

sreverse is a receiver node in original multicast requests,
which is set to a sender node of an “interchanged tree.” For
receiver k ∈ K , sreverse is set to dk . R′ is a set of multicast
requests where k is contained in the set of receivers Kr .
Preverse is a set of sender nodes sr for all multicast requests
r ∈ R′. We apply the DDSPT algorithm by setting the
sender node to sreverse and receiver nodes to Preverse to obtain
an “interchanged tree” for receiver k. The DDSPT algorithm
finds an SPT that tends to branch at nodes close to receivers
so as to decrease the number of hops between receivers on
the tree. Therefore, by applying the DDSPT algorithm, the
number of links, through which multiple multicast flows
destined to the same receiver pass, tends to be large, which
leads to enhanced sharing of unicast entries dedicated to
receiver k ∈ K . The paths connecting sreverse and each
node in Preverse in the “interchanged tree” are used as the
paths connecting receiver node dk of the original multicast

requests r and sr . Finally, in line 8 to 13 in Algorithm 1, the
multicast trees of the original multicast requests are formed
by the “interchanged trees” obtained in lines 1 to 7.

4.3 Step 2 in Two-Step Algorithm

Step 2 determines the type of flow entries stored in each
node. Its details are as follows.

Rv is the set of multicast requests that pass through node
v . We determine the type of flow entries stored in each node,
v ∈ V , to form multicast requests whose multicast trees pass
through v . Nodes in V are processed in ascending order of
the number of receivers located downstream of node v in
multicast request r ∈ Rv . If multicast request r ∈ Rv cannot
be formed by unicast entries already stored in node v , we
compare the following two numbers to determine the type
of additional flow entries stored in node v . Assume that
we need to store one or more additional unicast entries in
v to realize multicast request r ∈ Rv . One number is the
number of additional unicast entries stored in v , which is
represented by a − b in Algorithm 1. The other number is
the number of multicast requests which can be realized by
using all unicast entries in v , including the additional ones,
which is represented by c in Algorithm 1. a is the number of
receivers located downstream of node v in multicast request
r ∈ Rv . b is the number of receivers located downstream
of node v in multicast request r ∈ Rv and whose dedicated
unicast entries are already stored in node v . If a − b < c,
the increase in the number of flow entries can be suppressed
by storing additional unicast entries instead of new multi-
cast entries. Therefore, unicast entries dedicated to receiver
k, which is located downstream of node v in multicast re-
quest r ∈ Rv , are stored in all nodes located between node v
and receiver node dk for every receiver located downstream
of node v in multicast request r ∈ Rv . If a − b = c, the
increase in the number of flow entries created by the addi-
tional unicast entries is equal to the increase in the number of
flow entries yielded by storing new multicast entries. In this
case, unicast entries are stored in the same way as the case
of a − b < c to promote the sharing of the unicast entries
among multiple multicast trees. If a − b > c, the increase
in the number of flow entries can be suppressed by storing
new multicast entries instead of additional unicast entries.
Therefore, multicast entries dedicated to multicast request
r ∈ Rv are stored in all nodes located between sender node
sr and node v . Lines 15 to 32, in which we determine the
type of flow entries stored in each node, are repeated for all
nodes in descending order of the number of flows passing
through the node.

5. Numerical Results

5.1 Environment

We call the proposed model “multicast routing considering
all requests (MR-A)” in this section.

KOTACHI et al.: MULTICAST ROUTING MODEL TO MINIMIZE NUMBER OF FLOW ENTRIES IN SOFTWARE-DEFINED NETWORK
513

Algorithm 1 two-step algorithm
Input: Network G(V, E), sender node sr ∈ V , set of receivers Kr of

multicast request r ∈ R, and set of receivers K of all multicast requests
r ∈ R

Output: Flow entries in each node v ∈ V
1: for receiver k ∈ K do
2: sreverse = dk
3: R′ = a set of multicast requests where k is contained in a set of

receivers Kr

4: Preverse = a set of sender nodes sr of all multicast request r ∈ R′

5: Apply the DDSPT algorithm by setting the sender node to sreverse
and receiver nodes to Preverse

6: Store paths that connect sreverse and nodes in Preverse
7: end for
8: for multicast request r ∈ R do
9: for receiver k ∈ Kr do
10: Determine path that connects sr ∈ V and dk by using the stored

paths
11: end for
12: Determine the multicast tree in multicast request r
13: end for
14: for v ∈ V in descending order of the number of flows passing through

v do
15: if there are one or more flows passing through node v then
16: Rv = a set of multicast requests which pass through node v
17: for r ∈ Rv in ascending order of the number of receivers located

downstream of node v do
18: if r cannot be constructed by unicast entries already stored in

node v then
19: a = the number of receivers located downstream of node

v in multicast request r
20: b = the number of receivers located downstream of node v

in multicast request r and whose dedicated unicast entries
are already stored in node v

21: c = the number of multicast requests that can be realized
by using all unicast entries stored in node v, including
those need to be additionally stored in v to realize multicast
request r ∈ Rv by using only unicast entries

22: if a − b ≤ c then
23: for receivers k reached from node v in multicast request

r do
24: Store unicast entry dedicated to receiver k in every

nodes from v to dk
25: end for
26: end if
27: if a − b > c then
28: Store multicast entry dedicated to multicast request r

in every nodes from sr to v
29: end if
30: end if
31: end for
32: end if
33: end for

We evaluate the total number of flow entries with re-
spect to the number of multicast requests for benchmark
models and MR-A. Furthermore, under the condition that
the number of multicast requests is fixed, we evaluate the
ratio of the number of multicast entries to that of unicast
entries in each case of applying the benchmark models and
MR-A.

In this evaluation, we use the National Science Foun-
dation (NSF) network topology with 14 nodes and 21 bidi-
rectional links shown in Fig. 4; it is often used for network
simulations [17]–[19]. We use the number of flow entries,

Fig. 4 NSF network.

computation time, ratio of the type of flow entries, and the
number of flows as the evaluation metrics. The number of
receivers in each multicast request is set to a random inte-
ger from 1 to 10. We assume that there is no upper limit
on the number of storable flow entries of each node nor on
the bandwidth of each link. For each multicast request, we
first determine the sender node randomly and then choose
the receiver nodes randomly from the remaining nodes. The
number of senders or receivers in one node is at most one.

The hardware platform uses an Intel Xeon E3-1270 v6
3.80GHz 4-core CPU and 64GB RAM to solve the ILP
problems and the heuristic algorithms. The ILP problems
are solved by using CPLEX® Interactive Optimizer 12.8.0.0
[20].

5.2 Benchmark Models

In this numerical evaluation, in addition to MR-A with ILP
and MR-A with the two-step algorithm, we introduce three
benchmarkmodels that determinemulticast trees one by one.

Benchmark model 1 is based on the conventional
scheme in [12]. Benchmark model 1 determines each mul-
ticast tree by using the EBSPT algorithm. Flow entries
stored in each node are determined based on the multicast
trees under the condition that different multicast trees can
share unicast entries dedicated to the same receiver. We call
benchmark model 1 “multicast routing considering individ-
ual requests with the EBSPT algorithm (MR-IE).”

One may consider that the total number of flow entries
can be decreased efficiently by minimizing the number of
flow entries in each multicast tree. Therefore, we introduce
benchmark model 2. Benchmark model 2 determines each
multicast tree so as to minimize the total number of flow
entries for the multicast request. In this model, we determine
each multicast tree by solving the ILP problem in (1)–(12)
under the condition that the number of multicast requests
|R| is one. We call benchmark model 2 “multicast routing
considering individual requests with ILP (MR-II).”

Benchmark model 3 uses the DDSPT algorithm to de-
termine a multicast tree. We call benchmark model 3 “multi-
cast routing considering individual requests with the DDSPT
algorithm (MR-ID).” The reason we introduce MR-ID is that
the number of flows in a link can be suppressed by using the
DDSPT algorithm since the DDSPT algorithm finds a mul-
ticast tree that tends to branch at nodes close to receivers. In
the evaluation of the number of flows, we use MR-ID instead

514
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

of MR-IE.

5.3 Number of Flow Entries

Figure 5 shows the relationship between the number of mul-
ticast requests and the total number of flow entries for mul-
ticast trees yielded by each model in NSF network. The
horizontal axis is the number of multicast requests, and the
vertical axis is the number of flow entries. We take the aver-
age value of 200 simulation runs for each multicast request
number. When the number of multicast requests is small,
the total number of flow entries of MR-II, that of MR-IE,
and that of MR-A with the two-step algorithm are almost the
same, and are larger than that of MR-A with ILP. However,
as the number of multicast requests increases, the number of
flow entries of MR-A with the two-step algorithm and MR-
A with ILP become smaller than that of MR-II and MR-IE.
This is because in MR-II and MR-IE, each multicast tree is
determined individually. By determining each multicast tree
individually, unicast entries are distributed to multiple nodes
and multiple multicast entries are stored in a node instead of
a single unicast entry that can be shared between multiple
multicast requests. InMR-Awith the two-step algorithm and
MR-A with ILP, all multicast trees are determined simulta-
neously. Compared with MR-II, MR-IE and MR-A with the
two-step algorithm, MR-A with ILP offers a larger reduction
in the total number of flow entries as the number of multicast
requests increases. In the case of 40 multicast requests, the
total number of flow entries in MR-A with ILP is decreased
by 49.3% compared to MR-IE. Although reduction in flow
entry number is not as large as MR-A with ILP, the total
number of flow entries in MR-A with the two-step algorithm
is decreased by 35.2% compared to MR-IE. This is because
MR-A promotes the sharing of unicast entries among mul-
ticast trees. This result indicates that MR-A reduces the
total number of flow entries more effectively relative to the
benchmark models.

Figure 6 shows the number of multicast and unicast
entries when the multicast trees are obtained by applying
each model. The number of multicast requests is set to
40. We take the average value of 200 simulation runs for
each model. In Fig. 6, the ratio of the number of multicast
entries to that of all flow entries with MR-IE is 71.8%, that
with MR-II is 81.6%, that with MR-A with the two-step
algorithm is 22.7%, and that with MR-A with ILP is 35.7%.
It can be seen that the ratios of the number of multicast
entries to that of all flow entries with MR-IE and MR-II, in
which multicast trees are determined individually, are close.
Also, it can be seen that the ratios of the number of multicast
entries to that of all flow entries withMR-Awith the two-step
algorithm and MR-A with ILP, in which all multicast trees
are determined simultaneously, are close. The ratios of the
number of multicast entries to that of all flow entries with
MR-IE and MR-II are larger than that with MR-A with the
two-step algorithm and MR-A with ILP. The total number
of flow entries with MR-IE and that with MR-II are larger
than that with MR-A with the two-step algorithm and that

Fig. 5 Relationship between number of multicast requests and total num-
ber of flow entries in NSF network.

Fig. 6 Relationship between models and number of flow entries in NSF
network (number of trees = 40).

withMR-Awith ILP. These results mean that sharing unicast
entries between different trees is effective in decreasing the
total number of flow entries and is enhanced by considering
multiple multicast requests simultaneously.

Figures 7 and 8 show the relationship between the num-
ber of multicast requests and the maximum number of flow
entries stored in a node. Figure 7 shows the maximum num-
ber of flow entries per node averaged over 200 trials for each
multicast request number. Figure 8 shows the maximum
number of flow entries per node observed in 200 trials for
each multicast request number. In Fig. 7, when the number
of multicast requests is less than or equal to 14, all models
yield almost the same average values of maximum number
of flow entries stored in a node; the difference in the average
values is at most 1.41. The same observation can be seen in
Fig. 8; the difference in the results of all models is at most

KOTACHI et al.: MULTICAST ROUTING MODEL TO MINIMIZE NUMBER OF FLOW ENTRIES IN SOFTWARE-DEFINED NETWORK
515

Fig. 7 Relationship between number of multicast requests and maximum
number of flow entries in node when averaging results of all trials in NSF
network.

Fig. 8 Relationship between number of multicast requests and maximum
number of flow entries in node in all trials in NSF network.

2. As shown in Figs. 7 and 8, as the number of multicast
requests increases, the maximum number of flow entries in
a node with MR-A with two-step algorithm and that with
MR-A with ILP become smaller than those with MR-IE and
MR-II. When the number of multicast requests is 40, the
maximum number of flow entries stored in a node with MR-
IE is the largest, followed by MR-II, MR-A with two step
algorithm, and then MR-A with ILP. These trends of Figs. 7
and 8 are similar to the result of Fig. 5. Figures 7 and 8 show
that the maximum number of flow entries stored in a node
when each multicast tree is determined individually tends to
be larger than that when all multicast trees are determined
simultaneously. This is because multicast entries tend to
be stored in order to decrease the number of flow entries in
each multicast tree with MR-IE and MR-II, whereas unicast
entries are preferentially stored if that promotes the sharing

Fig. 9 Relationship between number of multicast requests and computa-
tion time in NSF network.

of unicast entries which suppresses the total number of flow
entries with MR-A. In Fig. 8, the maximum number of flow
entries per node with MR-A with ILP is less than or equal
to 14 since multicast entries are not required to be stored
when unicast entries dedicated to all receivers are stored in
the node.

5.4 Computation Time

Figure 9 shows the computation times required to obtain the
multicast trees and the type of flow entries in each model.
MR-A with ILP takes the largest computation time, followed
by MR-II, MR-A with the two-step algorithm and MR-IE.
Compared with MR-II, MR-A with the two-step algorithm,
and MR-IE, the computation time of MR-A with ILP in-
creases rapidly with the number of multicast requests in-
creasing.

5.5 Number of Flows Transferred in Link

Figures 10 and 11 show the relationship between the number
of multicast requests and the maximum number of flows in a
link. Figure 10 shows themaximumnumber of flows in a link
averaged over 200 trials for each multicast request number.
Figure 11 shows the maximum number of flows in a link
observed in 200 trials for each multicast request number.
Note that each flow transferred over a link is counted as
one flow regardless of its type, i.e., multicast flow or unicast
flow. As shown in Figs. 10 and 11, as the number ofmulticast
requests increases, the number of flows in a link with MR-
A rapidly increases compared with MR-ID and MR-II. This
is because MR-A tends to determine multicast trees that
branch near the source node, which leads to an increase in
the number of flows in a network. As a result, the number
of flows in a link becomes large. As described in Sect. 3.1,
we focus on suppressing the total number of flow entries in
MR-A. If it is required to suppress the number of flows in a

516
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

Fig. 10 Relationship between number of multicast requests and maxi-
mum number of flows in link when averaging results of all trials in NSF
network.

Fig. 11 Relationship between number of multicast requests and maxi-
mum number of flows in link in all trials in NSF network.

link, we can add a new constraint to MR-A.

5.6 Constraint of Maximum Number of Flow Entries in
Node

We evaluate the effect of maximum number of flow entries
that can be stored in a node on the performance of MR-A in
this section. A constraint of the maximum number of flow
entries stored in a node is given by:∑

r ∈R

xrv +
∑
k∈K

ykv ≤ M,∀v ∈ V . (13)

Equation (13) indicates that the number of flow entries stored
in node v ∈ V is less than or equal to M . In this evaluation,
we set M to |V | − 1 in consideration of the result of MR-A
with ILP in Fig. 8; at most 14 flow entries, each of which is

Fig. 12 Difference of total number of flow entries by adding constraint
(13) to MR-A with ILP in NSF network.

Fig. 13 Difference of computation time by adding constraint (13) to MR-
A with ILP in NSF network.

a unicast entry dedicated to each receiver node, are required
to be stored in each node to provide all multicast trees.

Figure 12 shows the total number of flow entries when
we obtain themulticast trees by applyingMR-Awith ILP and
that by applying MR-A with ILP including constraint (13).
The total number of flow entries increases by 3.69 when the
number of multicast requests is 40 by adding constraint (13)
to MR-A with ILP. This is because the number of hops be-
tween a sender and a receiver in the determined multicast
trees can increase when constraint (13) is added since con-
straint (13) prohibits unicast entries dedicated to all nodes
from being stored in a node. Figure 13 shows the computa-
tion times required to obtain the multicast trees and the type
of flow entries in MR-A with ILP and MR-A with ILP in-
cluding constraint (13). As the number of multicast requests
increases, the computation time increases more rapidly in

KOTACHI et al.: MULTICAST ROUTING MODEL TO MINIMIZE NUMBER OF FLOW ENTRIES IN SOFTWARE-DEFINED NETWORK
517

MR-A with ILP including constraint (13) than MR-A with
ILP.

6. Conclusion

In this paper, we proposed a routing model for determin-
ing multicast trees that minimizes the total number of flow
entries for multiple multicast requests in an SDN. When
multicast trees of multiple multicast requests are determined
based on the conventional scheme, further reductions in the
number of flow entries are possible since multicast trees are
determined individually. The proposedmodel determines all
multicast trees simultaneously and promotes the sharing of
unicast entries among different multicast trees. We formu-
lated the proposed model as an ILP problem and developed a
heuristic algorithmwhich can be used in the case that the ILP
problem is intractable. We evaluated the proposed model by
solving the ILP problem and using the heuristic algorithm.
Simulation results showed that the proposed model reduces
the total number of flow entries more effectively than the
benchmark models. The proposed model is intended for the
static scenario, in which the sender and the set of receivers
in each multicast request are known in advance. In practical
network operations, the proposed model can be applied to
situations where routes of multiplemulticast requests need to
be optimized, such as the beginning of network operation or
scheduled network maintenance. As a future work, we will
consider the dynamic scenario, where receivers are added to
or deleted from multicast trees.

Acknowledgments

This work was supported in part by JSPS KAKENHI, Japan,
under Grant Numbers 18H03230 and 19K14980.

References

[1] T. Kusunoki, T. Kurakake, K. Otsuki, and K. Saito, “Improvement
of 4K/8Kmulti-channel IP multicast using DOCSIS over in-building
coaxial cable network,” 2019 IEEE International Conference onCon-
sumer Electronics (ICCE), pp.1–5, Jan. 2019.

[2] L. Yen, M. Wang, S. Wu, and C. Tseng, “PIM-compliant SDN-
enabled IP multicast service,” NOMS 2018 - 2018 IEEE/IFIP Net-
work Operations and Management Symposium, pp.1–4, April 2018.

[3] O. Komolafe, “IP multicast in virtualized data centers: Challenges
and opportunities,” 2017 IFIP/IEEE Symposium on Integrated Net-
work and Service Management (IM), pp.407–413, May 2017.

[4] T. Hardjono and B. Cain, “Key establishment for IGMP authentica-
tion in IP multicast,” 1st European Conference on Universal Multi-
service Networks. ECUMN’2000 (Cat. no.00EX423), pp.247–252,
Oct. 2000.

[5] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “In-
ternet group management protocol, version 3,” RFC 3376 (Proposed
Standard), Oct. 2002.

[6] S. Islam, N. Muslim, and J.W. Atwood, “A survey on multicasting in
software-defined networking,” IEEECommun. Surveys Tuts., vol.20,
no.1, pp.355–387, Firstquarter 2018.

[7] L. Huang, H. Hsu, S. Shen, D. Yang, and W. Chen, “Multicast
traffic engineering for software-defined networks,” IEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer
Communications, pp.1–9, April 2016.

[8] C. Zhang, H. Yang, and G.F. Riley, “Admission control in software-
defined datacenter network in view of flow table capacity,” IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), pp.871–876, April 2018.

[9] X. Jia, Y. Jiang, Z. Guo, and Z. Wu, “Reducing and balancing flow
table entries in software-defined networks,” 2016 IEEE 41st Confer-
ence on Local Computer Networks (LCN), pp.575–578, Nov. 2016.

[10] X. Zhang, S. Yu, Z. Xu, Y. Li, Z. Cheng, and W. Zhou, “Flow
entry sharing in protection design for software defined networks,”
GLOBECOM 2017 - 2017 IEEE Global Communications Confer-
ence, pp.1–7, Dec. 2017.

[11] P.M. Mohan, T. Truong-Huu, and M. Gurusamy, “TCAM-aware
local rerouting for fast and efficient failure recovery in software de-
fined networks,” 2015 IEEE Global Communications Conference
(GLOBECOM), pp.1–6, Dec. 2015.

[12] T. Humernbrum, B. Hagedorn, and S. Gorlatch, “Towards efficient
multicast communication in software-defined networks,” 2016 IEEE
36th International Conference on Distributed Computing Systems
Workshops (ICDCSW), pp.106–113, June 2016.

[13] Y.D. Lin, Y.C. Lai, H.Y. Teng, C.C. Liao, and Y.C. Kao, “Scalable
multicasting with multiple shared trees in software defined network-
ing,” J. Netw. Comput. Appl., vol.78, no.C, pp.125–133, Jan. 2017.

[14] S. Kotachi, T. Sato, R. Shinkuma, and E. Oki, “Multicast routing
model to minimize number of flow entries in software-defined net-
work,” 2019 20th Asia-Pacific Network Operations andManagement
Symposium (APNOMS), pp.1–6, Sept. 2019.

[15] B. Zhang and H.T. Mouftah, “A destination-driven shortest path
tree algorithm,” 2002 IEEE International Conference on Communi-
cations. Conference Proceedings. ICC 2002 (Cat. no.02CH37333),
pp.2258–2262, April 2002.

[16] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman & Co.,
New York, NY, USA, 1979.

[17] R. Hulsermann, A. Betker, M. Jager, S. Bodamer, M. Barry, J. Spath,
C.Gauger, andM.Kohn, “A set of typical transport network scenarios
for network modelling,” ITG FACHBERICHT, pp.65–72, Jan. 2004.

[18] C.L. Triveni, P.C. Srikanth, and T. Srinivas, “An optimized routing
algorithm for elastic optical network,” 2016 International Conference
on Electrical, Electronics, and Optimization Techniques (ICEEOT),
pp.3873–3878, March 2016.

[19] “NSFNET: A partnership for high-speed networking: Fi-
nal report,” https://www.merit.edu/wp-content/uploads/2019/06/
NSFNET_final-1.pdf, Accessed: 2020-4-17.

[20] “CPLEX optimization studio,” https://www.ibm.com/products/ilog-
cplex-optimization-studio, Accessed: 2020-4-15.

Seiki Kotachi is currently pursuing the mas-
ter degree at the Graduate School of Informat-
ics, Kyoto University, Kyoto, Japan. He received
the B.E. in Undergraduate School of Electrical
and Electronic Engineering, Kyoto University,
Kyoto, Japan, in 2019. His research interests in-
clude software-defined network, modeling, opti-
mization, and algorithms.

http://dx.doi.org/10.1109/icce.2019.8661972
http://dx.doi.org/10.1109/icce.2019.8661972
http://dx.doi.org/10.1109/icce.2019.8661972
http://dx.doi.org/10.1109/icce.2019.8661972
http://dx.doi.org/10.1109/noms.2018.8406204
http://dx.doi.org/10.1109/noms.2018.8406204
http://dx.doi.org/10.1109/noms.2018.8406204
http://dx.doi.org/10.23919/inm.2017.7987305
http://dx.doi.org/10.23919/inm.2017.7987305
http://dx.doi.org/10.23919/inm.2017.7987305
http://dx.doi.org/10.1109/ecumn.2000.880748
http://dx.doi.org/10.1109/ecumn.2000.880748
http://dx.doi.org/10.1109/ecumn.2000.880748
http://dx.doi.org/10.1109/ecumn.2000.880748
http://dx.doi.org/10.17487/rfc3376
http://dx.doi.org/10.17487/rfc3376
http://dx.doi.org/10.17487/rfc3376
http://dx.doi.org/10.1109/comst.2017.2776213
http://dx.doi.org/10.1109/comst.2017.2776213
http://dx.doi.org/10.1109/comst.2017.2776213
http://dx.doi.org/10.1109/infocom.2016.7524383
http://dx.doi.org/10.1109/infocom.2016.7524383
http://dx.doi.org/10.1109/infocom.2016.7524383
http://dx.doi.org/10.1109/infocom.2016.7524383
http://dx.doi.org/10.1109/infcomw.2018.8407004
http://dx.doi.org/10.1109/infcomw.2018.8407004
http://dx.doi.org/10.1109/infcomw.2018.8407004
http://dx.doi.org/10.1109/infcomw.2018.8407004
http://dx.doi.org/10.1109/lcn.2016.96
http://dx.doi.org/10.1109/lcn.2016.96
http://dx.doi.org/10.1109/lcn.2016.96
http://dx.doi.org/10.1109/glocom.2017.8254024
http://dx.doi.org/10.1109/glocom.2017.8254024
http://dx.doi.org/10.1109/glocom.2017.8254024
http://dx.doi.org/10.1109/glocom.2017.8254024
http://dx.doi.org/10.1109/glocom.2015.7417309
http://dx.doi.org/10.1109/glocom.2015.7417309
http://dx.doi.org/10.1109/glocom.2015.7417309
http://dx.doi.org/10.1109/glocom.2015.7417309
http://dx.doi.org/10.1109/icdcsw.2016.15
http://dx.doi.org/10.1109/icdcsw.2016.15
http://dx.doi.org/10.1109/icdcsw.2016.15
http://dx.doi.org/10.1109/icdcsw.2016.15
http://dx.doi.org/10.1016/j.jnca.2016.11.014
http://dx.doi.org/10.1016/j.jnca.2016.11.014
http://dx.doi.org/10.1016/j.jnca.2016.11.014
http://dx.doi.org/10.23919/apnoms.2019.8893074
http://dx.doi.org/10.23919/apnoms.2019.8893074
http://dx.doi.org/10.23919/apnoms.2019.8893074
http://dx.doi.org/10.23919/apnoms.2019.8893074
http://dx.doi.org/10.1109/icc.2002.997248
http://dx.doi.org/10.1109/icc.2002.997248
http://dx.doi.org/10.1109/icc.2002.997248
http://dx.doi.org/10.1109/icc.2002.997248
http://dx.doi.org/10.1109/iceeot.2016.7755439
http://dx.doi.org/10.1109/iceeot.2016.7755439
http://dx.doi.org/10.1109/iceeot.2016.7755439
http://dx.doi.org/10.1109/iceeot.2016.7755439
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
https://www.merit.edu/wp-content/uploads/2019/06/NSFNET_final-1.pdf
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

518
IEICE TRANS. COMMUN., VOL.E104–B, NO.5 MAY 2021

Takehiro Sato received the B.E., M.E. and
Ph.D. degrees in engineering from Keio Univer-
sity, Japan, in 2010, 2011 and 2016, respectively.
He is currently an assistant professor in theGrad-
uate School of Informatics, Kyoto University,
Japan. His research interests include commu-
nication protocols and network architectures for
the next generation optical network. From 2011
to 2012, he was a research assistant in the Keio
University Global COE Program. From 2012 to
2015, he was a research fellow of Japan Soci-

ety for the Promotion of Science. From 2016 to 2017, he was a research
associate in Graduate School of Science and Technology, Keio University,
Japan. He is a member of the IEEE.

Ryoichi Shinkuma received B.E., M.E., and
Ph.D. degrees in communications engineering
from Osaka University in 2000, 2001, and 2003,
respectively. In 2003, he joined the Communica-
tions and Computer Engineering Faculty of the
Graduate School of Informatics, Kyoto Univer-
sity, where he is currently an associate professor.
He was a visiting scholar in the Wireless Infor-
mation Network Laboratory, Rutgers University
from Fall 2008 to Fall 2009. His research inter-
est is mainly cooperation in heterogeneous net-

works. He received the Young Researchers’ Award from IEICE in 2006 and
the Young Scientist Award from Ericsson Japan in 2007. He also received
the TELECOM System Technology Award from the Telecommunications
Advancement Foundation in 2016 and the best tutorial paper award from
the IEICE Communications Society in 2019. He was the Chairperson of
the Mobile Network and Applications Technical Committee of the IEICE
Communications Society from 2017 to 2019. He is a fellow of IEICE and
a senior member of IEEE.

Eiji Oki is a Professor at Kyoto University,
Japan. He received the B.E. and M.E. degrees
in instrumentation engineering and a Ph.D. de-
gree in electrical engineering from Keio Uni-
versity, Yokohama, Japan, in 1991, 1993, and
1999, respectively. He was with Nippon Tele-
graph and Telephone Corporation (NTT) Lab-
oratories, Tokyo, from 1993 to 2008, and The
University of Electro-Communications, Tokyo,
from 2008 to 2017. From 2000 to 2001, he
was a Visiting Scholar at Polytechnic University,

Brooklyn, New York. In 2017, he joined Kyoto University, Japan. His
research interests include routing, switching, protocols, optimization, and
traffic engineering in communication and information networks. He is an
IEEE Fellow.

