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SUMMARY Cuffless blood pressure (BP) monitors are noninvasive de-
vices that measure systolic and diastolic BP without an inflatable cuff. They
are easy to use, safe, and relatively accurate for resting-state BP measure-
ment. Although commercially available from online retailers, BP monitors
must be approved or certificated by medical regulatory bodies for clinical
use. Cuffless BP monitoring devices also need to be approved; however,
only the Institute of Electrical and Electronics Engineers (IEEE) certify
these devices. In this paper, the principles of cuffless BP monitors are
described, and the current situation regarding BP monitor standards and
approval for medical use is discussed.
key words: cuffless blood pressure monitor, non-invasive blood pressure
monitor, regulation, standard, medical approval

1. Introduction

Blood pressure (BP) is one of the most important physiolog-
ical parameters for maintaining good health. Thus, daily BP
monitoring is recommended. In 2017, the American College
of Cardiology and the American Heart Association intro-
duced new definitions of normal BP, (< 120/80 mmHg) and
hypertension (> 130/80 mmHg) [1]. Several cohort studies
have recommended that BP be monitored either using am-
bulatory blood pressure monitoring (ABPM) or home-based
BP monitoring devices. The cuff-based sphygmomanometer
is a noninvasive blood pressure (NIBP) monitor commonly
used both in the home healthcare and clinical setting. How-
ever, cuff-based sphygmomanometers are sometimes diffi-
cult to handle because the cuff must be positioned at the
same level as the heart. Also, cuff inflation during the night
can disturb sleep, and long-term monitoring may be diffi-
cult. Cuffless BP monitors have recently been introduced
to monitor BP without a cuff. These monitors were devel-
oped in accordance with mechanical and optical principles.
The technical performance of cuffless BP monitors has been
evaluated using several methods, including machine learn-
ing, deep learning, and neural networks. Medical devices
have to be approved by regulatory authorities. In particular,
the use of mercury in BP monitoring devices should be ap-
proved only based on clinical evidence of safety. At present,
there is insufficient evidence to support the clinical use of
cuffless BP monitors.

In this paper, the principles of the cuffless BP moni-
tor are presented and current standards and regulations are
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reviewed.

2. Principles of Cuffless BP Monitors

The basic principles of cuffless BP monitors can mainly be
classified as mechanical or optical. Although the impedance
cardiogram (ICG) and ballistocardiogram (BCG) are
promising methods, they currently have no practical appli-
cations. Cuffless NIBP devices operate according to three
principles: pulse transit time (PTT), the pulse contour, and
the acceleration pulse. Cuffless NIBP monitors are designed
to measure trends in BP, beat-to-beat rhythms, and wave-
forms.

2.1 PTT-Based Estimation

PTT-based BP devices are based either on photoplethys-
mography (PPG) and electrocardiography (ECG; R wave),
or on two PPGs, as shown in Fig. 1. An alternative approach
to continuous NIBP measurement is based on changes in
pulse wave velocity (PWV), which is the velocity of a pres-
sure pulse propagating along the arterial wall. This can be
calculated from the PTT, i.e., the time between two pulse
waves propagating from two separate arterial sites during
the same cardiac cycle, as shown in Fig. 1.

The pulse arrival time (PAT), i.e., the interval between
the ECG R-wave and the starting point of the photoplethys-
mographic wave (sum of PPT and the pre-ejection period
[PEP]), is gaining in popularity as a method for tracking BP
because it is easy to estimate [2]–[8]. PAT calculations were
summarized in several review articles [6], [8]. PAT and PTT
are different, in that PAT includes PEP, which is the time
between electrical depolarization of the left ventricle (QRS
on the ECG) and the beginning of ventricular ejection; this

Fig. 1 Estimation of BP based on the PTT, which is calculated based on
the PPG waveform and ECG R wave PCG is the phonocardiograph signal.
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represents the period of left ventricular contraction during
which the cardiac valves are closed. If BP increases, the du-
ration of PEP sometimes increases as well, even though it is
usually expected to shorten; thus, the PAT does not exactly
reflect BP changes. However, several studies consider PAT
equivalent to PTT. Devices based on PAT and PTT can be
used as BP monitors.

PTT, including PAT, depends on the elasticity of blood
vessels, calculated based on the Moens-Kortewg equation
[2] and the distance L between two PPG detectors.

PTT = L/

√
Eh
2rρ

(1)

where ρ is the blood density, r is the inner radius of the
vessel, h is the vessel wall thickness, and E is the elastic
modulus of the vascular wall. In this equation, the elasticity
parameter E is defined as:

E = E0eaP (2)

where α is a constant, E0 is the zero-pressure modulus of
the vessel wall, and BP is the BP within the vessel. Based
on the two equations of (1) and (2), the BP can be computed
from PTT assuming all other parameters are held constant.

BP =
1
α

[
ln

2rρL2

E0h
− 2linPTT

]
(3)

If the changes in wall thickness, radius, and arterial elastic
modulus are too small during a short period, the first term is
a constant, and changes of BP are given by:

∆BP = −
2

αPTT
∆PTT (4)

Thus, PTT is linearly related to the changes in BP, which
in this context refers to the systolic BP (SBP). Diastolic BP
(DBP) is mostly obtained from SBP, substituted from the
pulse pressure (PP). PP is assumed to be linearly related to
changes in SBP.

DBP = SBP − PP (5)

The PAT is determined relatively easily using ECG. It is
more difficult to obtain a reliable PTT value, because of the
complexity of vascular vessels. However, if PPT is mea-
sured over a long distance, then the signal is more reliable
such that more accurate results can be obtained.

2.2 Pulse Contour Method

The pulse contour and acceleration methods represent al-
ternatives for estimating BP. Pulse demodulation analy-
sis (PDA) was developed to evaluate the arterial pressure
pulse. It uses ballistocardiography and invasive central
artery manometers to track mechanical events, such as heart
contractions and pressure pulse reflections, in the central
and peripheral arteries. Studies have confirmed two major

Fig. 2 Real time (solid line) and reflected (grey line) of the arterial pres-
sure pulse time signal obtained by the pulse contour method.

reflection sites in the central arteries.
Figure 2 shows the pressure waveform obtained by ap-

plying the pulse contour method. The downward travelling
primary pressure pulse (#1) gives rise to upward travelling
pulses #2 and #3, which originate from the renal and iliac
reflection sites, respectively, on which pulse #1 impinges.
The amplitude ratio of the first reflection pulse (P2) to the
primary systolic pulse (P1) can be used to track changes in
central beat-to-beat SBP. The time difference between the
arrival of P1 and the second reflection pulse (P3) is referred
to as T13, and corresponds to changes in arterial PP. T13 is
the time delay between the first and third component pulses,
which is correlated with the pulse pressure. T13 is directly
dependent on the changes in blood pressure. For example, a
T13 of about 200 ms indicates a variation of about 8 mmHg
in the pulse pressure [9]. The BP was estimated from the
pulse peaks and parameters included in the PDA model [9]–
[13].

For PDA, lumped parameter models of the cardiovas-
cular system are commonly employed to simulate the ar-
terial BP waveform and wave propagation, with resistor
impedance and capacitance used to fit SBP and DBP. The
BP can be measured not only by a pressure sensor, but also
by reference to PPG waveforms [14], [15].

2.3 Acceleration PPG: Second Derivative Analysis

The second derivative of the PPG (SDPPG) signal was an-
alyzed based on the amplitudes of waves a–e, which arose
in the systolic phase of the heart cycle (Fig. 3). The ampli-
tudes of the waves were normalized as b/a, c/a, d/a, and e/a.
The SDPPG signal contains information on aortic compli-
ance and stiffness, which is highly correlated with BP. The
ratio d/a correlates with BP, along with many other physio-
logical parameters. To make use of the SDPPG signal, the
BP must be analyzed numerically using a neural network
and/or support vector machine [17].

2.4 Tonometry

In applanation tonometry of the radial artery, when a radial
artery is partially compressed or splinted against a bone, the
pulsations are proportional to the intraarterial pressure, as
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Fig. 3 Real time PPG signal and its first and second derivatives.

Fig. 4 Principle of applanation tonometry.

shown in Fig. 4.
However, the transducer must be positioned directly

over the center of the artery; hence, the signal is highly
position-sensitive. This has been dealt with by using an ar-
ray of transducers placed across the artery. Although this
technique was developed for beat-to-beat monitoring of the
wrist BP, it requires calibration for each individual patient
and is not suitable for a routine clinical setting [18]–[20].

2.5 Other Principles

Other less well-known methods for measuring PAT and PTT
include electrical bio-impedance (Bimp) [21]–[24], BCG
[25]–[29], and seismocardiography (SCG) [30]–[33], To use
Bimp, BCG, and SCG, specialized technology are required;
no commercial medical devices are available.

For Bimp, an array of wrist-worn bio-impedance sen-
sors are placed on the radial and ulnar arteries of the wrist
to monitor the arterial pressure pulse resulting from blood
volume changes at each sensor site. An impedance ring
with spot electrodes is more suitable for wearable cuffless
BP monitors than PPG sensors, in terms of noise reduction.
An ICG sensor placed on the chest for thoracic impedance
measurement via radar has also been proposed [24].

BCG can measure the response of the body to blood be-
ing ejected during the cardiac systole. Slight accelerations
in the body caused by heart activity, mainly in the head-to-
foot direction, and other relevant information were analyzed

in a previous study. The method used therein was based on
ECG and BCG, and allowed efficient monitoring of central
pressure [25]. Furthermore, BP was estimated from upper-
limb BCG recordings, obtained using an accelerometer em-
bedded in a wearable armband simultaneously with finger
PPG recordings [26]–[29]. SCG measures pericardial vibra-
tion during cardiac movement. It can monitor the PTT (with
PEP excluded) and improve the conventional PTT analysis
approach, but selection of the most appropriate measure-
ment site can be difficult [30]–[33].

Ultrasound sensors are also used to measure BP and
capture BP waveforms in relatively deep layers of arterial
and venous sites [34]–[36]. In an NIBP sensor using ultra-
sound, high frequency sound waves are bounced off a blood
vessel and the echo patterns received are sent to a computer
to create a representation of the vessel’s changing diameter.
When calibrated to a patient’s blood pressure, these wave-
forms can be used to monitor changes in blood pressure. An
ultrathin, stretchable and wearable ultrasound patch sensor
that enables non-invasive, continuous, and accurate mon-
itoring of cardiovascular performance has been developed
[35], [36].

3. Standardization and Clinical Approval of the Cuf-
fless Blood Pressure Monitor

3.1 The International Standards Organization (ISO)

The ISO is an international agency that regulates industrial
and medical devices. The main aim of regulation is to en-
sure the high accuracy, validity, and safety of devices. ISO
81060-1:2007 and ISO 81060-2:2018, 09 have been pub-
lished as standards for BP devices. Also, the ISO in co-
operation with the IEC partly uses IEC 60601-1:2005, and
IEC 60601-2-30:20. ISO 81060-2:2018 pertains to cuff-
based sphygmomanometers. Recently, the ISO Technical
Committee (TC) 121/Subcommittee (SC) 3/Joint Working
Group (JWG) 7, which is concerned with NIBP monitors,
discussed continuous BP monitors and proposed the follow-
ing standard: “ISO DIS 81060-3: Noninvasive sphygmo-
manometers - Part 3: Clinical investigation of continuous
automated measurement type”. Most national ISO commit-
tees approved this proposed standard, but the Comité Eu-
ropéen de Normalisation (CEN) did not. The standard per-
tains mainly to continuous automated BP monitors, as ex-
emplified by the Finapres (Finapres Medical Systems, En-
schede, The Netherlands), CNAP (CNSystems, Graz, Aus-
tria) and Nexfin (Edwards Lifesciences, Draper, UT, USA)
devices. These devices use a voltage clamp method based
on a continuous PPG waveform and passive control. ISO
JWG 7 is scheduled to discuss the cuffless NIBP monitor in
April 2021 following publication of ISO 81060-3.

3.2 The Institute of Electrical and Electronics Engineers
(IEEE)

The IEEE Standards Association (SA) has long been con-
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cerned with wearable BP monitors. In 2014, the 1708-
2014 IEEE standard for wearable cuffless BP measuring
devices was approved by the IEEE SA. The standard is
applicable to all types of wearable BP measurement de-
vices, including wearable and unobtrusive BP devices hav-
ing different modes of operation (e.g., short- vs. long-term
measurement, discrete vs. continuous readings, beat-to-beat
BP, BP variability measurement, etc.). The content of the
1708-2104 IEEE standard is in accordance with that of ISO
81060-2:2009. With regard to static accuracy evaluation,
ISO81060-2 requires 85 subjects, but the IEEE standard in-
troduced a paired t-test and minimum number of subjects is
45 persons. Thus, the IEEE standard has a static accuracy
of ±5 ±8 mmHg with 45 subjects instead of 85 subjects.

For the purposes of the US Food and Drug Adminis-
tration (FDA), an amendment was proposed for the stan-
dard, published in October 2019 as IEEE 1708A1-2019.
The main amendments of the revision were that the num-
bers of subjects are 45 to 85, and that two clauses should
be included concerning the estimation of noise reduction,
and measurement site during rest. The IEEE submitted a
combined IEEE 1708-2014 and 1708A-2019 to the FDA
to request the recognized consensus standards. The FDA
database provides an up-to-date list of voluntary standards,
for which a supplier can make a declaration of confor-
mity. The FDA partly recognizes IEEE standards for wear-
able cuffless BP monitoring devices excluding the follow-
ing items [37]. No recognized clauses for observed mea-
surements, which is in conflict with the ISO 81060-2 defini-
tion of special patient populations, detailed requirement for
testing BP change, accuracy of dynamic changes in BP lev-
els with no statistical justification for the proposed criteria,
and risk management of wireless technologies used for com-
munication. The IEEE standard association working group
(P1708) will try to revise the comments mentioned.

3.3 The FDA

The FDA is responsible for protecting public health in the
US by ensuring the safety and efficacy of human and veteri-
nary drugs, biological products, and medical devices. The
FDA operates in association with other regulatory bodies,
such as the Association for the Advancement of Medical
Instrumentation (AAMI), the American National Standards
Institute (ANSI), the IEEE, and the ISO, and adheres to in-
ternational standards.

Based on ISO 81060-2, the FDA approved the com-
mercially available BP monitors shown in Fig. 5 and Ta-
ble 1. ViSi Mobile sensor is based on PTT with PPG and
ECG, Caretaker uses a pulse contour method with a pres-
sure sensor, Biobeat displays BP from calculated from the
PTT signal, and Bro is a continuous tonometric BP moni-
tor. However, the clinical utility of these devices is difficult
to evaluate, although evidence of the clinical efficacy of the
Caretaker device (Caretaker Medical LLC, Charlottesville,
VA, USA) has been provided. Cuffless BP monitors could
be used on a large scale to assess cardiovascular function

Fig. 5 FDA-approved cuffless BP monitors. (a) ViSi, https://www.
soterawireless.com/ (b) Caretaker, https://www.caretakermedical.net/ (c)
Biobeat, https://www.bio-beat.com/ and (d) BPro. https://www.medtach.
com

Table 1 FDA-approved cuffless blood pressure monitors.
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during the ongoing Covid-19 pandemic, but to date there
have been no reports of its use in this capacity.

3.4 The Pharmaceuticals and Medical Devices Agency
(PMDA)

BP monitors should ideally be cuff-based according to
Japanese Standard JIST1115. Several manufacturers have
attempted to obtain class II certification by third parties, but
none has been successful. The main purpose of cuffless BP
devices is for screening and health check-ups, so clinical ap-
proval is mandatory.

3.5 Trends in Medical Device Approval in Japan

Medical devices not intended to aid physicians in making
a diagnosis still require medical approval. A new trend in
device approval has emerged in Japan. On July 20, 2020,
the Ministry of Health and Welfare added two new items
to the Japanese Medical Device Nomenclature (JMDN), as
shown in Table 2. On September 4, 2020, the Apple Watch,
which has ECG and heart rate monitoring capabilities, was
approved by the PMDA. The definition of “device” now in-
cludes “the information obtained from general-purpose dig-
ital apparatus such as portable watch, specially Apple watch
can be used to analyze ECG waveform and to support the

Table 2 Japanese Medical Device Nomenclature (JMDN) newly intro-
duced on July 20, 2020.

detection of diagnosis or find irregular heart rhythm noti-
fications”. Here, the terms “general digital apparatus” and
“support” are especially interesting. The Apple Watch can
be purchased through the Apple Store, as opposed to from
medical equipment specialists providing maintenance and
management services.

The FDA approved Apple Electrocardiograph software
for over-the-counter purchase following a de novo classifi-
cation request. To obtain this classification, medical devices
must demonstrate safety and efficacy with respect to the in-
tended use.

4. The Market for Cuffless BP Monitors and Their
Clinical Utility

Cuffless BP monitors are actively being sought. The clin-
ical use of cuffless BP monitors has been described [46],
but has not been approved by the PMDA or the Ministry of
Health, Labor and Welfare of Japan. Third-party certifica-
tion has been obtained only for the Somnotouch NIBP mon-
itor (Somnomedics, Randersacker, Germany) [47]. Several
inexpensive smart watches with embedded BP monitors are
commercially available from online retailers. Based on per-
sonal communications, inexpensive smart watches do not
meet the accuracy and validation requirements of cuff-based
sphygmomanometers.

To be approved by regulatory authorities, clinical util-
ity, safety, and accuracy must be demonstrated. No clinical
protocol for cuffless BP monitors has been established, but
this is important for clinical application.

5. Conclusion

The principles of cuffless BP monitors, which show promise
for healthcare applications, were described. However, more
detailed and precise evaluation of these devices is needed to
confirm their clinical efficacy.
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