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Efficient Task Allocation Protocol for a Hybrid-Hierarchical
Spatial-Aerial-Terrestrial Edge-Centric IoT Architecture

Abbas JAMALIPOUR†a), Fellow and Forough SHIRIN ABKENAR†b), Nonmember

SUMMARY In this paper, we propose a novel Hybrid-Hierarchical
spatial-aerial-Terrestrial Edge-Centric (H2TEC) for the space-air integrated
Internet of Things (IoT) networks. (H2TEC) comprises unmanned aerial
vehicles (UAVs) that act as mobile fog nodes to provide the required ser-
vices for terminal nodes (TNs) in cooperation with the satellites. TNs in
(H2TEC) offload their generated tasks to the UAVs for further processing.
Due to the limited energy budget of TNs, a novel task allocation protocol,
named TOP, is proposed to minimize the energy consumption of TNs while
guaranteeing the outage probability and network reliability for which the
transmission rate of TNs is optimized. TOP also takes advantage of the
energy harvesting by which the low earth orbit satellites transfer energy
to the UAVs when the remaining energy of the UAVs is below a prede-
fined threshold. To this end, the harvested power of the UAVs is optimized
alongside the corresponding harvesting time so that the UAVs can improve
the network throughput via processing more bits. Numerical results reveal
that TOP outperforms the baseline method in critical situations that more
power is required to process the task. It is also found that even in such
situations, the energy harvesting mechanism provided in the TOP yields a
more efficient network throughput.
key words: fog computing, Internet of Things (IoT), unmanned aerial
vehicles (UAVs), low earth orbit (LEO) satellites, energy harvesting (EH),
k-means clustering

1. Introduction

With the exponential growth of the Internet of Things (IoT)
demands, the need for providing reliable services with the
lowest delay is sensed more. The paramount step in improv-
ing the efficiency of the IoT networks, comprising energy-
constrained nodes with delay-sensitive tasks, was the emer-
gence of fog computing [1] as a new paradigm in these net-
works. Fog nodes (FNs) are resource-rich nodes that provide
complementary resources to the IoT nodes, also known as
terminal nodes (TNs), at the edge of the network. Thereby,
the TNs consume less energy to send their tasks to the FNs,
rather than the data centers (DCs) in the cloud center. More-
over, it takes less time for a task to be transmitted to an FN
for further processing [1].

Apart from the importance of fog computing to the IoT
networks, the type of FNs significantly affects the perfor-
mance of Fog-IoT networks. Much of the research efforts
have been devoted to investigating the role of fixed FNs in
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IoT networks. For example, Yousefpour et al. [2] design
an optimal offloading policy to minimize delay in Fog-IoT
networks. The authors in [3], [4] improve the network delay
while considering the load balancing among FNs in the net-
work. The main focus of the proposed method in [5], on the
other hand, is to find a trade-off between energy consumption
and delay in Fog-IoT networks. The proposed methods in
[6], [7] take advantage of the caching mechanism to alleviate
the network delay considering the energy constraints in the
network. Network function virtualization (NFV) is another
efficient method to optimize resource allocation in commu-
nication networks. To this end, Raveendran et al. propose
an NFV-based mechanism in [8] which accordingly provides
quality of service (QoS) requirements in the network. The
efficiency of the Fog-IoT networks is not only limited to en-
ergy consumption and delay. Two different methods, one
based on the optimization problem and the other based on
reinforcement learning (RL) mechanism, are proposed in [9]
to improve the throughput of Fog-IoT networks. Ramezani et
al. propose mechanisms to improve the network throughput
in energy harvesting (EH) [10], and backscattering [11].

The research body conducted in recent years show
that the flexible nature of mobile FNs, including vehicles
equipped with on-board units (OBUs) [12] and/or aerial ve-
hicles, such as drones or unmanned aerial vehicles (UAVs)
[13], enables them to reduce their distance with the TNs and
hence, improve the energy efficiency of TNs, as well as the
network delay. We thoroughly investigate the role of aerial
FNs in Sect. 2.1.

The other issue that threatens the IoT networks is pro-
viding the QoS requirements in sparsely populated areas,
such as valleys and mountains, where installing the fixed
FNs is hard or impossible. To cope with this challenge,
the spatial FNs have been introduced to the IoT networks
as the other type of mobile FNs where the different types
of satellites, such as geostationary orbit or geosynchronous
equatorial orbit (GEO), medium earth orbit (MEO), and low
earth orbit (LEO) satellites are leveraged as FNs to provide
QoS in the Fog-IoT networks. This is while the low energy
consumption, as well as the propagation delay, of the LEO
satellites give them a higher priority than the GEO and the
MEO satellites to play the role of FNs in the network [14].
However, the distance between the satellites and the TNs is
still large enough to degrade the performance of Fog-IoT net-
works. To tackle this shortage, a large number of research
have been conducted in order to investigate the impact of
spatial-aerial integrated FNs on providing QoS for Fog-IoT
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networks [15]. We thoroughly review the corresponding
investigations in Sect. 2.2.

1.1 Motivation

Although many researchers have studied and addressed the
major problems of providing QoS in the Fog-IoT network by
leveraging spatial and aerial FNs, these FNs, especially the
aerial FNs, suffer from a limited energy budget that needs
to be addressed optimally. Moreover, the reliability of the
network is another requirement that should be considered
alongside other paramount parameters, such as delay and
energy consumption. However, a few research have been
carried out to analyze the reliability of Fog-IoT networks
with respect to mobile FNs.

1.2 Contribution

The shortage of the proposed methods in the literature mo-
tivated us to propose an efficient architecture and protocol
to provide remarkable QoS requirements, such as delay, en-
ergy efficiency, and reliability to the Fog-IoT networks. The
contributions of this paper include:

- First of all, we propose a novel architecture,
named Hybrid-Hierarchical spatial-aerial-Terrestrial
Edge-Centric (H2TEC), for the IoT networks. Fig-
ure 1 indicates H2TEC architecture which comprises
six groups of components, namely TNs, terrestrial base
stations (BSs), UAVs, LEO satellites, GEO satellites,
and cloud. We accordingly introduce the layered struc-
ture of H2TEC in which the communications between
different components are defined.

- The novel Task allOcation Protocol (TOP) is proposed
by which the TNs form clusters based on the k-means
clustering method. A UAV is associated with each
cluster and the TNs send their generated tasks to the
corresponding UAV. According to the assumptions of
TOP, each UAV can only be assigned to one cluster at

Fig. 1 H2TEC architecture.

a time slot. Moreover, each cluster is served by one
and only one UAV in each time slot. TOP provides an
offloading policy by which the delay constraints are met
for the tasks generated by TNs.

- An optimization problem is formulated in order to ad-
just the 3D placement of each UAV with respect to the
corresponding cluster, as well as TNs, such that the en-
ergy consumption of TNs is minimized and the QoS
requirements in terms of reliability, outage probability,
and delay are provided in the network.

- After completion of the 3D adjustment of the UAVs,
their energy consumption needs to be managed in a
way that the network throughput is maximized. Due
to the limited energy budget of the UAVs and the huge
amount of energy that these nodes consume to fly to-
wards the corresponding cluster, an alternative solution
is required to compensate for this shortage. One of
the best options to provide the required supplementary
energy to the mobile aerial FNs is the energy harvest-
ing (EH) mechanism. The LEO satellites can take ad-
vantage of solar power; thanks to their structure and
condition. To the authors’ best knowledge, no previous
research has been carried out in this regard and this is
the first work studying the EH between the LEO satel-
lites and the UAVs in Fog-IoT networks. According to
the assumptions of TOP, the LEO satellites can transfer
the energy to the UAVs. Subsequently, the UAVs can
use the harvested energy to process more bits and so
increase the network throughput. To this end, a second
optimization problem is formulated aiming at maximiz-
ing the network throughput by optimizing the harvested
power and time by the UAVs.

1.3 Organization

The rest of this paper is organized as follows: Section 2 pro-
vides the literature review of the edge-centric IoT networks.
The novel H2TEC architecture is proposed in Sect. 3. Sec-
tion 4 presents the system model. Section 5 includes the
proposed TOP protocol. Numerical results are provided in
Sect. 6. Finally, Sect. 7 concludes the paper.

2. Literature Review

2.1 UAV-Assisted Edge-Centric IoT Networks

The emergence of UAVs as mobile edge nodes in edge-
enabled IoT networks could significantly improve the perfor-
mance of these networks. UAVs, thanks to their mobile and
flexible nature, can adjust their distance to the TNs [16] by
which the network delay is reduced and the energy efficiency
and throughput of TNs are optimized. Different research ef-
forts have been carried out to investigate the role of UAVs in
improving the efficiency of IoT networks.

A group of research aims to improve the performance
of networks including a single UAV and multiple TNs. For
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example, the proposed scheme in [17] assumes a fixed flight
altitude for the UAV and aims to optimize the energy con-
sumption of both the UAV and the TNs. To this end, a
weight factor is defined by which the energy consumption of
the TNs is prioritized. Wu et al. [18] propose an offloading
strategy for a system model, including a single UAV and
multiple TNs, by which the TNs optimally offload the tasks
to the UAV. The main objective of the proposed strategy is to
jointly optimize the UAV’s 3D placement and the offloading
size of tasks such that the energy efficiency of the UAV is
improved. The authors in [19] consider a Fog-IoT network
comprising one UAV and multiple TNs in which the UAV
is equipped with an edge server to play the role of an FN.
According to the assumptions of the proposed mechanism,
each TN, depending on its own energy budget, is capable of
either process its task locally or offload the task to the UAV
for further processing. The main objective of the proposed
task offloading mechanism is to optimally assign the tasks
to the UAV such that the energy consumption for the UAV,
as well as the TNs, is minimized while the delay constraints
are met in the network. To this end, the trajectory of the
UAV, which has a direct effect on the energy consumption
of the UAV and the TNs, needs to be optimized. Hence,
the optimal location of the UAV is found so that it covers
a certain number of TNs, and also the corresponding TNs
consume less energy for offloading the tasks to the UAV.
Thereafter, the UAV stays hovering at a constant altitude for
a time period to process the incoming tasks. Wang et al.
[20] propose a mechanism which aims at maximizing the
sum-rate, i.e., the total number of bits processed at the UAV,
by jointly optimizing the allocation of the tasks generated by
TNs to the UAV, the transmission power of TNs for offload-
ing the tasks to the UAV, and the flight altitude of the UAV.
The main objective of the proposed mechanism in [21] is to
optimize the size of offloading data to the UAV, as well as the
transmission rate of the TNs for transmitting the offloading
portion of the tasks so that the energy consumption of both
the UAV and the TNs are minimized.

The other group of investigations considers the system
models comprising multiple UAVs and multiple TNs. For
instance, Xu et al. [22] propose a mechanism wherein the
UAVs are responsible to transfer the energy to the TNs for
processing the tasks. However, the limited energy budget of
the UAVs imposes limitations that need to be addressed by
jointly optimizing the association of the UAV-TN with the
time of transferring the energy. The authors in [23] propose
a joint offloading method aiming at minimizing the total
weighted consumed power of the system. The proposed
method in [24] optimizes the transmission of all TNs are
optimized so that they can receive the data from the corre-
sponding UAV with the minimum loss. Mozzafari et al. [25]
propose a framework in which the UAVs collaborate with
the terrestrial BSs to improve the network delay. In another
work carried out by the same authors [26], a new framework
is proposed for a system in which the TNs are randomly acti-
vated to generate the tasks over time. The framework follows
multi-fold objectives as optimizing the association between

the TNs and the UAVs, the 3D placement of the UAVs, the
mobility of the UAVs, and the uplink power control such
that the TNs consume less power consumption to transmit
the generated tasks while the network path loss is minimized.

2.2 Hybrid Satellite-UAV-Assisted Edge-Centric IoT Net-
works

Satellite-air-ground integrated networks (SAGINs) were in-
troduced to provide the required services for the TNs in
places, such as valleys, where access to the terrestrial BSs is
difficult or impossible. The LEO satellites play the role of
BSs for the UAVs in such areas for which manage the UAVs.
They also provide complementary resources for the UAVs to
facilitate the processing of the tasks generated by the TNs
[15].

Different research efforts have been devoted to investi-
gating the effects of inter-operation of UAVs and satellites on
improving the performance of edge-enabled IoT networks.
For example, Hua et al. [27] consider a system in which
the TNs can process the tasks locally or offload them to
the higher layers. UAVs and satellites are leveraged to of-
fload the tasks to the edge servers and the cloud servers,
respectively. The criteria behind optimal task offloading are
to jointly optimize the resource allocation in the network.
However, many problems threaten such an optimization that
we can remark the incomplete information and coupling be-
tween long-term constraints of queuing delay and short-term
decision making. To deal with these challenges, the authors
propose a learning-based queue-aware task offloading and
resource allocation algorithm (QUARTER) by which net-
work throughput is maximized while delay constraints are
met.

The authors in [28] propose a learning-based approach
for a highly dynamic environment to optimally offload the
computation-intensive application to the upper layers. To
this end, the corresponding UAVs and the satellites are used
to offload the tasks to the edge servers and the cloud servers,
respectively. Moreover, a joint task scheduling and resource
allocation approach is proposed to optimally and efficiently
allocate the resources to the virtual machines (VMs) for
further processes.

The main objective of the proposed scheduling mecha-
nism in [29] is to minimize the maximum computation delay
among TNs. In this regard, the UAVs are leveraged to pro-
vide low-delay edge computing services to TNs. On the
other hand, satellites facilitate access to the cloud servers for
the TNs. To achieve the main goal defined by the mecha-
nism, the association between the nodes in the network is
controlled; the transmission power, bandwidth allocation,
and resource allocation are optimized; and the position of
the UAVs is efficiently adjusted.

Caching is a promising method in satellite-UAV-
assisted networks. For instance, Gu et al. [30] consider
a system, where the UAV is responsible for collecting data
from the TNs, and the LEO satellite is used to broadcast data.
Due to the low-power property of the TNs, the loss proba-
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bility increases in the network. To cope with this problem,
caching and repairing the data is an efficient solution. More-
over, it is necessary to protect the system’s availability. To
this end, an intelligent optimization is proposed which em-
ploys the fault-tolerant codes to address the problems of the
lower availability by minimizing the communication costs in
terms of power costs of the UAV and TNs.

3. Proposed Hybrid-Hierarchical Spatial-Aerial-
Terrestrial Edge-Centeric IoT Architecture

In this section, we propose a Hierarchical architecture for
edge-centric IoT networks, named H2TEC architecture. Fig-
ure 1 shows the architecture of H2TEC including two differ-
ent scenarios as follows:

- The left sub-figure in Fig. 1 shows a scenario including
an environment in which installing the terrestrial BSs
is not cost-efficient and also the BSs cannot be reached
everywhere easily by the UAVs. The large coverage
area of the LEO satellites makes them enable to play
the role of the destination servers for the TNs. How-
ever, the large distance between the TNs and the LEO
satellites imposes a huge delay on the tasks generated
by the TNs. Moreover, the TNs need to consume a
significant amount of energy to offload their tasks to
the LEO satellites. To tackle these issues, UAVs are
leveraged to serve TNs efficiently. The flexible nature
of UAVs in approaching the TNs improves the network
performance significantly [31], [32].

- In contrast, the right sub-figure in Fig. 1 indicates a city
as an environmentwhere terrestrial BSs are installed. In
such a scenario, the UAVs are also leveraged as mobile
FNs thanks to their flexibility and portability by which
the processing delay of the tasks generated by the TNs
is reduced. Also, the TNs need to consume less energy
to transmit the tasks to the corresponding FN [33].

H2TEC comprises six main groups of components that
are TNs, UAVs, Terrestrial BSs, LEO satellites, GEO satel-
lites, and cloud. Figure 2 shows the layered architecture of
H2TECwhich includes four tiers, namely IoT layer, fog layer,
fog management layer, and cloud layer. The IoT layer forms
the lowest layer while the cloud layer is the topmost layer. In
the following, the role of each layer in H2TEC is explained
comprehensively.

3.1 IoT Layer

The TNs form the bottom layer with the lowest hierarchy
of H2TEC, where a number of TNs group together to form
a cluster. TNs are intuitively energy-constrained nodes that
generate delay-sensitive tasks. Therefore, proper association
of FNs with such energy-limited nodes can improve the en-
ergy consumption of TNs and also alleviate the processing
delay of tasks generated by them. To tackle the aforemen-
tioned challenges, UAVs are leveraged as the mobile FNs in
H2TEC to be assigned to each cluster and serve the tasks.

Fig. 2 Layered architecture of H2TEC.

3.2 Fog Layer

Fog layer is composed of UAVs that are referred to as the
aerial type of mobile FNs in this paper. Rotary-wing UAVs
are used in H2TEC, where each UAV is equipped with a
single antenna. UAVs alleviate the energy consumption of
TNs and reduce the processing delay of the tasks generated
by them through flying towards the TNs and shortening their
distance from the TNs. However, the computational capacity
of the UAVs is limited for which they ask complementary
resources from the manager FNs, i.e., the FNs located at the
fog management layer. Moreover, the UAVs consume a huge
amount of energy to fly [34]. To deal with the limited energy
budget of the UAVs, the LEO satellited provided in the fog
management layer transfer the energy to the UAVs for which
the UAVs play the role of harvesters and harvest the power
whenever their energy level is below a predefined threshold.

3.3 Fog Management Layer

Fog management layer includes manager FNs which are re-
sponsible to manage the FNs in the fog layer. There are two
types of manager FNs in the management fog layer: (i) BSs
as the terrestrial FNs; and (ii) LEO satellites as the spatial
FNs.

Different types of BSs, such as radio towers and road
side units (RSUs), are installed in the urban areas to cover the
users. Each BS covers a specific region based on its own cov-
erage range. Users, especially mobile users, who belong to a
region communicate with the corresponding BS and forward
their tasks to it for further process. The BS is resource-rich
enough to serve the users. However, the large distance be-
tween the user and the corresponding BS degrades the QoS.
To cope with such challenges, UAVs are leveraged as the
mobile FNs closer to the TNs [33]. However, the limited
computational resources of the UAVs impose limitations on
them to provide sufficient resources for processing the tasks
generated by the TNs. One solution is to communicate to
the neighbor UAVs and use their resources as complemen-
tary resources. However, a direct connection between UAVs
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is challenging due to the high mobility of these nodes. To
this end, BSs are used as the manager FNs in H2TEC, not
only to provide the complementary resources to the UAVs
but also to manage them in the network and provide the
communication requirements between different UAVs in the
network.

Although BSs can manage the UAVs directly and eas-
ily, installing BSs in some places, such as valleys or rural
areas, is difficult or impossible. To tackle such problems,
LEO satellites are considered good replacements for the BSs.
LEO orbit is closer to the earth than other orbits, especially
GEO orbits. This causes the LEO satellites to consume less
power than other types of satellites [35], [36]. Moreover, the
LEO satellites can take advantage of the solar power satellite
system to transfer the power to the ground BSs [37]. There-
fore, the LEO satellites are leveraged to transfer the power
to the UAVs when the energy budget of UAVs is lower than
a threshold. Apart from the ability to provide energy har-
vesting in the system, the main advantage of LEO satellites
refers to the low communication delay that these satellites
provide. This feature arose of using the high-gain uniform
planar array (UPA) antenna [36], [38]. Therefore, the UAVs
can offload the tasks to the LEO satellites for further pro-
cessing depends on the resource availability of the UAVs and
delay constraints imposed on the tasks. However, the LEO
satellites move very fast for which they are not visible for
more than 20 or 30 minutes. This makes tracking of the
LEO satellites challenging [36].

3.4 Cloud Layer

Cloud layer forms the topmost layer in H2TEC. GEO satel-
lites and the cloud center are the fundamental components
of the cloud layer.

GEO orbit is far from the earth compared to the LEO or-
bit. Hence, GEO satellites consume more energy than LEO
satellites. Also, their communication delay is larger than the
LEO satellites. GEO satellites manage the LEO satellites.
However, GEO satellites are equipped with adequate com-
putational resources thanks to their big size. Moreover, the
large distance between them and the earth causes the GEO
satellites to cover bigger regions than the LEO satellites,
even including the LEO satellites [35], [36]. Considering
the aforementioned advantages, GEO satellites are eligible
to be defined as the centers for managing the LEO satellited
in H2TEC. Hence, we call it in the H2TEC the mini satel-
lite cloud. Although the computational capacity of the GEO
satellites is much less than the cloud center, the policies, as-
sumptions, and protocols provided in H2TEC yield a limited
number of tasks are offloaded from the LEO satellites to the
GEO satellites. Subsequently, the GEO satellites can man-
age the LEO satellites as the mini satellite cloud for which
they can remove a LEO satellite if any failure happens to it,
add a new LEO satellite, or transfer the energy to the LEO
if it is required.

The cloud center on the other hand includes high-
performance resource-rich DCs. However, the distance be-

tween the cloud DCs and the TNs is large. Therefore, the
FNs are leveraged to provide the resources at the edge of
the network. The cloud center has been provided in H2TEC
to support the terrestrial BSs in the network. Therefore,
if any BSs require complementary resources for processing
the incoming tasks, it sends the tasks to the cloud for further
processes [1].

4. System Model

We consider a Fog-IoT network including multiple ter-
restrial BSs, K LEO satellites, N UAVs, and M mobile
TNs. The set of LEO satellites and UAVs are shown as
S = {s1, s2, . . . , sK } andV = {v1, v2, . . . , vN }, respectively.

TNs group together to form the clusters based on their
location for which the k-means clustering [39] is used. In the
considered system model, the coverage area of a UAV is a
circle with a radius of R that determines the size of a cluster.
There is a direct direction between the flight altitude of a
UAV and its coverage range so that by increasing the flight
altitude, the coverage range of the UAV increases as well and
vice versa. This is while by increasing the flight altitude, the
outage probability of delivering the tasks generated by TNs
to the corresponding UAV increases, the network reliability
decreases, and the TNs need to consume more energy to
offload their tasks to the UAV and suffer from larger delay.
Hence, there exists a tradeoff between the flight altitude and
the aforementioned parameters. It implies that finding the
optimal flight altitude of the UAVs is an essential objective
behind this work.

Each cluster c is composed of Mc TNs, where TN(i, c)
represents i-thTNbelong to cluster c. EachTN(i, c) generates
the tasks according to a Poisson point process (PPP) with the
rate of ν(i,c)(t) and the average size of L(i,c). The rate is a
function of time that varies at each time slot t. For brevity, we
omit t in the rest of this paper, e.g., ν(i,c) stands for ν(i,c)(t),
unless the time-slot is emphasized. Among all available
UAVs in the network, only one UAV is assigned to a cluster
at a time slot. Besides, a UAV can only be assigned to one
cluster at each time slot.
Notations: In this paper, scalars are denoted by italic letters.
Boldface lower-case letters denote vectors. For a vector a,
‖a‖, aT , and aH represent its Euclidean norm, its transpose,
and its conjugate transpose, respectively. Tr(·) stands for
the trace of a matrix. C shows that a variable/vector is
complex-valued. Pr(·) denotes the probability. Γ(·) and
Γ(·, ·) denote the Gamma function and the upper incomplete
Gamma function, respectively. Finally, U[·] indicates the
uniform distribution.

4.1 Channel Model

In this section, we model the communication channels be-
tween TNs and UAVs, and UAVs and LEO satellites, sepa-
rately by which we can obtain the outage probability, relia-
bility, and energy harvesting model in the network.
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4.1.1 Channel Model of a TN-UAV Pair

According to assumptions of the considered system model,
the line-of-sight (LoS) propagation is established between a
TN-UAVpair. Among all available practical distributions for
the LoS transmission, the Nakagami-m distribution with the
shape parameter m is a well-knownmodel which can capture
a wide range of fading scenarios (m < 1 for Hoyt, m = 1 for
Rayleigh, and m > 1 for Rician) [40]–[42]. Therefore, the
channel capacity between a TN and the corresponding UAV
is defined as

C(i,c)j = B log2

(
1 +

P(i,c)g0~(i,c)jd−α(i,c)j
I(i,c) + σ2

)
, (1)

where B is the bandwidth, P(i,c) is the transmission power
of TN(i, c), g0 denotes the channel gain at the reference
distance dm = 1m, α shows the path loss exponent, σ2

is the additive white Gaussian noise (AWGN) power, and
~(i,c)j represents the fading coefficient of the channel, fol-
lowing Gamma distribution, with ~̄(i,c)j = 1. I(i,c) =∑Mc

i′=1
i′,i

P(i′,c)g0~(i′,c)jd−α(i′,c)j is the interference derived from

interfering TNs. Finally, d(i,c)j stands for the distance be-
tween TN(i, c) and vj , which is given as

d(i,c)j =
√

z2
j + ‖u j − u(i,c)‖2, (2)

where zj is the flight altitude of vj , u j = [xj, yj]T and u(i,c) =
[x(i,c), y(i,c)]T are the horizontal coordinate/projection of vj
and TN(i, c), respectively. Moreover, the height of TNs is set
to zero.

Since interference is dominant, we ignore the noise in
our calculations. Therefore, signal to interference ratio (SIR)
is expressed as

C(i,c)j = B log2

(
1 +

P(i,c)g0~(i,c)jd−α(i,c)j
I(i,c)

)
, (3)

4.1.2 Channel Model between UAVs and LEO Satellites

The channel model between a UAV and the corresponding
LEO satellite follows the shadowed Rician (SR) [27], [42].
Similar to the TNs-UAVs pair, the LoS propagation is estab-
lished between each UAV-LEO pair. Therefore, the channel
capacity between UAV and the corresponding LEO satellite
is modeled as

Cjk = B log2

(
1 +

Pj g
2
k j

d2
jk
σ2

)
, (4)

where Pj is the transmission power of vj . Each LEO satellite
is equipped with Nx × Ny UPA antennas, where Nx and Ny

shows the number of antennas in x-axis and y-axis, respec-
tively. Accordingly, gk j ∈ CNx×Ny represents the fading
coefficient of the channel, following Rician distribution. Fi-
nally, djk stands for the distance between vj and sk . Since

the altitude of the LEO satellite dominates both the flight
altitude of UAV and the horizontal projection of the UAV,
djk is given in terms of the altitude of sk , i.e., djk = zk .

4.2 Outage Probability Model

In the considered system model, if the transmission rate of
a TN exceeds the channel capacity between the TNs and the
corresponding UAV, the UAV is not able to receive the tasks.
Therefore, the outage probability happens in the network.
Accordingly, considering R(i,c) as the transmission rate of
TN(i, c), the outage probability is defined as

Pout = Pr
(
C(i,c)j < R(i,c)

)
(5)

= Pr

(
B log2

(
1 +

P(i,c)g0~(i,c)jd−α(i,c)j
I(i,c)

)
< R(i,c)

)
.

We assume that the fading coefficient of all channels in a
cluster is the same, i.e., ~(i,c)j = ~,∀ TN(i, c) ∈ cluster c. By
employing the methods and assumptions provided in [43],
we have

Pout =
m(m−1)A2m

1 Γ(2m,m~2)

Γ2(m)
−
Γ(m,m~2)

Γ(m)
, (6)

where A = (2R(i ,c) j /B − 1)dα
(i,c)j

∑Mc

i′=1
i′,i

d−α
(i′,c)j

.

4.3 Delay Model

Every task generated in the considered system model suffers
from two types of delay. The first delay is the transmission
delay for sending the generated task from the corresponding
TN to the corresponding UAV; and the second type of delay,
referred to as computing delay, is the required time for pro-
cessing the task at the corresponding UAV. In the proposed
architecture, the transmission rate reciprocity is held for all
UAVs. Therefore, the transmission delay from the UAVs to
the other nodes in the network is ignored. Moreover, we
assume that the processing delay of tasks at the satellites
and/or at the cloud is very small (relative to other system
delays) so as is negligible.

By considering L(i,c) as the size of a task generated by
TN(i, c), the transmission delay is given as

Dtx
(i,c) =

L(i,c)
R(i,c)

. (7)

Assume that λj and Lj are the average traffic rate and the
average size of tasks per arrival at vj , respectively. By defin-
ing µj as the service rate of vj , the required service time for
L(i,c) at vj is calculated as [44]

Dcomp

(i,c)j
=

L(i,c)
µj − λjLj

. (8)

Therefore, the total processing delay of a task is given as
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D(i,c) =
L(i,c)
R(i,c)

+
L(i,c)

µj − λjLj
. (9)

4.4 Reliability Model

The network is reliable if and only if the UAVs are avail-
able to the TNs. According to the definitions provided in
[45], [46], the reliability is defined with respect to each TN
as the the probability that each UAV is operational to process
the assigned task to it, and the probability that the communi-
cation link between each TN and UAV is operational during
the communication period. We define ϑj as the failure rate
of vj which follows a Poisson process. Therefore, the relia-
bility of sustainable communication between TN(i, c) and vj
is modeled as

Υ
comp

(i,c)j
= e
−ϑj

L(i ,c)
µ j−λ j L j . (10)

On the other hand, ω(i,c)j denotes the failure rate of the com-
munication link between TN(i, c) and vj which also follows
the Poisson process. Hence, the reliability of processing a
task generated by TN(i, c) at vj is given as

Υ
comm
(i,c)j = e

−ω(i ,c) j
L(i ,c)
R(i ,c) . (11)

Finally, the reliability of processing L(i,c) at vj is equal to the
multiplication of Υcomm

(i,c)j
and Υcomp

(i,c)j
:

Υ(i,c)j = e
−ω(i ,c) j

L(i ,c)
R(i ,c)

−ϑj
L(i ,c)

µ j−λ j L j . (12)

4.5 Energy Model

TNs and UAVs follow different energy models based on their
role in the network. In this section, the energymodels of TNs
and UAVs are presented separately. It is worth mentioning
that according to the assumption of the considered system
model, BSs, satellites, and cloud have enough energy budget
so as the energy constraints are not imposed on them.

4.5.1 Energy Model of TNs

The energy consumption of TNs refers to the required energy
for transmitting a task to the corresponding UAV. Hence, the
energy consumption of TN(i, c) is expressed as

E(i,c) = Pi

L(i,c)
R(i,c)

. (13)

4.5.2 Energy Model of UAVs

The energy consumption of a UAV is composed of two parts.
The major part is the energy that the UAV consumes to fly
towards the corresponding cluster, namely propulsion en-
ergy. The minor part is the communication-related energy,
i.e., the energy consumption for processing the tasks. Since

the flight energy consumption is dominant on the process-
ing energy consumption, the latter is usually ignored in the
calculations [47]. However, as a novel contribution to our
proposed architecture, the UAVs play the role of harvesters
in the network for which they receive the power transferred
by the LEO satellites. Since the EH procedure depends on
the communication-related energy of the UAVs, we consider
it in our calculations. Moreover, the harvesting energy of
UAVs is represented in this section.

(1) Flight Energy Model

We assume that each UAV moves with a constant speed V
towards the corresponding cluster. The center of a cluster
shows the horizontal coordinate of the cluster, which is de-
fined as themean of coordinate of the TNs belong to the clus-
ter, i.e., uc = [xc =

∑Mc

i=1 x(i,c)/Mc, yc =
∑Mc

i=1 y(i,c)/Mc]
T .

Accordingly, the energy consumption of vj to flight towards
cluster c in dc j meters is calculated as

E f

(i,c)j
= E0dc j, (14)

where E0 is the required energy for flying per meter unit
which is given as [47]

E0 = P0

(
1
V
+

3V
U2
tip

)
+ Pin

(√
V−4 +

1
4V4

0
−

1
2V2

0

) 1
2

+
1
2

d0ρs AV2,

(15)

where P0 and Pin are the blade profile power and induced
power in hovering status, respectively; V0 denotes the mean
rotor induced velocity in hover; ρ and A are known as the air
density and rotor disc area, respectively. Utip represents the
tip speed of the rotor blade; d0 stands for the fuselage drag
ratio; and finally, s is the rotor solidity.

After arriving above cluster c, the UAV must adjust
its flight altitude for which the UAV changes its altitude for
z̃j meter. It also can stay for a period of time with fixed
power consumption above the cluster to process the tasks
generated by TNs. By respectively considering e f a and Ph

as the required energy for adjusting one meter and the power
consumption of the UAV for hovering in Watt, the energy
consumption for flight altitude adjustment and hovering by
vj is calculated as

Ealt
j =

adjusting︷︸︸︷
e f a z̃j + Phτ︸︷︷︸

hovering

, (16)

where τ shows the time that vj spends to hover, which is
known as the time-slot duration in this paper. Overall, the
total energy consumption of vj is given as

E t
c j = E0dc j + e f a z̃j + Phτ. (17)
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(2) Computing Energy Consumption

By considering Pprc
j as the power of processing one bit, the

required energy for processing a task of size L(i,c) at vj is
calculated as

Ecomp

(i,c)j
= Pprc

j

L(i,c)
µj − λjLj

. (18)

(3) Energy Harvesting Model

LEO satellites, as the manager FNs, are able to manage the
UAVs, by which they have access to the status of the UAVs.
When the remaining energy of a UAV degrades a threshold,
Eth , the corresponding LEO satellite starts transferring the
energy to theUAV.The received power at vj is given by Prx

j =

|wH
k
gk j |

2, where wk ∈ C
Nx×Ny is the energy beamforming

vector [48] of sk . We adopt a piece-wise linear EH model
[49], in which the harvested power is linearly boosted with
the received power up to a threshold, called the saturation
point. Let ηj and Psat show the linear energy conversion
efficiency and the saturation power, respectively. Therefore,
the harvested energy by vj is modeled as

Ph
j =

{
ηjPrx

j 0 ≤ ηjPrx
j < Psat

Psat ηjPrx
j ≥ Psat

(19)

4.6 Throughput Model

Totally, there are T time slots in the system each with a size
of τ in which the TNs offload their tasks to the correspond-
ing UAV and then, the UAV decides how to process them.
Figure 3 shows the block structure of the considered system
model with respect to UAV vj and its corresponding cluster,
in which a time slot of size τ is divided into three phases as
follows:

- Initializing Phase: At the beginning of each time slot,
the cluster is formed, the UAV is associated with the
cluster, and adjusts its 3D placement accordingly. It
takes long τ0 time units.

- Pure Transmission Phase: During this phase, the TNs
transmit their tasks to the UAV. It is assumed that
n ≤ Mc TNs offload their tasks to the UAV. The time
allocated to each TN is divided into two parts: one for
transmitting the tasks from the TN to the UAV; and the
other for processing the tasks. The total duration of this
phase is shown by τtx .

- Harvesting Phase: Harvesting phase is started if the
remaining energy of vj , Erem

j , is less than the prede-
fined threshold, Eth . The total duration of this phase is

Fig. 3 Block structure of the considered system model.

considered to be τEH , where is divided into two parts:
in the first part, it takes long ρτEH time units that the
corresponding LEO satellite transfer the energy to the
UAV, where ρ is a variable between 0 and 1; in the next
(1− ρ)τEH time units, the rest of TNs offload their tasks
to the UAV and the UAV processes the tasks.

Considering the above mentioned assumptions, throughput
of TN(i, c) is modeled as

T(i,c)j = B log2

(
1 +

P(i,c)g0~(i,c)jd−α(i,c)j
I(i,c)

)
|t(i,c) |, (20)

where |t(i,c) | stands for the time allocated to the TN for
transmission, which is given as

|t(i,c) | =


τ−τEH−τ0

2n τ0 < t(i,c) ≤ τ0 + τtx

(1−ρ)τEH

2(Mc−n)
τ0 + τtx < t(i,c) ≤ τ

(21)

The throughput of vj is defined in terms of the number of
bits it processes that includes two parts: one is related to
the number of bits processed before harvesting the energy,
corresponding to the current energy of vj , i.e., Ecurr

j ; and
the other is the number of bits processed after receiving the
harvesting power. The total throughput of vj is given as (22).

before harvesting part in (22) includes the number of
bits processed at vj . It implies that if the current energy of
vj is more than the required energy for processing all tasks
generated by all TNs, then all bits are processed in this time
portion; otherwise, Ecurr

j /
∑n

i=1 ν(i,c)E(i,c)j portion of bits
are processed and the rest are processed after harvesting the
energy.

after harvesting part in (22) on the other hands obtains
the number of unprocessed bits in the before harvesting plus
the number of bits that can be processed based on the har-
vested power and the remaining energy of vj .

5. Proposed Task Allocation Protocol

In this section, we propose a novel task allocation protocol,
called Task allOcation Protocol (TOP), for the H2TEC to
efficiently adjust the 3D placement of the UAVs and assign
the tasks to the available server nodes in the network such
that the network performance is improved in terms of energy
consumption and delay.

Although TOP focuses on the energy consumption and
the delay in the network, what distinguishes TOP from the
existing methods is the approach that TOP employs to im-
prove the network throughput. TOP indeed takes advantage
of EH in order to provide a supplementary energy budget
for the UAVs by which more bits are processed by them.
Moreover, the transmission rate of the TNs is adjusted in
a way that these nodes can transmit more bits in the net-
work. Overall, TOP comprises two phases, namely UAV’s
3D placement adjustment phase, and task allocation phase,
which are explained in the rest of this section.
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Tj =

before harvesting︷               ︸︸               ︷
A2

n∑
i=1

ν(i,c)L(i,c) + (1 − A2)

n∑
i=1

ν(i,c)L(i,c) +
(1 − ρ) τEH

∑Mc

i=n+1 L2
(i,c)

Ph
j

2A3

(∑Mc

i=n+1 ν(i,c)E(i,c) − Erem
j

)
︸                                                                        ︷︷                                                                        ︸

after harvesting

,

where A2 = min

{
Ecurr
j∑n

i=1 ν(i,c)E(i,c)j
,1

}
, A3 = (µj − λjLj)

Mc∑
i=n+1

ν(i,c)L(i,c).

(22)

5.1 UAVs’ 3D Placement Adjustment

At the beginning of each time slot, the TNs form the corre-
sponding cluster and a UAV is assigned to each cluster. After
the association of the UAV and the corresponding cluster, the
UAV must adjust its 3D placement, i.e., the horizontal pro-
jection and the flight altitude, such that the TNs consume the
minimum energy for transmitting their tasks to the UAV. Ac-
cording to the assumptions of the considered system model,
the transmission power of all TNs in the network is fixed,
while they experience a variable transmission rate in their
transmission. Therefore, and according to (13), the trans-
mission rate of the TNs has a direct effect on their energy
consumption. Hence, finding the optimal transmission rate
for each TN within a cluster results in the energy consump-
tion optimization of the TNs.

However, the transmission rate of TNs within a cluster
needs to be adjusted such that QoS requirements are provided
in the network. One of the most important requirements is
the outage probability which must be less than a threshold,
β. Therefore, we have

R(i,c) ≤ B log2
©«1 +

Γ1/m(m)
(
β + Γ(m,m~

2)
Γ(m)

)1/2m

m(
m−1
2m )Γ1/2m(2m,m~2)A4

ª®®¬︸                                                 ︷︷                                                 ︸
R
up ,op
(i ,c)

.

(23)

where A4 = dα
(i,c)j

∑Mc

i′=1
i′,i

d−α
(i′,c)j

.

The other major requirement is the network reliability
which needs to be more than a threshold, Υth . Hence, we
have

R(i,c) ≤
−ω(i,c)jL(i,c)(µj − λjLj)

(µj − λjLj) log2 Υth + ϑjL(i,c)︸                                   ︷︷                                   ︸
R
up ,re
(i ,c)

. (24)

One of the main contributions behind this work is to
minimize the energy consumption of TNs in the network. To
this end, the following problem is formulated in which the
optimality of the energy consumption of the TNs depends

on the optimality of transmission rate of the TNs, as well
as the flight altitude of the corresponding UAV. Since the
clusters are independent of each other, the following problem
is performed for each cluster, separately.

(P1): minimize
R(i ,c) ,z j

Mc∑
i=1

ν(i,c)P(i,c)
L(i,c)
R(i,c)

(25)

s.t.

R(i,c) ≤ min
{
Rup,op

(i,c)
,Rup,re

(i,c)

}
,∀i ∈ c (25a)

z2
j + ‖u j − u(i,c)‖

2 ≤ R2,∀i ∈ c (25b)

zmin ≤ zj ; 0 < R(i,c),∀i ∈ c (25c)

The objective function focuses on minimizing the energy
consumption of TNs within a cluster with respect to the
transmission rate of the TNs and the flight altitude of the
corresponding UAV. The proposed TOP aims at improving
network reliability and avoid network outage probability. To
this end, (25a) is defined to limit the transmission rate of each
TN to the minimum value of two upper bounds: one that
guarantees the reliability, and the other prevents the outage
probability. Constraint (25b) implies that all TNs belong
to cluster c must be under coverage of the corresponding
UAV vj . Finally, (25c) shows the boundaries of the objective
variables, in which zmin is the minimum flight altitude that
UAVs are allowed to fly over that.

5.1.1 Convergence, Optimality, and Complexity

The objective function is defined in terms of R(i,c). The
Hessian of the objective function is given in (26) which is
non-negative. Therefore, the objective function is convex.

f (P1) =
Mc∑
i=1

ν(i,c)P(i,c)
L(i,c)
R(i,c)

→

d2 f (P1)
dR(i,c)

=

Mc∑
i=1

2ν(i,c)P(i,c)
L(i,c)
R3
(i,c)

(26)

Constraint (25b) is convex as well. The bottleneck of
P1 refers to (25a). According to (25a), there is a correlation
between R(i,c) and zj so that by increasing zj , R(i,c) decreases
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Algorithm 1 Optimal 3D Placement of the UAV vj
1: Input: R, zmax

j , z j ,Mc , u(i ,c), ∀i ∈ c, ε > 0;
2: xc =

∑Mc
i=1 x(i ,c)/Mc ;

3: yc =
∑Mc

i=1 y(i ,c)/Mc ;
4: uc = [xc yc ]

T ;
5: u∗j = uc ;
6: zmin = z j ;
7: zmax = zmax ;
8: Coverage (Mc , z j , u

∗
j , u(1,c), . . . , u(Mc ,c), R);

9: if covered == Mc then
10: zmin = zmin ;
11: zmax = z j ;
12: end if
13: repeat
14: zm = b(zmin + zmax ) /2c;
15: Coverage (Mc , zm , u

∗
j , u(1,c), . . . , u(Mc ,c), R);

16: if covered < Mc then
17: zmin = zm ;
18: else
19: zmax = zm ;
20: end if
21: until (covered −Mc < 0)
22: z∗j = zm ;
23: for i = 1 : Mc do
24: Calculate Rup ,op

(i ,c)
by using (23);

25: R∗
(i ,c)

= min
{
R
up ,op
(i ,c)

, R
up ,re
(i ,c)

}
;

26: end for
27: Return u∗j , z

∗
j , R

∗
(1,c), . . ., R

∗
(Mc ,c)

;

Function Coverage(Mc, z, u∗j , u(1,c), . . . , u(Mc ,c),R)
1: Initialize covered = 0;
2: for i = 1 : Mc do
3: if z2 + ‖u∗j − u(i ,c) ‖

2 ≤ R2 then
4: covered = covered + 1;
5: end if
6: end for
7: Return covered;

and vice versa. Hence, optimizing R(i,c) directly depends on
optimizing zj . The objective function is minimized if R(i,c)
reaches its maximum value, i.e., min{Rup,op

(i,c)
,Rup,re

(i,c)
} for

which the corresponding UAV vj must decrease its distance
from the corresponding TNs. The optimal horizontal pro-
jection of vj to cover all TNs within a cluster is the cluster
centroid. Therefore, u∗j = uc . By decreasing the flight alti-
tude by vj , its coverage range also decreases. Therefore, the
minimum altitude of vj is the altitude that the farthest TN
is under cover of vj . Subsequently, the objective function is
maximized when the transmission rate of the farthest TN is
maximized for which vj must adjust its flight altitude until
the farthest TN is under its coverage.

Algorithm 1 shows the procedure of obtaining the opti-
mal transmission rate for TNs and the optimal flight altitude
for the corresponding UAV by using the bisection algorithm.
As can be seen in lines 2–5, the algorithm calculates the
horizontal coordinate of the cluster and assigns it as the opti-

mal horizontal projection of vj . Then, the algorithm assigns
the values of zmin and zmax as the boundaries of the UAV’s
flight altitude. To this end, the algorithm runs the Coverage
function to check if the TNs are within the coverage area of
the UAV at the current altitude, zj . If so, it sets the upper
boundary as the current altitude, i.e., zmax = zj and the
lower boundary as a very small positive value shown by ε,
i.e., zmin = ε. This condition implies that the UAV decreases
its altitude until the TNs are under its coverage and (25a) is
met. On the other hand, the UAV must increase its altitude
such that all TNs are under its coverage for which it sets the
boundaries as zmax = zmax

j and zmin = zj , where zmax
j is the

maximum legal flight altitude introduced by the government
up to which a UAV can fly.

By considering ε = Mc − covered, the complexity of
Algorithm 1 will be O(Mc(log ε)/2).

5.2 Throughput Maximization

When a UAV receives a task from the TNs, it first checks the
delay constraint of the task to decide if the UAV can process
the task locally. Therefore, there would be two different
conditions:

- Offloading: If the task’s processing delay exceeds a
threshold, Dth , the UAV offloads the task to either the
corresponding LEO satellite or the corresponding ter-
restrial BS. In the case that the UAV is flying over the
areas without any BSs, the LEO satellite after receiving
the task decides to process it locally or offload the to the
GEO satellite for further process. On the other hand, If
the BS receives the task, it also decides to process the
task locally, offload it to a neighbor UAV, or forward it
to the cloud center. Each BS can cover a specific area
based on its coverage range. In H2TEC, the UAVs can-
not directly communicate with each other. Hence, the
communication is done by the corresponding BS. All
of the aforementioned decisions depend on the delay
constraint of the task and the resource availability of
the nodes.

- Local Processing: If the task’s processing delay is less
than Dth , the UAV processes the task locally. However,
the limited energy budget of the UAV imposes some
limitations on the local processing of the tasks. To deal
with this issue, the corresponding LEO satellite that
manages the UAV starts transferring the energy to the
UAVwhenever the remaining energy of the UAV is less
than the predefined threshold Eth , i.e., Erem

j < Eth .

In the case of local processing, the optimal amount of
harvested energy and the time of EH play important roles
in maximizing the network throughput. By considering
throughput of TN(i, c) and the corresponding UAV vj respec-
tively defined in (20) and (22), the following problem formu-
lation is proposed tomaximize total network throughput with
respect to the harvested power Ph

j , the energy beamforming
vector, wk , and the appropriate portion of time assigned for
EH, i.e., ρ.
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f (P2) =

f1(P2)︷                                                              ︸︸                                                              ︷
B
Mc∑

i=n+1
log2

(
1 +

P(i,c)g0~(i,c)jd−α(i,c)j
I(i,c)

)
(1 − ρ) τEH

2 (Mc − n)
+

(1 − ρ) τEH
∑Mc

i=n+1 L2
(i,c)

Ph
j

2
(
(µj − λjLj)

∑Mc

i=n+1 ν(i,c)L(i,c)
) (∑Mc

i=n+1 ν(i,c)E(i,c) − Erem
j

)
︸                                                                              ︷︷                                                                              ︸

f2(P2)

(28)

(P2): maximize
ρ,wk ,P

h
j

Mc∑
i=1
T(i,c)j + Tj (27)

s.t.

ρPh
j ≥

(
Pprc
j

∑Mc

i=n+1 ν(i,c)L(i,c)
(Mc − n) (µj − λjLj)

)
×

2
τEH

(27a)

Ph
j ≤ min

{
ηj |w

H
k gk j |

2,Psat

}
(27b)

Tr
(
wkGk jw

H
k

)
≤ Pk (27c)

0 ≤ ρ ≤ 1 (27d)

The objective function of P2 aims to maximize the through-
put. Constraint (27a) implies that the harvested energy needs
to be more than the required energy for processing the tasks
locally. Constraint (27b) determines the upper boundary
of the harvesting power. According to (27c), the trans-
formed power by the LEO satellite sk cannot exceed the
allowable transmission power of sk , i.e., Pk . It is noticeable
that Gk j = gk j g

H
k j
. Finally, (27d) shows that the value of ρ

changes between 0 and 1.

5.2.1 Convergence, Optimality, and Complexity

The main objective of the proposed model P2 is to jointly
optimize the energy transfer duration and the harvested en-
ergy in each time slot such that the total network throughput
is maximized. To this end, we manipulate the objective
function provided in (27) to rewrite it in form of the func-
tions which include the objective variables. The new form of
the objective function is shown in (28), where the objective
function comprises two parts, shown as f1(P2) and f2(P2).
f1(P2) function is a linear function of ρ, that is convex;
f2(P2) on the other hand is a function of combination of Ph

j

and ρ. This implies that f1(P2) is non-convex. To solve this
problem, it is assumed that ρ is fixed. We solve the problem
in terms of Ph

j to find optimal harvested power, i.e., Ph,∗
j .

Then, the optimal value of ρ, i.e., ρ∗, is found based on Ph,∗
j .

(1) Optimal Harvested Power

According to constraints provided in P2, Ph
j is a function of

Algorithm 3 Throughput Maximization Algorithm
1: Initialize: ρ;
2: Relax (29c) and solve P2.2 by CVX;
3: Find w∗

k
by using the Gaussian randomization method;

4: Find Ph ,∗
j by solving P2.3 with respect to the obtained w∗

k
;

5: Find ρ∗ by solving P2.3 with respect to the obtained Ph ,∗
j ;

6: Return Ph ,∗
j , ρ∗;

wk . To find the optimal value of Ph
j , we need to find the op-

timal value of wk , i.e., w∗k . Although the objective function
in (28) is convex due to the linear relationship between the
function and Ph

j , constraints (27b) and (27c) are quadrati-
cally constrained quadratic program (QCQP), that causes the
problem to be a nonconvex problem. To turn the noconvex
problem into a convex problem, a new variable is introduced
asWk = wkw

H
k
, whereWk is a rank-one symmetric positive

semidefinite (PSD) matrix [50]. By substituting Wk in P2,
we have

(P2.1): maximize
ρ,Wk ,P

h
j

f2(P2) (29)

s.t. (27a),

Ph
j ≤ min

{
ηjTr

(
WkGk j

)
,Psat

}
(29a)

Tr
(
WkGk j

)
≤ Pk (29b)

Rank(Wk) = 1 (29c)

Wk � 0 (29d)

The objective function is maximized if Ph
j reaches its max-

imum value. According to (29a), Ph
j is maximized when

ηjTr(WkGk j) is maximized. Therefore, we first solve the
following problem to find the optimal value of Wk .

(P2.2): maximize
Wk

Tr
(
WkGk j

)
(30)

s.t. (29b), (29c), (29d)
To find the optimal value of wk , i.e., w∗k , the powerful effi-
cient approximation method, called semidefinite relaxation
(SDR) [50], is used by which the rank-one constraint on
Wk , i.e., (29c) is relaxed. The relaxed problem is a convex
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semidefinite programming (SDP) problem that needs to be
solved for which the convex optimization toolbox, namely
CVX, can be used [50]. Accordingly, the optimal solution
W ∗

k
is found that might be of a rank greater than one. There-

fore, in the next step, the Gaussian randomization method
is employed to extract a feasible and optimal solution w∗

k
of

rank one. Thereafter, the following problem is solved to find
the optimal value of Ph

j , i.e., Ph,∗
j .

(P2.3): maximize
Ph
j

f2(P2) (31)

s.t. (27a), (27b)

(2) Optimal Energy Transfer Duration

After finding the optimal harvested power, we need to find
the optimal portion of energy transfer duration, i.e., ρ∗. This
could be achieved by solving the following problem:

(P2.4): maximize
ρ

Mc∑
i=1
T(i,c)j + Tj (32)

s.t. (27a), (27d)

(3) Throughput Maximization Algorithm

Algorithm 3 summarized the procedure of finding Ph,∗
j and

ρ∗ for which (27a) is relaxed and P2.2 is solved by CVX.
Then, w∗

k
is extracted from the obtained optimalW ∗

k
by using

the Gaussian randomization method. Accordingly, solving
P2.3 gives the optimal Ph,∗

j . Finally, ρ∗ is given by solving
P2.4 with respect to the obtained Ph,∗

j .
The complexity of the throughput maximization algo-

rithm follows the complexity of solving the SDP problem in
CVX that is polynomial in terms of the number of LEOs’
antennas, i.e., Nx and Ny .

6. Numerical Results

We consider a system in which M = 10000 TNs are uni-
formly distributed in a region with a radius of r = 2000m.
Considering a given coverage radius of R = 200m every sin-
gleUAV, optimal number of clusters (or equivalently, number
of UAVs) to cover all TNs is given as

N∗ =
( r
R

)2
(33)

Proof. The density of nodes in a region with the radius of r
is equal to M/(πr2). Each UAV with a radius of R can cover
M/(πr2)×πR2. For M TNs, M/(M/(πr2)×πR2)UAVs are
required to provide the services. By simplification, totally
N∗ = (r/R)2 UAVs are needed. �

Each TN(i,c) generates ν(i,c) = U[100,200] tasks in
each time slot. The size of tasks follows a uniform distributed
value between 60 and 80KB. All TNs have the same max-
imum transmission power, which is equal to 23 dBm [45].
The rotary UAVs are considered, where E0 = 55 J/m and

Table 1 System setup for numerical simulations.

Parameter B α β Υth Pk zmax zmin

Value 10MHz 3 0.01 0.99 80W 120m 30m

Fig. 4 Throughput vs. Psat .

Fig. 5 Throughput with respect to the saturation power, Psat , and the
traffic rate ν.

Ph = 170W [34]. The following setup is used for other
network parameters: µj = 100Mbps, ϑj = U[0.001,0.3],
ηj = 0.2 ∀ j; ω(i,c)j = U[0.001,0.3] ∀i, c, j. We assume
that wk and gk j are symmetric, i.e., Nx = Ny . Besides, the
channel gain between the satellites and the UAVs follows
the SR distribution with parameters (0.126, 10, 0.835) [27].
The CVX toolbox of MATLAB has been used to develop the
simulation models. The rest of simulation parameters are
given in Table 1.

In the first step, we show the impact of the saturation
power on the network throughput. To this end, we perform
the simulations for different values of Psat . Figure 4 shows
the corresponding results where, by increasing the saturation
power of the UAVs, these nodes can harvest more energy.
Subsequently, the UAVs have more energy to process more
bits, and hence, the network throughput increases.

The other parameter that can affect the network through-
put is the traffic rate of the TNs. The obtained results in Fig. 5
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Fig. 6 Comparison of the proposed TOP and the benchmark method with
respect to: (a) the traffic rate of TNs, ν; and (b) the threshold energy of
UAVs, Eth .

imply that increasing the number of generated tasks by the
TNs leads to the reduction of the network throughput. The
reason arose from that according to the assumption of the
considered system model, TNs offload all their tasks to the
correspondingUAV in order during a time slot. Accordingly,
the first TN offloads the tasks as the first node; thereafter, the
second TN sends all its tasks; and this procedure continues
until the UAV has enough energy to process the incoming
tasks from the TNs. Although the proposed TOP makes
it possible to harvest the energy from the satellites to pro-
cess more tasks, the limited time duration does not allow the
UAVs to process all available tasks in a time slot. Therefore,
the network throughput decreases.

Also, we compare the proposed TOP with a baseline
scheme in which the UAVs do not harvest the energy from
the satellites. Figure 6 shows the corresponding results. We
first consider the scenario with different traffic rates of TNs.
As seen in Fig. 6(a), by increasing the traffic rates of the
TNs, the network throughput decreases. However, due to
the capability of the UAVs in harvesting the energy from
the satellites, the TOP achieves high network throughput

even in high data traffic. This is while the throughput is
about zero for the baseline mechanism. On the other hand,
we have set the threshold energy of the UAVs, Eth , to a
portion of their initial energy. Figure 6(b) indicates that Eth

changes from 20% to 80% of the initial energy of UAVs.
Accordingly, the network throughput is decreased for both
methods. However, the energy harvesting provided in the
TOP causes a slight deduction of the network throughput
compared to the baseline scheme.

7. Conclusion

In this paper, we proposed a novel architecture, named
H2TEC, for the IoT networks, in which the UAVs can provide
the services for the TNs in cooperation with the satellites,
especially where the access to the stationary BSs is hard
or impossible for the TNs. Accordingly, the novel Task al-
lOcation Protocol (TOP) was proposed, where the optimal
transmission rate of the TNs is set so that the outage prob-
ability of the network is guaranteed, the network reliability
is ensured, and the TNs consume the minimum energy for
offloading the tasks to the corresponding UAV. Moreover,
TOP enables the energy harvesting for the UAVs by which
the LEO satellites transfer the energy to the UAVs when the
remaining energy of the UAVs is below a predefined thresh-
old. Therefore, the UAVs can process more bits by assigning
the optimal harvested power, as well as the optimal portion
of the harvesting time. Numerical results reveal that TOP
could improve the network throughput in various scenarios
with respect to different parameters.
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