In this paper, we propose rate adaptation mechanisms for robust and low-latency video transmissions exploiting multiple access points (Multi-AP) wireless local area networks (WLANs). The Multi-AP video transmissions employ link-level broadcast and packet-level forward error correction (FEC) in order to realize robust and low-latency video transmissions from a WLAN station (STA) to a gateway (GW). The PHY (physical layer) rate and FEC rate play a key role to control trade-off between the achieved reliability and airtime (i.e., occupancy period of the shared channel) for Multi-AP WLANs. In order to finely control this trade-off while improving the transmitted video quality, the proposed rate adaptation controls PHY rate and FEC rate to be employed for Multi-AP transmissions based on the link quality and frame format of conveyed video traffic. With computer simulations, we evaluate and investigate the effectiveness of the proposed rate adaptation in terms of packet delivery rate (PDR), airtime, delay, and peak signal to noise ratio (PSNR). Furthermore, the quality of video is assessed by using the traffic encoded/decoded by the actual video encoder/decoder. All these results show that the proposed rate adaptation controls trade-off between the reliability and airtime well while offering the high-quality and low-latency video transmissions.
Kazuma YAMAMOTO
Kansai University
Hiroyuki YOMO
Kansai University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazuma YAMAMOTO, Hiroyuki YOMO, "Rate Adaptation for Robust and Low-Latency Video Transmissions Using Multi-AP Wireless LAN" in IEICE TRANSACTIONS on Communications,
vol. E105-B, no. 2, pp. 177-185, February 2022, doi: 10.1587/transcom.2021CEP0015.
Abstract: In this paper, we propose rate adaptation mechanisms for robust and low-latency video transmissions exploiting multiple access points (Multi-AP) wireless local area networks (WLANs). The Multi-AP video transmissions employ link-level broadcast and packet-level forward error correction (FEC) in order to realize robust and low-latency video transmissions from a WLAN station (STA) to a gateway (GW). The PHY (physical layer) rate and FEC rate play a key role to control trade-off between the achieved reliability and airtime (i.e., occupancy period of the shared channel) for Multi-AP WLANs. In order to finely control this trade-off while improving the transmitted video quality, the proposed rate adaptation controls PHY rate and FEC rate to be employed for Multi-AP transmissions based on the link quality and frame format of conveyed video traffic. With computer simulations, we evaluate and investigate the effectiveness of the proposed rate adaptation in terms of packet delivery rate (PDR), airtime, delay, and peak signal to noise ratio (PSNR). Furthermore, the quality of video is assessed by using the traffic encoded/decoded by the actual video encoder/decoder. All these results show that the proposed rate adaptation controls trade-off between the reliability and airtime well while offering the high-quality and low-latency video transmissions.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2021CEP0015/_p
Copy
@ARTICLE{e105-b_2_177,
author={Kazuma YAMAMOTO, Hiroyuki YOMO, },
journal={IEICE TRANSACTIONS on Communications},
title={Rate Adaptation for Robust and Low-Latency Video Transmissions Using Multi-AP Wireless LAN},
year={2022},
volume={E105-B},
number={2},
pages={177-185},
abstract={In this paper, we propose rate adaptation mechanisms for robust and low-latency video transmissions exploiting multiple access points (Multi-AP) wireless local area networks (WLANs). The Multi-AP video transmissions employ link-level broadcast and packet-level forward error correction (FEC) in order to realize robust and low-latency video transmissions from a WLAN station (STA) to a gateway (GW). The PHY (physical layer) rate and FEC rate play a key role to control trade-off between the achieved reliability and airtime (i.e., occupancy period of the shared channel) for Multi-AP WLANs. In order to finely control this trade-off while improving the transmitted video quality, the proposed rate adaptation controls PHY rate and FEC rate to be employed for Multi-AP transmissions based on the link quality and frame format of conveyed video traffic. With computer simulations, we evaluate and investigate the effectiveness of the proposed rate adaptation in terms of packet delivery rate (PDR), airtime, delay, and peak signal to noise ratio (PSNR). Furthermore, the quality of video is assessed by using the traffic encoded/decoded by the actual video encoder/decoder. All these results show that the proposed rate adaptation controls trade-off between the reliability and airtime well while offering the high-quality and low-latency video transmissions.},
keywords={},
doi={10.1587/transcom.2021CEP0015},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - Rate Adaptation for Robust and Low-Latency Video Transmissions Using Multi-AP Wireless LAN
T2 - IEICE TRANSACTIONS on Communications
SP - 177
EP - 185
AU - Kazuma YAMAMOTO
AU - Hiroyuki YOMO
PY - 2022
DO - 10.1587/transcom.2021CEP0015
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E105-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2022
AB - In this paper, we propose rate adaptation mechanisms for robust and low-latency video transmissions exploiting multiple access points (Multi-AP) wireless local area networks (WLANs). The Multi-AP video transmissions employ link-level broadcast and packet-level forward error correction (FEC) in order to realize robust and low-latency video transmissions from a WLAN station (STA) to a gateway (GW). The PHY (physical layer) rate and FEC rate play a key role to control trade-off between the achieved reliability and airtime (i.e., occupancy period of the shared channel) for Multi-AP WLANs. In order to finely control this trade-off while improving the transmitted video quality, the proposed rate adaptation controls PHY rate and FEC rate to be employed for Multi-AP transmissions based on the link quality and frame format of conveyed video traffic. With computer simulations, we evaluate and investigate the effectiveness of the proposed rate adaptation in terms of packet delivery rate (PDR), airtime, delay, and peak signal to noise ratio (PSNR). Furthermore, the quality of video is assessed by using the traffic encoded/decoded by the actual video encoder/decoder. All these results show that the proposed rate adaptation controls trade-off between the reliability and airtime well while offering the high-quality and low-latency video transmissions.
ER -