
IEICE TRANS. COMMUN., VOL.E105–B, NO.4 APRIL 2022
485

PAPER
Opimon: A Transparent, Low-Overhead Monitoring System for
OpenFlow Networks

Wassapon WATANAKEESUNTORN †a), Keichi TAKAHASHI †, Chawanat NAKASAN ††, Nonmembers,
Kohei ICHIKAWA †, Member, and Hajimu IIDA †, Nonmember

SUMMARY OpenFlow is a widely adopted implementation of the
Software-Defined Networking (SDN) architecture. Since conventional net-
work monitoring systems are unable to cope with OpenFlow networks,
researchers have developed various monitoring systems tailored for Open-
Flow networks. However, these existing systems either rely on a specific
controller framework or an API, both of which are not part of the Open-
Flow specification, and thus limit their applicability. This article proposes
a transparent and low-overhead monitoring system for OpenFlow networks,
referred to as Opimon. Opimon monitors the network topology, switch
statistics, and flow tables in an OpenFlow network and visualizes the result
through a web interface in real-time. Opimon monitors a network by inter-
posing a proxy between the controller and switches and intercepting every
OpenFlow message exchanged. This design allows Opimon to be compat-
ible with any OpenFlow switch or controller. We tested the functionalities
of Opimon on a virtual network built using Mininet and a large-scale inter-
national OpenFlow testbed (PRAGMA-ENT). Furthermore, we measured
the performance overhead incurred by Opimon and demonstrated that the
overhead in terms of latency and throughput was less than 3% and 5%,
respectively.
key words: Software-Defined Networking (SDN), OpenFlow, network mon-
itoring, visualization, networking

1. Introduction

In the current networking architecture, network devices in
a network are individually and manually configured by the
administrator. This design makes it challenging to manage
large and complex networks. Software-Defined Network-
ing (SDN) [1] is an alternative networking architecture that
centralizes the control of network devices to a centralized
software controller and introduces programmability to the
network infrastructure. In current networks, the packet for-
warding function (data plane) and the routing decision func-
tion (control plane) are inseparably implemented in the same
network device. In SDN, these two are disaggregated. The
packet forwarding is handled by SDN switches, whereas the
routing decision is handled by a centralized software con-
troller. Each SDN switch maintains a flow table, which is
a collection of flow entries. A flow entry contains a set of
(1) matching conditions, which specify the packets that the
flow matches, and (2) actions, which specify how matched

Manuscript received May 28, 2021.
Manuscript revised September 2, 2021.
Manuscript publicized October 21, 2021.

†The authors arewithNara Institute of Science and Technology,
Ikoma-shi, 630-0101 Japan.

††The author is with Kanazawa University, Kanazawa-shi, 920-
1192 Japan.

a) E-mail: wassapon.watanakeesuntorn.wq0@is.naist.jp
DOI: 10.1587/transcom.2021EBP3083

Fig. 1 An OpenFlow network.

packets are processed. Flow entries are generated by the
controller and installed to switches.

The OpenFlow protocol [2] is widely used to com-
municate between SDN switches and the centralized SDN
controller. OpenFlow definesmultiplemessage types for dif-
ferent purposes, such as installing flow entries and collecting
switch information and statistics, for example. Some exam-
ples of OpenFlow messages are shown in Table 1. Hard-
ware vendors such as Mellanox, Pica8 and NoviFlow pro-
duce hardware OpenFlow switches. There are also several
software OpenFlow switches including Open vSwitch [3]
and Lagopus [4]. Furthermore, software frameworks that
facilitate the development of OpenFlow controllers, such
as Ryu [5], Faucet [6], Open Network Operating System
(ONOS) [7], [8], and OpenDaylight [9], are available.

Figure 1 illustrates how an OpenFlow network delivers
a packet. Every time a switch receives a packet from a
host (step 1O in Fig. 1), the switch searches its flow table
for a flow entry that matches the incoming packet (step 2O).
If a matching flow entry is found, the switch performs the
action indicated in the flow entry (step 6O). If no matching
flow entry is found, the switch sends a PacketIn message
to the controller (step 3O). The controller then examines
the PacketIn message and determines where the packet that
generated the PacketIn message should be forwarded next.
Based on this decision, the controller installs a newflowentry

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

https://orcid.org/0000-0002-1116-7370
https://orcid.org/0000-0002-1607-5694
https://orcid.org/0000-0002-0294-8597
https://orcid.org/0000-0003-0094-3984
https://orcid.org/0000-0002-2919-6620

486
IEICE TRANS. COMMUN., VOL.E105–B, NO.4 APRIL 2022

Table 1 Example of OpenFlow messages types.

Message Type Direction Purpose

FlowMod Controller→Switch Modifies the flow table of a switch.
FeaturesRequest Controller→Switch Requests the supported features of a switch.
FeaturesReply Switch→Controller Responds to a controller’s FeaturesRequest message.
FlowStatsRequest Controller→Switch Requests statistics about individual flows on a switch.
FlowStatsReply Switch→Controller Responds to a controller’s FlowStatsReply message.
PortStatsRequest Controller→Switch Requests statistics about individual ports on a switch.
PortStatsReply Switch→Controller Responds to a controller’s PortStatsReply message.
PacketIn Switch→Controller Sends an unmatched packet to the controller.
PacketOut Controller→Switch Injects a packet to the data plane of a switch.

to the switch by sending a FlowMod message (step 4O). This
procedure is repeated until the packet reaches its destination.

Investigating and understanding the behavior of an
OpenFlow network is challenging [10], [11]. This is be-
cause, although the control logic is logically centralized in
the OpenFlow controller, the state of the network (e.g. flow
tables) is distributed across the network. Since conventional
network monitoring systems are not designed to cope with
OpenFlow networks, researchers have developed various
monitoring systems tailored for OpenFlow networks [12]–
[14]. However, existing systems either rely on a specific
controller framework or require modifications to the con-
troller. This is often unacceptable when monitoring produc-
tion networks.

This article proposes a monitoring system for Open-
Flow networks, which we refer to as Opimon (OpenFlow
Interactive Monitoring)†. Opimon is completely transpar-
ent to the network and works with any OpenFlow switch or
controller without requiring any modification. Furthermore,
Opimon imposes little overhead to the network performance
and can be used in production networks. Opimon collects
the topology, flow tables, and switch statistics from the target
network, and interactively visualizes the state of the network
through a web interface in real-time. Opimon is based upon
our previous work [15], but its monitoring module is re-
designed to minimize the incurred overhead.

Figure 2 compares the design of a conventional Open-
Flow monitoring system and Opimon. In a conventional
design, the monitoring system was integrated into the Open-
Flow controller as a sub component. Thus, the monitoring
system was dependent on the OpenFlow controller or the
framework it uses. Opimon, on the other hand, acts as a
transparent proxy between the controller and switches, and
works with any controller. However, this design causes an
unavoidable overheadwhen forwarding and collectingOpen-
Flow messages. We minimize the overhead by employing
a multi-process architecture that scales with the number of
switches. Furthermore, we decouple the message forward-
ing and collection into different processes so that messages
are forwarded with minimum delay.

The rest of this article is structured as follows. Section 2
discusses previous works about the monitoring of both con-
ventional networks and SDN. Section 3 explains the design

†https://github.com/wassapon-w/opimon

Fig. 2 Comparison between conventional and proposed monitoring sys-
tem.

and implementation of Opimon. Section 4 evaluates the per-
formance of Opimon. Finally, Sect. 5 concludes this article
and discusses future work.

2. Related Work

Various monitoring protocols and tools are available in tradi-
tional network architectures. Simple Network Management
Protocol (SNMP) is one of the most widely used protocols
for monitoring networks [16]. SNMP is used to collect infor-
mation from network devices as well as to configure network
devices. sFlow [17] is another popular technology for mon-
itoring the traffic flows in a network. sFlow agents reside
on network devices and sample traffic flows from the net-
work, and the sampled traffic is aggregated and analyzed by
a sFlow collector. Both SNMP and sFlow are, however, not
designed for OpenFlow networks and are unable to obtain
OpenFlow-specific information such as the content of flow
tables.

Therefore, researchers have designed and implemented
monitoring systems tailored for OpenFlow networks. Open-
NetMon is a extension module for the POX [18] OpenFlow
controller that provides monitoring capabilities [12]. Open-
NetMon polls statistics from switches and calculates the
throughput and packet loss of each flow. The polling in-
terval is adaptively controlled to reduce the switch CPU load
while ensuring measurement accuracy.

OOFMonitor is a monitoring system for OpenFlow net-

WATANAKEESUNTORN et al.: OPIMON: A TRANSPARENT, LOW-OVERHEAD MONITORING SYSTEM FOR OPENFLOW NETWORKS
487

works that collects the delay, jitter, packet loss rate, and
link utilization [13]. Since OOFMonitor relies on the API
exposed by the Ryu OpenFlow controller, it is incompati-
ble with other controllers. In addition, OOFMonitor does
not provide any feature to visualize the collected network
information.

Isolani et al. proposed a modular system for interactive
monitoring, visualization and configuration of OpenFlow
networks [14]. Their system uses the RESTful API provided
by the FloodlightOpenFlowcontroller to collect the topology
of the network and the traffic counter of every flow entry
present on switches.

Warraich et al. developed a system to monitor the traffic
statistics at Internet eXchange Points (IXPs), called SDX-
Manager [19]. It integrates a traditional IXP-Manager with
an SDN controller. Grafana is used to visualize the traffic
statistics. However, SDX-Manager is build on top of the
Faucet OpenFlow controller framework and lacks support
for other controllers.

These existingmonitoring systems share a common lim-
itation: they depend on a specific controller orAPI,which are
not part of the OpenFlow specification and not standardized.
This limitation clearly hinders practicality because network
designers or administrators are forced to choose a specific
OpenFlow controller that is compatible with the monitor-
ing system. In contrast, Opimon does not rely on a specific
controller or API and can be integrated in any OpenFlow
networks.

Network hypervisors such as FlowVisor [20] and Au-
toVFlow [21] enable virtualization ofOpenFlownetworks by
slicing a physical network into multiple isolated virtual net-
works. Both of them employ a proxy-based design, where
a transparent proxy is placed between the OpenFlow con-
trollers and switches. The proxy examines and modifies the
exchanged OpenFlow messages to isolate the network slices
with one another. This design allows the hypervisors to
be compatible with any OpenFlow controllers or switches.
However, monitoring capabilities are not provided.

3. Opimon

In this section, we describe the design and implementation
of Opimon. We first describe the high-level architecture of
Opimon and then elaborate on each component.

3.1 High-Level Architecture

Figure 3 illustrates the high-level architecture of Opimon.
Opimon is mainly composed of two modules: (1) the moni-
toring module and (2) the visualization module. The moni-
toring module behaves as a transparent proxy and intercepts
every OpenFlow message exchanged between the controller
and the switches. The intercepted messages are stored into
a database. Our current implementation uses MongoDB as
a database. The visualization module queries the collected
messages from the database and shows various network in-
formation via a web interface in real-time.

Fig. 3 High-level architecture of Opimon.

3.2 Monitoring Module

3.2.1 Overall Design

The monitoring module is responsible for collecting the
OpenFlow messages exchanged in the control plane of an
OpenFlow network. Since we found out that messages pars-
ing is the primary bottleneck in collecting OpenFlow mes-
sages, we decouple message forwarding and parsing into
different processes so that OpenFlow messages can be for-
warded with minimal delay. The monitoring module is im-
plemented in Python. This module runs the following three
types of processes: connection listener process, message
watcher process, and message parser process.

• Connection listener process: This process is respon-
sible for handling new connections from switches and
coordinating other processes. The connection listener
waits for incoming connections from switches and forks
a new message watcher process every time a switch is
connected. The connection listener also creates a set of
message parser processes.

• Message watcher process: This process is responsi-
ble for forwarding and collecting messages exchanged
between the switches and the controller. A message
watcher process is created for each switch. Every time a
message watcher receives a new message from a switch
or a controller, it pushes a copy of the raw message into
the message queue and then forwards the message to
the other side.

• Message parser process: This process is responsible for
parsing each message in the message queue and storing
the parsed message into MongoDB. This process uses
theRyuOpenFlow framework to parse the rawmessage.
An example of a FlowModmessage stored inMongoDB
is shown in Listing 1.

488
IEICE TRANS. COMMUN., VOL.E105–B, NO.4 APRIL 2022

Fig. 4 Monitoring module.

3.2.2 Interaction of Processes

Figure 4 shows the interaction of processes inside the mon-
itoring module. When a switch connects to the monitoring
module, the connection listener process forks a new mes-
sage watcher process. The newly forked message watcher
process accepts the connection from the switch and opens
another connection to the OpenFlow controller. Every time
a message watcher receives a message from a switch (step
1O in Fig. 4), the message watcher clones the received mes-
sage and forwards a copy to the controller (step 2O). Another
copy of the message is pushed into the message queue (step
3O). The message parser asynchronously processes pop mes-
sages from the message queue (step 4O) and store the parsed
messages into MongoDB along with the current timestamp
(step 5O). Messages sent from the controller to switches are
handled in the same manner.

The previous version of Opimon [15] employed a
single-process and multi-threaded design using Python’s
threading† module, where the monitoring module launched
multiple threads each responsible for receiving, parsing, and
forwarding of messages. However, this design suffered from
low forwarding performance caused by the Global Inter-
preter Lock (GIL)†† of Python. GIL is a mutex that en-
sures only a single Python interpreter thread can execute at a
time. Although GIL simplifies the handling of thread-safety,
CPU-intensive multi-threaded programs cannot benefit from
multi-core CPUs. Using profilers, we found out that message
parsing in Opimon is CPU-intensive and blocks the receiv-
ing and forwarding of messages. This induced prohibitive

†https://docs.python.org/3/library/threading.html
††https://docs.python.org/3/glossary.html#term-global-interpret

er-lock

"_id" : ObjectId("5f8408271650602248ff3b5d"),
"switch" : "0x2",
"message" : {

"header" : {
"version" : 1,
"type" : 14,
"length" : 80,
"xid" : 679114503

},
"match" : {

"wildcards" : 4194294,
"in_port" : 1,
"dl_src" : "00:00:00:00:00:00",
"dl_dst" : "80:00:00:00:00:02",
"dl_vlan" : 0,
"dl_vlan_pcp" : 0,
"dl_type" : 0,
"nw_tos" : 0,
"nw_proto" : 0,
"nw_src" : "0.0.0.0",
"nw_dst" : "0.0.0.0",
"tp_src" : 0,
"tp_dst" : 0

},
"cookie" : 0,
"command" : 0,
"idle_timeout" : 0,
"hard_timeout" : 0,
"priority" : 32768,
"buffer_id" : NumberLong("4294967295"),
"out_port" : 65535,
"flags" : 1,
"actions" : [{

"type" : 0,
"len" : 8,
"port" : 2,
"max_len" : 65509

}]
},
"timestamp" : ISODate("2020-10-12T07:39:19.017Z")

Listing 1 Example of a FlowMod message stored in
MongoDB

latency and packet drops at high traffic load.
In this version, we redesign the monitoring module

based on the Python’s multiprocessing††† module and sep-
arate the collection and parsing of messages into different
processes. Since multi-processing is not limited by GIL, the
new design allows the monitoring module to utilize multiple
CPU cores. In addition, the message watcher processes and
the message parser processes are loosely coupled through an
asynchronous inter-process queue. This design allows the
monitoring module to adapt to sudden changes in the mes-
sage traffic and to scale the message watchers and parsers
independently.

3.2.3 Collection of Network Information

In addition to passively intercepting the messages exchanged
in the control plane, Opimon actively queries the switches
to collect more information. This design, however, causes
a side effect because the OpenFlow controller will receive
replies to queries that it has not issued. This potentially
causes unexpected behavior of the controller and violates
the goal of being transparent. Thus, Opimon marks injected
messages with a special transaction identifier (xid) to dis-
†††https://docs.python.org/3/library/multiprocessing.html

WATANAKEESUNTORN et al.: OPIMON: A TRANSPARENT, LOW-OVERHEAD MONITORING SYSTEM FOR OPENFLOW NETWORKS
489

Fig. 5 Visualization of the virtual network using Opimon.

tinguish them from OpenFlow messages generated by the
controller. Replies from switches carrying the same special
xid are filtered out and not forwarded.

The monitoring module collects the three types of net-
work information in the following manner:

• Network Topology: The network topology is detected
using the Link Layer Discovery Protocol (LLDP). The
monitoring module injects LLDP packets into a switch
using a PacketOut message. When an adjacent switch
receives an LLDP packet, it encapsulates the packet in
a PacketIn message and sends to the controller. The
monitoring module intercepts and parses this message
and records the adjacency between switches.

• Switch Information: The switch ID, number of ports,
and port MAC addresses are collected by querying the
individual switches using FeaturesRequest messages.
Port statistics are obtained using PortStatsRequest mes-
sages.

• Flow Table: The flow table of each switch is monitored
by intercepting FlowMod messages sent out from the
controller, which are used to add, modify or delete flow
entries on a switch. The statistics of each flow entry
is collected by periodically querying switches using
FlowStatsRequest messages.

Opimon can detect topology changes in the network
caused by incidents such as switch and link failures. When
a switch fails and disconnects from Opimon, Opimon stops
monitoring the switch and removes it from the web interface.

When a link fails, the failed link is detected by LLDP and
removed from the web interface.

3.3 Visualization Module

3.3.1 Overall Design

The visualization module is responsible for showing the col-
lected network information to the user in real-time. The
visualization module is a web application consisting of a
front-end and a back-end.

The front-end periodically polls the back-end to retrieve
the latest network information and renders the result as a
web page. D3.js is used to render the network topology
and jQuery is used to show a table of port statistics and a
flow table of the selected switch. The back-end exposes a
RESTful API that queries MongoDB and returns the latest
network information in JSON format. The back-end is built
upon the Express web application framework and Node.js
JavaScript runtime.

3.3.2 Web Interface

Figure 5 shows the web interface of Opimon. The web
interface has three sections (network topology, switch infor-
mation, and flow table) divided into two columns.

• Network Topology: This section shows the network
topology. A node represents a switch in the network

490
IEICE TRANS. COMMUN., VOL.E105–B, NO.4 APRIL 2022

and an arrow edge represents as a link with a direction
of the data flow. Each node is labeled with the ID of the
corresponding switch. The labels can be customized
in a configuration file to make them easier to identify.
Each node in the graph is clickable to show the switch
information and flow table of that switch. On top of
the network topology, a slider is available to select the
time in the past to investigate the previous status of the
network that Opimon collected from the selected time.

• Switch Information: This section shows the details of
the selected switch in the network topology view as a
table. The table shows the MAC address and statistics
of each switch port. This information is collected from
FeaturesReply message. Each row in the table shows
the port statistic that the monitoring module collects
from PortStatsReply of StatReply message.

• Flow Table: This section shows the active flows in the
selected switch. A table shows the match condition
and action of each flow. Hard timeout and idle timeout
are shown in the table. The information of the flow
table is collected from FlowMod and FlowStatsReply
of StatReply messages.

4. Evaluation

We evaluated Opimon from two aspects. First, we deployed
Opimon to a virtual network and tested if Opimon can cor-
rectly detect the network topology and the flow table of each
switch. We conducted the same test on a large-scale in-
ternational OpenFlow testbed, PRAGMA-ENT. Second, we
measured the performance of a controller with and without
Opimon and quantified the overhead imposed by Opimon.

4.1 Correctness of Monitoring Results

A virtual network was used to verify if Opimon is able to
correctly detect the topology of the network and the flow
entries installed on each switch. We used Mininet [22], a
network emulator that creates virtual networks comprising
many hosts and switches on a single computer, to create
a virtual network. Listing 2 shows the Mininet script to
create the virtual network. The virtual network comprises
15 switches forming a tree topology. We used Ryu’s builtin
L2 learning switch (ryu.ryu.app.simple_switch) as the
OpenFlow controller.

Figure 5 is a screenshot ofOpimon’sweb interfacewhen
monitoring the virtual network. We verified that the network
topology and the flow entries in each switch are correct.

Opimonwas also deployed to a large-scale international
OpenFlow network testbed referred to as the PRAGMA
Experimental Networking Testbed (PRAGMA-ENT) [23].
This testbed is maintained and used by researchers partic-
ipating in the Pacific Rim Application and Grid Middle-
ware Assembly (PRAGMA). The OpenFlow switches in this
network, including both hardware and software switches,
are deployed at multiple PRAGMA partner institutions in

from mininet.topo import Topo

class MyTopo(Topo):
def __init__(self):
Initialize topology
Topo.__init__(self)

Create Switch1 to Switch15
...

Add links between core switches
self.addLink(Switch1, Switch2)
self.addLink(Switch2, Switch3)

Add links between core and edge switches
self.addLink(Switch1, Switch4)
self.addLink(Switch1, Switch5)
self.addLink(Switch2, Switch6)
self.addLink(Switch2, Switch7)
self.addLink(Switch2, Switch8)
self.addLink(Switch3, Switch9)
self.addLink(Switch3, Switch10)

self.addLink(Switch5, Switch11)
self.addLink(Switch6, Switch12)
self.addLink(Switch6, Switch13)
self.addLink(Switch8, Switch14)
self.addLink(Switch9, Switch15)

topos = { ’mytopo’: (lambda: MyTopo()) }

Listing 2 Mininet script to create the virtual network

Fig. 6 Visualization of the PRAGMA-ENT network using Opimon.

Japan, the United States, and Taiwan. The switches are
connected via VLANs and Generic Routing Encapsulation
(GRE) tunnels. PRAGMA-ENT uses a controller implemen-
tation based on a routing switch of Trema OpenFlow frame-
work to emulates a layer 2 switch [24]. Figure 6 shows the
network topology of PRAGMA-ENT. It shows the switches
deployed at the Nara Institute of Science and Technology
(NAIST), Osaka University, National Institute of Informa-
tion and Communications Technology (NICT), University
of California San Diego (UCSD), and University of Florida
(UF). We confirmed that Opimon was able to correctly mon-
itor the PRAGMA-ENT network in real-time.

WATANAKEESUNTORN et al.: OPIMON: A TRANSPARENT, LOW-OVERHEAD MONITORING SYSTEM FOR OPENFLOW NETWORKS
491

Fig. 7 Experimental environment.

Table 2 Virtual machines used for evaluation.

VM vCPU RAM Software

Controller VM 4 8GB Ryu L2 Learning Switch
Visualizer VM 8 16GB Visualization Module & MongoDB
Monitoring VM 16 16GB Monitoring Module
Network VM 16 16GB Cbench

4.2 Overhead Imposed by Opimon

We measured the latency and throughput of Ryu’s L2 learn-
ing switch controller with and without Opimon to quantify
the overhead imposed by Opimon. A benchmark tool for
OpenFlow controllers called Cbench [25], [26] was used in
this evaluation. Cbench simulates a number of OpenFlow
switches by opening multiple connections to the controller
and concurrently sending PacketIn messages to simulate the
arrival of packets at switches. In the latency mode, Cbench
sends a PacketIn message and waits for the controller to reply
with a FlowMod message. In the throughput mode, Cbench
sends a large number of PacketIn messages and counts the
number of FlowMod messages received from the controller.

We set up four VMs on three hosts for this evaluation
as shown in Fig. 7. On host A, we deployed a VM that ran
the OpenFlow controller and another VM that ran Opimon’s
visualization module and MongoDB. We deployed a VM
for Opimon’s monitoring module on host B and a VM for
Cbench on host C. All hosts were equipped with two Intel
Xeon Silver 4208 CPUs and 96GB of RAM. Table 2 shows
the resource allocation to each VM.

Fig. 8 Controller latency (Ryu L2 learning switch).

Fig. 9 Controller throughput (Ryu L2 learning switch).

We used Python 3.8.5 and the latest master version of
Ryu [5] (git commit a394673). The visualization mod-
ule was executed with Node.js 10.19.0 and Express 4.17.1.
MongoDB 3.6was used as the database. We used Cbench in-
cluded in the latest master version of Oflops [26] (git commit
762d517) and built it with the reference OpenFlow imple-
mentation [27] (git commit 82ad07d). All VMs ran Ubuntu
Server 18.04.

Using Cbench, we measured the latency and through-
put of the controller while varying the number of simulated
switches from 16 to 256. We compared the latency and
throughput with and without using Opimon in each case.
Each measurement was repeated 10 times to quantify the
performance variability.

Figure 8 shows a comparison of latency. Here the er-
ror bars represent the standard deviation. As expected, the
latency of the controller becomes higher when the number
of switches increases. The results indicate that Opimon in-
troduces an overhead of approximately 0.5 µs at maximum.
This is only 3% of the latency without Opimon, even when

492
IEICE TRANS. COMMUN., VOL.E105–B, NO.4 APRIL 2022

Fig. 10 Controller latency (OpenNetMon routing switch).

Fig. 11 Controller throughput (OpenNetMon routing switch).

handling 256 switches. Figure 9 shows a comparison of
throughput. The results shows that Opimon decreases the
throughput of the controller for 5% at most.

4.3 Performance Comparison to OpenNetMon

In this experiment, we compared the overhead of Opi-
mon to an existing OpenFlow monitoring system, Open-
NetMon [12]. Here we used the same environment as the
previous experiment (Fig. 7), and deployed OpenNetMon on
the controller VM. Since OpenNetMon only works with its
builtin routing switch controller based on POX, wemeasured
the overhead caused by Opimon and OpenNetMon using this
routing switch controller.

Figures 10 and 11 show the latency and throughput
measured using Cbench. These plots indicate that the per-
formance difference between OpenNetMon and Opimon is
marginal. Furthermore, the fact that Opimon worked with
OpenNetMon’s routing switch controller based on POX
demonstrates that Opimon is transparent to the OpenFlow

controller and controller framework.

5. Conclusion & Future Work

We proposed Opimon, a monitoring system for OpenFlow
networks. Opimon collects the topology, flow tables, and
switch statistics from the target network, and interactively
visualizes the state of the network through a web interface in
real-time. Opimon is completely transparent to the network
and works with any OpenFlow switch or controller without
any modification required. Furthermore, Opimon imposes
little overhead to the network performance and can be used in
production networks. Using Cbench, we simulated up to 256
virtual switches and measured the latency and throughput of
the controller with and without using Opimon. The results
indicated that the overhead to latency introduced by Opimon
is less than 0.5µs (or 3%). In addition, the overhead in terms
of throughput was less than 5%.

As future work, we are planning to implement a new
module for detecting anomalous traffic in the network, such
as DDoS attacks, using machine learning algorithms. In
contrast to existing Intrusion Detection Systems (IDS) which
require traffic probes to be installed in the data plane, this
module will not require additional traffic probes because it
will analyze the OpenFlow messages collected using Opi-
mon. We will also extend the visualization module to report
the detection results in real-time.

Acknowledgments

This work was partly supported by JSPS KAKENHI
(JP18K11326) and ROIS NII Open Collaborative Research
2020 (20S0108).

References

[1] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pp.1–
13, 2013.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” ACM SIGCOMMComputer Com-
munication Review, vol.38, no.2, pp.69–74, 2008.

[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, and P. Shelar, “The design and im-
plementation of Open vSwitch,” 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15), pp.117–
130, 2015.

[4] “Lagopus switch and router,” http://www.lagopus.org, accessed May
27. 2021.

[5] “Ryu SDN framework,” https://github.com/faucetsdn/ryu, accessed
May 27. 2021.

[6] “Faucet: Open source SDN controller for production networks,”
https://faucet.nz, accessed May 27. 2021.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” Proc. Third Work-
shop on Hot Topics in Software Defined Networking, pp.1–6, 2014.

[8] “Open network operating system (ONOS),” https://www.opennetwor
king.org/onos/, accessed May 27. 2021.

http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://www.lagopus.org
http://www.lagopus.org
https://github.com/faucetsdn/ryu
https://github.com/faucetsdn/ryu
https://faucet.nz
https://faucet.nz
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1145/2620728.2620744
https://www.opennetworking.org/onos/
https://www.opennetworking.org/onos/

WATANAKEESUNTORN et al.: OPIMON: A TRANSPARENT, LOW-OVERHEAD MONITORING SYSTEM FOR OPENFLOW NETWORKS
493

[9] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: To-
wards amodel-driven SDNcontroller architecture,” Proc. IEEE Inter-
national Symposium on aWorld ofWireless, Mobile andMultimedia
Networks 2014, pp.1–6, 2014.

[10] K. Suzuki, K. Sonoda, N. Tomizawa, Y. Yakuwa, T. Uchida,
Y. Higuchi, T. Tonouchi, and H. Shimonishi, “A survey on openflow
technologies,” IEICE Trans. Commun., vol.E97-B, no.2, pp.375–
386, Feb. 2014.

[11] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McK-
eown, “Where is the debugger for my software-defined network?,”
Proc. first workshop on Hot topics in software defined networks,
pp.55–60, 2012.

[12] N.L. Van Adrichem, C. Doerr, and F.A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow software-defined networks,” 2014
IEEE Network Operations and Management Symposium (NOMS),
pp.1–8, 2014.

[13] R.B. Santos, T.R. Ribeiro, and C. de A.C. César, “A network monitor
and controller using only OpenFlow,” 2015 Latin American Net-
work Operations and Management Symposium (LANOMS), pp.9–
16, 2015.

[14] P.H. Isolani, J.A. Wickboldt, C.B. Both, J. Rochol, and L.Z.
Granville, “Interactive monitoring, visualization, and configuration
of OpenFlow-based SDN,” 2015 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pp.207–215, 2015.

[15] W. Wassapon, P. Uthayopas, C. Chantrapornchai, and K. Ichikawa,
“Real-time monitoring and visualization software for OpenFlow net-
work,” 2017 15th International Conference on ICT and Knowledge
Engineering (ICT KE), pp.1–5, 2017.

[16] J. Case, M. Fedor, M.L. Schoffstall, and J. Davin, “RFC1157: Simple
network management protocol (SNMP),” 1990.

[17] P. Phaal, S. Panchen, and N. McKee, “RFC3176: InMon Corpora-
tion’s sFlow: A method for monitoring traffic in switched and routed
networks,” 2001.

[18] S. Kaur, J. Singh, and N.S. Ghumman, “Network programmability
using POX controller,” ICCCS International Conference on Commu-
nication, Computing & Systems, pp.134–148, 2014.

[19] S.H. Warraich, Z. Aziz, H. Khurshid, R. Hameed, A. Saboor, and
M. Awais, “SDN enabled and OpenFlow compatible network perfor-
mance monitoring system,” arXiv preprint arXiv:2005.07765, 2020.

[20] R. Sherwood, G. Gibb, K.K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “FlowVisor: A network virtualiza-
tion layer,” OpenFlow Switch Consortium, Technical Report, vol.1,
p.132, 2009.

[21] H. Yamanaka, E. Kawai, S. Ishii, and S. Shimojo, “AutoVFlow:
Autonomous virtualization for wide-area openflow networks,” 2014
third European workshop on software defined networks, pp.67–72,
2014.

[22] R.L.S. De Oliveira, C.M. Schweitzer, A.A. Shinoda, and L.R. Prete,
“Using Mininet for emulation and prototyping software-defined net-
works,” 2014 IEEE Colombian Conference on Communications and
Computing (COLCOM), pp.1–6, 2014.

[23] K. Ichikawa, P. U-Chupala, C. Huang, C. Nakasan, T.L. Liu, J.Y.
Chang, L.C. Ku, W.F. Tsai, J. Haga, and H. Yamanaka, “PRAGMA-
ENT: An international SDN testbed for cyberinfrastructure in the
Pacific Rim,” Concurrency and Computation: Practice and Experi-
ence, vol.29, no.13, p.e4138, 2017.

[24] “Routing switch,” https://github.com/trema/apps/tree/master/routing
_switch, accessed May 27, 2021.

[25] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A.W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,”
International Conference on Passive and Active Network Measure-
ment, pp.85–95, 2012.

[26] “Cbench: A benchmarking tool for OpenFlow controller,” https://
github.com/mininet/oflops/tree/master/cbench, accessed May 27,
2021.

[27] “Stanford OpenFlow 1.0 reference switch/controller,” https://
github.com/mininet/openflow, accessed May 27, 2021.

Wassapon Watanakeesuntorn received the
B.Eng. degree in computer engineering from
Kasetsart University, Bangkok, Thailand, in
2017 and the M.Eng. degree in information sci-
ence from Nara Institute of Science and Tech-
nology, Nara, Japan, in 2017. In 2019, he was
a visiting scholar at University of California San
Diego and Salk Institute for Biological Studies,
CA, USA. He is currently pursuing the Ph.D.
degree in information science at Nara Institute
of Science and Technology, Nara, Japan. His

research interest includes high-performance computing and networking.

Keichi Takahashi received his M.Sc. and
Ph.D. degrees in information science fromOsaka
University, Osaka, Japan in 2016 and 2019, re-
spectively. In 2018, he was a visiting scholar at
the Oak Ridge National Laboratory, Oak Ridge,
TN, USA. Since 2019, he has been an an as-
sistant professor at the Nara Institute of Science
and Technology, Nara, Japan. His research in-
terests include high performance computing and
parallel distributed computing.

Chawanat Nakasan received his B.Eng. in
Computer Engineering from Kasetsart Univer-
sity, Thailand, in 2012, followed by Master and
Doctor of Engineering degrees from Nara Insti-
tute of Science and Technology, Japan, in 2015
and 2018. He currently works as an assistant
professor at Kanazawa University in Japan, spe-
cializing in cybersecurity, network technology,
and computer science education.

Kohei Ichikawa is an Associate Professor
in the Division of Information Science at Nara
Institute of Science and Technology (NAIST),
Japan. He received his B.E., M.S., and Ph.D. de-
grees from Osaka University in 2003, 2005, and
2008, respectively. He was a postdoctoral fellow
at the Research Center of Socionetwork Strate-
gies, Kansai University from 2008 to 2009. He
also worked as an Assistant Professor at the Cen-
tral Office for Information Infrastructure, Osaka
University from 2009 to 2012. His current re-

search interests include distributed systems, virtualization technologies and
Software Defined Networking.

Hajimu Iida received his B.E., M.E., and
Dr. of Eng. degrees from Osaka University in
1988, 1990, and 1993, respectively. From 1991
to 1995, he worked for the Department of Infor-
mation and Computer Science, Faculty of Engi-
neering Science, Osaka University as a research
associate. Since 1995 he has beenwith the Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology, Japan. His cur-
rent position is a Professor of the Laboratory of
Software Design and Analysis. His research in-

terests include modeling and analysis of software and development process.

http://dx.doi.org/10.1109/wowmom.2014.6918985
http://dx.doi.org/10.1109/wowmom.2014.6918985
http://dx.doi.org/10.1109/wowmom.2014.6918985
http://dx.doi.org/10.1109/wowmom.2014.6918985
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1587/transcom.e97.b.375
http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1145/2342441.2342453
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/noms.2014.6838228
http://dx.doi.org/10.1109/lanoms.2015.7332663
http://dx.doi.org/10.1109/lanoms.2015.7332663
http://dx.doi.org/10.1109/lanoms.2015.7332663
http://dx.doi.org/10.1109/lanoms.2015.7332663
http://dx.doi.org/10.1109/inm.2015.7140294
http://dx.doi.org/10.1109/inm.2015.7140294
http://dx.doi.org/10.1109/inm.2015.7140294
http://dx.doi.org/10.1109/inm.2015.7140294
http://dx.doi.org/10.1109/ictke.2017.8259622
http://dx.doi.org/10.1109/ictke.2017.8259622
http://dx.doi.org/10.1109/ictke.2017.8259622
http://dx.doi.org/10.1109/ictke.2017.8259622
http://dx.doi.org/10.17487/rfc1157
http://dx.doi.org/10.17487/rfc1157
http://dx.doi.org/10.17487/rfc3176
http://dx.doi.org/10.17487/rfc3176
http://dx.doi.org/10.17487/rfc3176
https://arxiv.org/abs/2005.07765
https://arxiv.org/abs/2005.07765
https://arxiv.org/abs/2005.07765
http://dx.doi.org/10.1109/ewsdn.2014.28
http://dx.doi.org/10.1109/ewsdn.2014.28
http://dx.doi.org/10.1109/ewsdn.2014.28
http://dx.doi.org/10.1109/ewsdn.2014.28
http://dx.doi.org/10.1109/colcomcon.2014.6860404
http://dx.doi.org/10.1109/colcomcon.2014.6860404
http://dx.doi.org/10.1109/colcomcon.2014.6860404
http://dx.doi.org/10.1109/colcomcon.2014.6860404
http://dx.doi.org/10.1002/cpe.4138
http://dx.doi.org/10.1002/cpe.4138
http://dx.doi.org/10.1002/cpe.4138
http://dx.doi.org/10.1002/cpe.4138
http://dx.doi.org/10.1002/cpe.4138
https://github.com/trema/apps/tree/master/routing_switch
https://github.com/trema/apps/tree/master/routing_switch
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
https://github.com/mininet/oflops/tree/master/cbench
https://github.com/mininet/oflops/tree/master/cbench
https://github.com/mininet/oflops/tree/master/cbench
https://github.com/mininet/openflow
https://github.com/mininet/openflow

