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PAPER
Bitstream-Quality-Estimation Model for Tile-Based VR Video
Streaming Services

Masanori KOIKE†a), Yuichiro URATA†b), and Kazuhisa YAMAGISHI†c), Members

SUMMARY Tile-based virtual reality (VR) video consists of high-
resolution tiles that are displayed in accordance with the users’ viewing
directions and a low-resolution tile that is the entire VR video and displayed
when users change their viewing directions. Whether users perceive quality
degradation whenwatching tile-basedVR video depends on high-resolution
tile size, the quality of high- and low-resolution tiles, and network condition.
The display time of low-resolution tile (hereafter delay) affects users’ per-
ceived quality because longer delay makes users watch the low-resolution
tiles longer. Since these degradations of low-resolution tiles markedly affect
users’ perceived quality, these points have to be considered in the quality-
estimation model. Therefore, we propose a bitstream-quality-estimation
model for tile-based VR video streaming services and investigate the effect
of bitstream parameters and delay on tile-based VR video quality. Subjec-
tive experiments on several videos of different qualities and a comparison
between other video quality-estimation models were conducted. In this pa-
per, we prove that the proposed model can improve the quality-estimation
accuracy by using the high- and low-resolution tiles’ quantization parame-
ters, resolution, framerate, and delay. Subjective experimental results show
that the proposed model can estimate the quality of tile-based VR video
more accurately than other video quality-estimation models.
key words: tile-based VR, subjective experiment, bitstream-quality-
estimation model

1. Introduction

Virtual reality (VR) video is expected to become more com-
mon due to the increased resolution of recent head-mounted
displays (HMDs) [1], the increase in coding efficiencies
[2], [3], and the widening of networks (e.g., 5G and fiber
optics). However, since a high bitrate is required to provide
high-quality VR video, network traffic is increasing. To pre-
vent generating extremely high bitrates, VRvideos need to be
encoded at a suitable bitrate. To do that, a quality-estimation
model needs to be developed to determine whether VR video
achieves high quality.

To reduce network traffic in VR video streaming, stan-
dardization organizations discussed tile-based VR video
streaming. Omnidirectional MediA Format (OMAF) has
been developed as a tile-based VR video streaming method
[4]. In this streaming, VR video is divided into grid-based
tiles and each tile is encoded at multiple bitrates. User’s
viewing direction tiles are distributed at high bitrates and
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Fig. 1 Tile-based VR video streaming.

other tiles are distributed at low bitrates or are not dis-
tributed. Another method of tile-based VR video streaming
was proposed [5], [6], as shown in Fig. 1. In this streaming,
one high-resolution tile and one low-resolution tile are dis-
tributed from the server. The low-resolution tile represents
the entire VR video and is distributed constantly. Divided
tiles from the entire VR video are encoded at a high resolu-
tion, where high-resolution tiles are slightly overlapped. The
user’s viewing direction is sent from theHMD, and the server
sends a high-resolution tile of the user’s viewing direction
to the HMD. To reduce quality degradation, the method for
optimizing the bitrate of tile-based VR video distribution in
a wireless network is proposed [7], [8]. Zhao et al. [7] re-
duce the re-buffering time by adjusting the coding rate for
each GOP and the transmission rate for each transmission
slot. Guo et al. [8] optimized the transmission time and
power allocation of base station or access point as well as
the encoding rate of each tile to maximize the video quality.

Since the high-resolution tiles are basically displayed
on the HMD, users mainly watch a high-quality video.
However, when users change their viewing directions, they
perceive the upscaling degradations of the low-resolution
tiles because the low-resolution tiles are displayed on their
HMD [9]. In addition, the perceived quality depends on
the display time of the low-resolution tiles (hereafter, de-
lay) [10], [11]. Therefore, the coding artifacts on both high-
and low-resolution tiles, the upscaling degradations of low-
resolution tiles, and delay need to be taken into account in
quality-estimation models.

The quality-estimation models are classified into full
reference (FR), reduced reference (RR), and no reference
(NR) models on the basis of their input. The FR pixel-based
model takes the original and degraded images as input and
can evaluate the impact of video codec and contents on the
quality because it uses both original and decoded images
[12]–[14]. Since the FR pixel-based model uses the video
signals, the model does not need to be optimized/trained per
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codec [15]. However, the FR pixel-basedmodel needs a large
amount of computational power because original and de-
graded videos are used. TheRR pixel-basedmodel takes fea-
tures of the original images and degraded images [16], [17].
The RR pixel-based model does not need to be optimized
per codec. The RR pixel-based model uses a lower amount
of computational power than the FR pixel-based model be-
cause it uses features of the original images that have less
information than the original video. NR pixel-based models
only take the degraded images and evaluate the video quality.
However, NR pixel-basedmodels have not been standardized
due to the lack of quality-estimation accuracy [18], [19]. In
addition, because of the absence of source information, NR
pixel-based models are usually less accurate than the corre-
sponding FR and RR counterparts [15]. On the one hand,
NR bitstream-quality-estimationmodels have been standard-
ized with a good quality-estimation accuracy [20], [21]. The
accuracy of quality estimation is ensured by switching the set
of coefficients of the model for different codecs because NR
bitstream-quality-estimation models need to be optimized
per codec. Since the NR bitstream-quality-estimation model
only needs to parse bitstream, it can estimate the quality with
a small amount of computational power.

To select a suitable bitrate for the tile-based VR video
streaming, it is important to measure quality at the head
end, in which the encoder and streaming server are located
[22]. In this case, the amount of calculation has to be lower
because so many videos are encoded at the same time.

In this paper, to monitor the tile-based VR video at the
head end, a bitstream-quality-estimation model is proposed.
To take into account the coding artifacts on both high- and
low-resolution tiles and delay, the upscaling degradations of
low-resolution tiles, quantization parameter (QP), resolution
of high- and low-resolution tiles, and delay are used as input
of the model. To develop and validate the model, subjective
experiments are carried out. To verify the quality-estimation
accuracy in detail, the proposed model is compared with
several conventional models in terms of accuracy.

The remainder of this paper is organized as follows.
Section 2 provides quality factors about VR videos and re-
lated work about the quality-estimation models of videos.
Section 3 explains our proposed bitstream-quality-estimation
model. Section 4 details the method, conditions, and pro-
cedure of conducted subjective experiments. Section 5 de-
scribes the results of experiments and the estimation accu-
racy of the proposed model. Finally, Sect. 6 concludes our
paper.

2. Related Work

To develop a quality-estimation model for tile-based VR
video, the features/parameters to be used as input for the
model need to be determined. To determine the parame-
ters, quality-influencing factors have to be clarified. Next,
since many quality-estimation models have been proposed
for 2D videos that may be extended to tile-based VR video,
these models have to be investigated. In addition, the issues

that need to be addressed in existing tile-based VR video
quality-estimation models should be summarized.

2.1 Quality-Influencing Factors

To develop a quality-estimation model of tile-based VR
videos, the quality-influencing factors have to be clarified. In
2D video streaming, the relationship between encoded video
quality and many quality-influencing factors (e.g., bitrate,
framerate, resolution, QP, codec [23], and search range of
motion vector [24]) is investigated, and the quality of videos
and bitrate in several conditions are shown.

Similar to 2D video quality, many VR quality-
influencing factors are also investigated. Duan et al. [25]
showed the effect of the combination of bitrate, framerate,
and resolution on VR video quality, and Tran et al. [26]
showed similar characteristics by varying the combination
of QP and resolution. Yang et al. [27] showed the effect of
framerate on VR video quality, and Han et al. [28] showed
the effects of bitrate and resolution. From the perspective of
a network, Fei et al. [29] showed the effects of bitrate, net-
work latency, and packet loss. Singla et al. [30] showed the
effect of resolution, bandwidth, network round-trip latency,
and bitrate on VR video quality. The effect of quality degra-
dation on tile-based VR video has been reported [31], [32],
and the display time of low-resolution tiles has been shown to
affect quality. Van der Hooft et al. [33] indicated the quality
degradation due to switching between viewport tiles. Han et
al. [34] indicated the quality degradation due to stalling and
quality switching in adaptive bitrate streaming, and Fuente et
al. [35] showed the effect of display time of the low-resolution
tiles on tile-based VR video quality.

As discussed above, many quality-influencing factors of
VR videos are clarified. To monitor the quality of encoded
tile-based VR videos at the head end, the parameters from
the bitstream of the tile-based VR videos need to be used,
e.g., bitrate, framerate, resolution, and QP. Those quality-
influencing factors must be considered to make a quality-
estimation model that has high accuracy.

2.2 Quality-Estimation Models

Many quality-estimation models have been proposed in 2D
[20], [21], [36]–[41] and VR videos [42]–[47].

To estimate the 2D video quality, bitstream-quality-
estimation models have been proposed. Takagi et al. [36]
used the inverse of the exponential function of QP, Izumi
et al. [37] used the exponential function of QP, and Keimel
et al. [38] used QP with a motion vector. Anegekuh et
al. [39] used QP and content information extracted frommo-
tion vectors. Also, the Laplacian mixture probability density
function [40], discrete cosine transform (DCT) coefficients
[41], and other parameters are used to estimate 2D video
quality. ITU-T standardized a bitstream-quality-estimation
model for H.264/AVC up to HD video (i.e., the P.1203.1
mode 3 model [20]) and for H.265/HEVC and VP9 up to 4K
video (i.e., the P.1204.3 model [21]). However, these models
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aim to estimate the quality of 2D videos and cannot be used
for estimating the tile-based VR video quality because they
do not consider the impact of low-resolution tiles on quality
and delay.

To estimate VR video quality, several studies have
been conducted. Fremerey et al. [42] described a quality-
estimationmodel using bitrate, framerate, and resolution and
found that it estimated quality with high accuracy. Machine
learning methods are also used to estimate VR videos. An-
war et al. [43] usedQP andKimet al. [44] used resolution and
other parameters related to quality of video for input to ma-
chine learning and proposed quality-estimation models with
machine learning. These papers [42]–[44] show quality-
estimation models for VR videos that are not tile-based VR
and are encoded uniformly, so they did not aim to estimate
the tile-based VR video or consider the degradation caused
by low-resolution tiles. Li et al. [45] showed the quality-
estimation model of tile-based VR over a wireless network
with bitrate, resolution, and other network parameters (i.e.,
stalling or bitrate level switching). R. Schatz et al. [46]
estimated tile-based VR video quality using weighted peak
signal-to-noise ratio (wPSNR), structural similarity index
measure (SSIM), and video multimethod assessment fusion
(VMAF). These papers show the quality-estimation model
of tile-based VR video, but the degradation caused by low-
resolution tiles and delay is not considered. Shaowei et al.
developed a model that takes into account the effects of de-
lay and low-resolution tiles [47]. They showed the tile-based
video quality-estimation model that uses the low-resolution
tile quality degradation with quantization stepsize, spatial
resolution and refinement duration.

In the existing tile-based VR video quality-estimation
model, the degradation caused by low-resolution tiles is
not always taken into account. While changing from low-
resolution tiles to high-resolution tiles, the delay occurs, and
users perceive quality degradation. To take low-resolution
tiles’ quality into account, delay needs to be taken into con-
sideration because delay affects users’ length of time towatch
low-resolution tiles. Therefore, to estimate high- and low-
resolution tiles and to take low-resolution tiles’ quality into
account, we estimate tile-based VR video quality with high-
and low-resolution tiles’ QP, resolution, and delay.

2.3 Comparative Models

Among the quality-estimation models described in Sect. 2.2,
promising models that can be extended to tile-based VR
video are described in detail. We choose three bitstream-
quality-estimation models [21], [39], [47], which are used to
estimate video quality using bitstream.

The first model is that of Anegekuh et al. [39]. This
model shows a 2D video quality-estimation model using
bits per frame and non-zero motion vectors. In this model,
temporal complexity is extracted from the ratio of non-zero
motion vectors, and spatial complexity is extracted from QP
and the number of bits of B and I frames. In each content,
content type (CT) is calculated by this temporal and spatial

complexity. CT is calculated as follows:
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In this equation, α is the coefficient and BitsI and BitsP
are the numbers of coded I-frame and P-frame bits. To
normalize bits, BitsI and BitsP are divided by the maximum
possible number of bits in a video frame Maxbits . L and
S represent the number of I and P frames, and M and N
denote the number of B and P frames, respectively. MVnz

MVc

represents the ratio of non-zero motion vectors MVnz to the
total number of counted motion vectors MVc per picture.

Mean opinion score (MOS) with a 5-point absolute cat-
egory rating (ACR) scale is calculated with a logarithmic
relationship with CT and linear relationship with QP as fol-
lows:

MOS = α + β × (QP) + γ × ln(CT) (2)

The second model is ITU-T P.1204 model [21]. ITU-T
standardized a bitstream-quality-estimation model for 2D-
UHD video and this model was verified by using many sub-
jective data. This model has two parts: parametric and
machine learning. The parametric part takes the display
and encoded resolution, framerate, and QP as input and can
be used for estimating the quality with a 5-point ACR scale.
In this part, quantization degradation Dq, upscaling degrada-
tion Du, and temporal degradation Dt are calculated with QP
(quant), display, encoded resolution, and framerate, respec-
tively. The overall MOS of the parametric part Mparametric is
calculated as follows:

Dq = 100 −max(min(q1 + q2 × exp(q3 × quant
+ q4)),1), (3)

Du = max(min(x × log (y × scaleFactor ) 100),0),
(4)

Dt = z × log(k × framerate_scale_factor), (5)

scaleFactor = max
(
display_res
coding_res

,1
)
, (6)

framerate_scale_factor =
codingframerate

60
, (7)

D = Dq + Du + Dt, (8)
Mrandomforest = MOS f romR(100 − D), (9)

where q1-q4, x, y, z, k are coefficients.
Overall quality is calculated by using the weighted av-

erage of parametric part MOS and machine learning part
MOS. In the machine learning part, Residual estimated by
the parametric part and subjective quality (i.e., residual qual-
ity) is calculated by random forest regression. The output
MOS of the machine learning part Mrandomforest and overall
quality Q are calculated as follows:
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Mrandomforest = Mparametric + Residual, (10)
Q = w1 × Mparametric + w2 × Mrandomforest, (11)

where coefficients are w1 = 0.5 and w2 = 0.5.
These two models are for estimating the quality of 2D

video. Since these 2D video quality-estimation models do
not take parameters of high- and low-resolution-tile video as
input, the averages of all parameters of the high- and low-
resolution tiles (i.e., the QP of equation (2) and quant of
equation (3) is the average of the two values: averages of all
high-resolution tiles’ QP and low-resolution tiles’ QP) are
used as the input of these models.

The third model is the Shaowei model [47], in which
the quality of low-quality tiles and delay are considered. The
overall quality Q is calculated as follows:

Q = QHst · QNQQT(τ,ql) · QNQST(τ, sl), (12)

where QHst is the highest quality in the experiment and τ is
delay. sl is the low-resolution tile resolution, and ql is quan-
tization stepsize. The normalized quality of QP impact with
respect to the delay is denoted as NQQT, and the normalized
quality of resolution impact is denoted as NQST. If the delay
is zero, users can always watch high-quality tiles, so NQQT
and NQST are 1. Therefore, QNQQT(τ,ql) and QNQST(τ, sl)
are calculated as follows:

QNQQT(τ,ql) = a(ql) · e−b(ql )·τ + (1 − a(ql)), (13)

QNQST(τ, sl) = a(sl) · e−b(sl )·τ + (1 − a(sl)), (14)

where a(ql), b(ql), a(sl), and b(sl) are coefficients. The
separable response of the ql- and sl-impact on the perceptual
quality are consideredwith respect to the delay. In this paper,
the parameters of a(ql) and b(ql) are calculated as follows:

a(ql) =
kaq1

1 + kaq2 · q
kaq3
l

, (15)

b(ql) =
kbq1

1 + kbq2 · q
kbq3
l

, (16)

where kaq1, kaq2, kaq3, kbq1, kbq2, and kbq3 are coefficients.
The parameters of a(sl) and b(sl) are calculated as follows:

a(sl) = kas1 · e−kas2 ·sl + kas3, (17)

b(sl) = kbs1 · e−kbs2 ·sl + kbs3. (18)

3. Proposed Model

This section describes the proposed bitstream-quality-
estimation model that uses the quality of high- and low-
resolution tiles and delay to estimate the quality of tile-based
VR video.

3.1 Structure of Proposed Model

To develop a bitstream-quality-estimation model for tile-
based VR video streaming, both high- and low-resolution

Fig. 2 Block diagram of proposed model.

tiles’ quality needs to be taken into account. Therefore, in
calculating quality of tile-based VR videos, three points are
important.

• The quality of high-resolution tiles on the quality.
• The effect of resolution increase of low-resolution tiles
on quality.

• The effect of delay (the display time of the low-
resolution tiles) on the quality.

A block diagram of the proposed model is shown in
Fig. 2. From the video bitstream, resolution, framerate, and
QP of the high- and low-resolution tiles are extracted. In
each quality-estimation part, high- and low-resolution tiles’
quality are calculated, and the output quality of each tile is
inputted into the integration module. In the integration mod-
ule, overall MOS is calculated by high- and low-resolution
tiles’ quality. In this module, to take into account changing
viewing directions, delay and resolution are inputted. Since
delay is not constant, we estimate average delay calculated
from the settings of the tile-based VR video, such as the
chunk size of the tile-based VR video and the switching time
of high-resolution tiles.

3.2 Quality-Estimation Module of High- and Low-
Resolution Tiles

First, the quality of high- and low-resolution tiles MOS(H ,L)
is calculated. In our proposed model, the suffixes H and
L represent the information of the high- and low-resolution
tiles, respectively. To determine the maximum quality for
each framerate and resolution, we introduce X(H ,L), which
is determined by framerate and resolution. The maximum
MOS X(H ,L) increases if the resolution or framerate in-
creases. Lower QP makes video quality higher and MOS
saturate at X(H ,L), and higher QP makes lower quality and
MOS saturate at 1. To express these characteristics, we use
these equations to calculate the quality of high- and low-
resolution tiles as follows:

X(H ,L) =
4 ×

(
1 − exp

(
−v3(H ,L) × r

) )
× s

v2(H ,L) + s
+ 1, (19)
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Y(H ,L) =
s

v4(H ,L)
+ v5(H ,L) × log10

(
v6(H ,L) × r + 1

)
,

(20)

MOS(H ,L) = X(H ,L) +
1 − X(H ,L)

1 +
(
QP(H ,L)
Y(H ,L)

)v1(H ,L)
. (21)

In these equations, r represents the framerate of the
video, s represents the resolution of the tile, which is the
number of pixels per frame (i.e., width × height), and v1 − v6
are coefficients of the model. QP is the average QP of P and
B frames in block units on overall frames. The parameter
Y(H ,L) represents the inflection point of the graph of QP
versus MOS.

3.3 IntegrationModule of High- and Low-Resolution Tiles
Quality

As described previously, when users change viewing direc-
tions while watching a tile-based VR video, users watch
a low-resolution tile. Since the low-resolution tiles are
enlarged, users perceive quality degradation of the low-
resolution tiles. The ratio of users viewing low-resolution
tile time to users viewing high-resolution tile time is af-
fected by the percentage of the HMD display area occupied
by high-resolution tiles and delay. To take these perspectives
into account, we introduce the parameter ocr , which repre-
sents the percentage of the HMD display occupied by high-
resolution tiles. We also introduce the parameter delay,
which represents delay in switching from high-resolution
tiles to low-resolution tiles. The overall quality of tile-based
VR video is calculated as follows:

MOS = a × MOSH + (1 − a) × MOSL, (22)

where the coefficient a is the ratio that determines the quality
of the high- and low-resolution tiles and a is expressed as
follows:

a = v7 × delay−v8 + v9 × ocr, (23)

ocr = min
(

ResH
ResHMD

,1
)
, (24)

where v7−v9 are coefficients. ResH is the resolution of high-
resolution tiles, and ResHMD is the resolution of the HMD
display. In this experiment, the resolutions of high- and low-
resolution tiles are the same. Equation (23) shows shorter
delay and larger ocr make the parameter a larger, so the ratio
of high-resolution tiles becomes larger and the percentage of
high-resolution tiles in the overall MOS becomes larger.

4. Subjective Experiment

This section describes subjective experiments. We con-
ducted subjective experiments by varying the quality degra-
dations of high- and low-resolution tiles and delay. To check
the accuracy of the proposed model, two experiments were
carried out: one is used as training data and the other as test

Fig. 3 Experiment 1 SRCs.

Fig. 4 Experiment 2 SRCs.

data. The procedure and settings of these experiments are
shown in this section.

4.1 Source Reference Circuits

Twelve source videos, also called source reference circuits
(SRCs), are used in two experiments. The duration of SRC
was 20 seconds. Six SRCs are assigned to each of the two
experiments. Figures 3 and 4 show the SRCs of experiments
1 and 2, and the details of videos are shown in Table 1. The
resolution of source videos was 7680 × 3840/30 fps (chroma
sampling: 4:2:0). SRCs were characterized in terms of their
spatial information (SI) and temporal information (TI) [48].
In terms of calculating 360° equirectangular VR video SI
and TI, the distortion and warping of the video pole have to
be considered. To determine the average feature of SRCs,
the average SI and TI of all frames in SRCs are calculated
in the spherical domain [49], [50]. Figures 5 and 6 show
the spherical SI and TI in both experiments, and the SRCs
are found to have different motions and edge features. For
watching VR video naturally, the stereo channel audio was
used in this experiment.



KOIKE et al.: BITSTREAM-QUALITY-ESTIMATION MODEL FOR TILE-BASED VR VIDEO STREAMING SERVICES
1007

Table 1 Details of SRCs used in experiments.
Experiment SRC Type of contents
1 church In a church, little motion and many

colors
soccer Penalty kick practice, a lot ofmotion
dance Three women dance orbiting around

the camera, a lot of motion
drive Video from inside a car driving on

a highway
waterfall A scene of a waterfall, and the

splash has detailed textures
flower A scene of a flower garden, little

motion and detailed textures
2 river A scene of a river, with the water

surface vibrating
crane A man is operating a crane, it is

moving slightly
sea A scene of the sea, the wave have

detailed textures
car A video from inside a car in a forest
live A man is playing guitar in a studio,

with few motions
flower2 A scene of a flower park, little mo-

tion and detailed textures

Fig. 5 SI and TI of SRCs in experiment 1.

Fig. 6 SI and TI of SRCs in experiment 2.

4.2 Experimental Conditions

To verify the effect of high- and low-resolution tiles pa-
rameters and delay on subjective quality, resolution, bi-
trate, and delay are varied as experimental conditions, also
called hypothesis reference circuits (HRCs). To encode
from 360° videos to tile-based VR videos, a tiled-based

Fig. 7 Tile-based VR video.

Table 2 HRC in Experiment 1.
High/Low bitrate (Mbps) Delay Resolution
40/20 1 960
2/1 3 960
10/2.5 5 960
40/20 10 960
40/20 1 1280
2/1, 10/10 3 1280
2/2, 40/20 5 1280
40/10, 2/1 10 1280
40/40, 10/10, 2/2, 40/20, 10/5, 1 192040/10, 10/2.5, 2/1, 2/0.5
2/0.5 3 1920
10/5, 40/10 5 1920
10/2.5, 2/2 10 1920
40/20 1 3840
40/10 3 3840
40/40 5 3840
10/5 10 3840

Table 3 HRC in Experiment 2.
High/Low bitrate (Mbps) Delay Resolution
6/2 1 960
30/30, 6/4 2 960
40/30 4 960
20/5, 4/0.5 8 960
8/4 2 1280
4/2 4 1280
20/20, 20/8 6 1280
40/10, 30/20 8 1280
6/3, 2/0.5 10 1280
20/10, 10/6, 10/2, 4/1 1 1920
4/2 4 1920
8/8, 4/0.5 6 1920
10/8, 6/2 8 1920
30/30, 30/10 10 1920
20/10, 8/2, 2/1 1 2560
30/10, 4/4 2 2560
40/20, 8/6 4 2560
4/1 6 2560
8/6 10 2560
40/5, 30/5, 8/8, 2/1 1 3840
2/0.5 2 3840
20/15,10/10,2/2 6 3840
10/4 10 3840

encoding [5] was used, as shown in Fig. 7. SRCs were en-
coded by FFmpeg encoder v3.0, and all tiles were encoded
by H.265/high-efficiency video coding (HEVC) (Main Pro-
file/Level 5, GOP: M = 3, N = 15). The segment size was
set to 0.5 seconds, and the chroma sampling was 4:2:0.

High and low bitrates, delay, resolution of the experi-
ments are shown in Tables 2 and 3. These tables show the
high/low bitrate pairs, delay, and resolution. Several bitrate
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pairs are listed in the several rows of the bitrate column. This
means that each bitrate pair is used to encode at the listed
delay and resolution in the row.

High-resolution tiles are encoded at 9 bitrate levels be-
tween 2 and 40Mbps, and low-resolution tiles are encoded at
10 bitrate levels between 0.5 and 40Mbps. Resolution condi-
tions are as follows: 3840× 3840, 2560× 2560, 1920× 1920,
1280 × 1280, and 960 × 960, where 2560 × 2560 is used in
experiment 2 only. The high-resolution tiles are not down-
converted and display the original resolution. The framerate
of the tile-based VR video was 30 fps. The high-resolution
tiles were divided into 5 × 12 tiles (except for 3840 × 3840),
and 1 × 12 tiles (3840 × 3840)). All high-resolution tiles
are overlapped by blocks, as shown in Fig. 7 to avoid quality
degradation due to small changes in the user’s viewing direc-
tion. All high-resolution tiles are arranged at equal intervals
over the entire horizontal or vertical space, and the degree of
overlap depends on the resolution. The number of pixel of
horizontal direction overlap is (tilesize_pixel×12−7680)/12,
where tilesize_pixel represents resolution i.e., 3840, 2560,
1920, 1280 or 960 in this experiment. The number of pix-
els of vertical direction overlap (except for 3840 × 3840) is
(tilesize_pixel×4−3840)/5 because the tiles on both ends are
connected, but the tiles on the top and bottom rows are not
connected. The low-resolution tile consists of one tile and is
encoded at the same resolution as high-resolution tiles. Then
the low-resolution tile was enlarged to the original resolution
(i.e., 7680 × 3840) at the HMD to display the 360° videos,
so the low-resolution tile was degraded by upscaling.

Audio was encoded by AAC-LC. Bitrate and sampling
rate were 128 kbps and 48 kHz, respectively.

Delay conditions are 1 to 10 seconds (1, 3, 5, and 10
seconds in experiment 1 and 1, 2, 4, 6, 8, and 10 seconds in
experiment 2). When users change their viewing directions,
HMD sends it to the server and the server distributes the
new high-resolution tile. Delay is inserted when the server
sends the new high-resolution tile. The minimum delay is 1
second because it takes about 1 second to reflect the viewing
direction.

Each HRC is assigned 1 or 2 SRCs and in total, 96 (Ex-
periment 1) and 99 (Experiment 2) videos were generated,
which are called processed video sequences (PVSs). To de-
termine the relationship of MOS between experiments 1 and
2, 9 anchor videos are used in both experiments. The anchor
conditions and SRCs are shown in Table 4.

4.3 Subjective Experiment Environment and Procedures

In this section, we explain the method and environment. The
experimental system is shown in Fig. 8, where the distri-
bution server sends high- and low-resolution tiles. During
the experiment, participants sat on a revolving chair, were
instructed that they could change viewing directions, and
watched the 360° videos freely by rotating the chair. Partic-
ipants used Vive Pro, which is a VR headset with two rect-
angular glasses-like screens (1440 × 1600 each), to watch
tile-based VR videos. For watching VR video naturally, the

Table 4 Anchor PVSs.
High/Low bitrate (Mbps) Delay Resolution SRC
2/2 10 1280 church
2/2 1 1920 soccer
10/10 1 1920 waterfall
40/40 1 1920 church
2/0.5 3 1920 flower
10/2.5 10 1920 dance
40/20 10 1920 drive
40/10 3 3840 waterfall
10/5 10 3840 soccer

Fig. 8 Distribution system.

stereo channel audio was used, where a comfortable audio
listening level was selected by them and the audio volume
was not changed during the experiment. Therefore, the au-
dio volume is the same between the PVSs that are the same
SRCs.

Before conducting these subjective experiments, partic-
ipants read the instructions to understand the procedure and
the objective of the subjective experiment. In addition, par-
ticipants were told that video quality needs to be evaluated
by not taking into account audio quality. After taking visual
acuity and color vision tests, participants took a practice
session in which they were told how to wear the HMD and
the method to evaluate PVSs. After this explanation, par-
ticipants watched 20-second test videos 6 times. Between
videos, participants scored the video with a 5-point ACR
method using a controller displayed on the HMD. Three
seconds after scoring, the next PVS started.

After participants learned the procedure and method
to evaluate videos in the practice session, the test session
started. Participants watched 20-second PVSs 6 times in 1
session that lasted about 3.5 minutes. Three seconds after
participants had scored, the next PVS started. There were 2-
minute breaks between sessions, and 5- to 10-minute breaks
every 3 to 4 sessions.

The total experiment lasted about 150 minutes, includ-
ing visual acuity and color vision tests, instruction, tests, and
breaks. The presentation order of the PVSs was randomized.

4.4 Participants

In each experiment, 36 participants passed visual acuity and
color vision tests. In experiment 1, participants were 18
males and 18 females ranging from 18 to 31 years old, with
an average age of 21.0. In experiment 2, participants were
18 males and 18 females ranging from 18 to 25 years old,
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Fig. 9 Anchor PVSs MOS.

with an average age of 20.9.

5. Results

This section describes the experimental results, and the accu-
racy of the proposed quality-estimation model is compared
with those of other video estimation models explained in
Sect. 2.

5.1 Anchor PVS Analysis

First, to make sure that the bias between the two experi-
ments was small, we confirmed anchor PVSs’ MOSs. An-
chor PVSs’ MOSs between experiments 1 and 2 are shown
in Fig. 9. In Fig. 9, anchor PVSs’ MOSs are almost lined up
on a 45-degree line and have a strong relationship between
the two experiments. Therefore, we use the original MOS
when we cross-validate between experiments 1 and 2.

5.2 Quality-Estimation Accuracy

In Sect. 2, the effects of low-resolution tile and delay are
stated. To evaluate the validity of the proposed model with
the low-resolution tile parameters and delay, the quality-
estimation accuracies of the models with and without these
parameters are calculated. We compared four models by
calculating their accuracies:

Model 1 With high-resolution tile parameters
Model 2 With mean of high- and low-resolution tile param-

eters
Model 3 With high- and low-resolution tile parameters with

weighed coefficients
Model 4 With high- and low-resolution tile parameters and

delay with weighed coefficients

All models used resolution, framerate, and QP as in-
put, and we optimized the coefficients of each model us-
ing the subjective quality data, respectively. Model 1 uses
high-resolution tiles’ QP but not low-resolution tiles’ QP
and optimizes v1(H) − v6(H). Model 2 uses averaged high-

Table 5 Estimation results: training data is experiment 1 and test data is
experiment 2.

Training (Experiment 1) Test (Experiment 2)
Models RMSE PCC SROCC RMSE PCC SROCC
Model 1 0.401 0.899 0.894 0.536 0.760 0.782
Model 2 0.349 0.924 0.927 0.456 0.835 0.848
Model 3 0.282 0.951 0.948 0.443 0.843 0.840
Model 4 0.241 0.965 0.964 0.350 0.905 0.906

Table 6 Estimation results: training data is experiment 2 and test data is
experiment 1.

Training (Experiment 2) Test (Experiment 1)
Models RMSE PCC SROCC RMSE PCC SROCC
Model 1 0.472 0.819 0.843 0.462 0.868 0.897
Model 2 0.391 0.880 0.891 0.406 0.920 0.919
Model 3 0.355 0.902 0.904 0.341 0.929 0.932
Model 4 0.289 0.936 0.939 0.316 0.940 0.944

and low-resolution tiles’ QP, i.e., uses (QPH+QPL )
2 and op-

timizes v1(H) − v6(H). Model 3 uses both high- and low-
resolution tiles’ QP but not delay, so v8 = 0, and it opti-
mizes v1(H ,L) − v6(H ,L), v7, v9. Model 4 uses high- and low-
resolution tiles’ QP and delay and optimizes all coefficients,
v1(H ,L) − v6(H ,L), v7 − v9. These coefficients are optimized
using the least-squares method by curve fitting with Python
Version 3.4.9. In each experiment, we optimized the co-
efficients as training data. Also, to determine the effect of
training data, we conducted cross-validation with each ex-
periment. Tables 5 and 6 show the relationship between
estimated MOS and subjective MOS for each tile-based VR
video using optimized coefficients. The left side of Table 5
shows the results of Experiment 1 as training, and the right
side shows the results of using Experiment 1 as the training
data and validating it with Experiment 2. Similarly, the left
side of Table 6 shows the results of Experiment 2 as train-
ing, and the right side shows the results of using Experiment
2 as the training data and validating it with Experiment 1.
Root mean square error (RMSE), Pearson correlation coef-
ficient (PCC) and Spearman’s rank-order correlation coeffi-
cient (SROCC) between subjectiveMOSand estimatedMOS
are shown. As shown in Tables 5 and 6, quality-estimation
accuracy was improved by applying low-resolution tiles’ QP
and delay to the proposed model.

5.3 Comparison with Other Comparative Models

To evaluate the performance of the proposedmodel, we com-
pared the results of the proposed model and other quality-
estimation models [21], [39], [47] explained in Sect. 2.3. To
apply these 2D quality-estimation models [21], [39] to a tile-
based VR quality-estimation model, resolution, framerate,
and the average of high- and low-resolution tiles’ QP are
used as input of the models. In other words, the input QP of
these models is the average of two parameters: the averages
of 60 high-resolution tiles’ QP and 60 low-resolution tiles’
QP. To apply the Shaowei model as a comparative model, we
convert the quantization parameter into quantization step-
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size as q = 2
QP−4

6 , and QHst to our experiment’s highest
quality. Tables 7 and 8 compare the test data results be-
tween the proposed model and other models. Each model
is cross-validated, i.e., training data is experiment 1 and test
data is experiment 2, and training data is experiment 2 and
test data is experiment 1. Performance values for all mod-
els are given in these tables. According to these tables, the
RMSEs of the proposed model are 0.350 and 0.316, which
are the best scores of all models. These results show that
the proposed model can estimate the tile-based VR video
accurately. By introducing low-resolution tile weighting and
delay, the proposed method can estimate quality with higher
accuracy than the P.1204 and Anegekuh models. Also, the
proposed model is found to have the better quality estimation
accuracy in terms of RMSE and PCC than the model that
considers low-resolution tile and delay [47]. Since the orders
of estimated quality and subjective quality of the proposed
model are different especially in SRC of dance and flower,
its SROCC is slightly worse than the that of Shaowei model.
However, the difference in SROCCbetween the proposed and
Shaowei models was small. Therefore, the proposed model
can be concluded to have a good quality estimation accu-
racy because it has better RMSE and PCC than the Shaowei
model.

5.4 Discussion of Estimation Accuracy for SRCs

To check the accuracy of estimated quality for each SRCs,
we compared the actual and estimated MOSs for each SRCs.
Figures 10 and 11 show the estimated MOS and subjective
MOS for test datasets using the proposed model. Figure 10
shows the test data results of Experiment 2 with Experiment
1 as training, and Fig. 11 shows the test data results of Ex-
periment 1 with Experiment 2 as training. These figures
are color-coded by SRCs. As indicated in Figs. 10 and 11,
the tendency of estimation accuracy is different from that
of SRCs. To clarify the video effect of video prosperities,
such as motion and complexity of the video, we checked
the relationship of SI, TI and difference between the esti-
mated MOS and the subjective MOS (deltaMOS), as shown
in Fig. 12. DeltaMOS represents estimated MOSminus sub-
jectiveMOS, so larger deltaMOS indicates that the proposed
model overestimates MOS. The vertical axis in Fig. 12 is the
averaged deltaMOS over PVSs of the same SRC. These fig-
ures show that the estimated MOS tends to be higher when
the TI is large. In these high TI SRCs, quality is degraded
due to movement that is not fully captured by QP. On the
other hand, the estimated MOS of the crane is lower than the
subjective MOS. This SRC has low SI and TI, and colors are
more monotonous than in other SRCs, and participants had
slight difficulty perceiving the tile-based VR video degrada-
tion. In this experiment, the effect of SI on quality differs
from experiment 1 and 2, so the effect could not be deter-
mined. The effect of SI on quality needs to be clarified in
more detail by conducting experiments using a large number
of SRCs. In this study, pixel information is not used, and
TI of the tile-based VR video cannot be used. However, it

Fig. 10 Estimation results: training data is experiment 1 and test data is
experiment 2.

Fig. 11 Estimation results: training data is experiment 2 and test data is
experiment 1.

Table 7 Comparison between proposedmodel and othermodels: training
data is experiment 1 and test data is experiment 2.

Model RMSE PCC SROCC
Proposed model 0.350 0.897 0.884
P.1204 model 0.455 0.836 0.837

Anegekuh model 0.541 0.769 0.682
Shaowei model 0.397 0.889 0.891

Table 8 Comparison between proposedmodel and othermodels: training
data is experiment 2 and test data is experiment 1.

Model RMSE PCC SROCC
Proposed model 0.316 0.939 0.938
P.1204 model 0.466 0.861 0.872

Anegekuh model 0.536 0.859 0.707
Shaowei model 0.333 0.933 0.940

is considered that the accuracy of the quality estimation can
be improved by using detailed information such as motion
vectors from the bitstream to estimate the degree of motion
of the tile-based VR video.

6. Usage of Proposed Model

This section describes how to use the proposed model. To
select a suitable bitrate for tile-based VR video streaming,
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Fig. 12 SI and TI vs. deltaMOS.

the bitrate and quality need to be checked at the same time.
If low-quality content is found, the quality is improved by
increasing the bitrate. Concretely, a content is encoded at
several bitrates and the quality is calculated by the proposed
model. Then, the relationship between bitrate and quality
is obtained. By using this relationship, a suitable bitrate is
found on the basis of the service providers’ desired quality.

7. Conclusion

Tomonitor tile-based virtual reality (VR) video quality at the
head end, we proposed a bitstream-quality-estimationmodel,
which uses high- and low-resolution tiles’ quantization pa-
rameter (QP), resolution, and delay. To validate our proposed
model, two subjective experiments were performed. First
we found that the proposed model accuracy was improved
by introducing the parameters of high- and low-resolution
tiles, resolution, and delay. Then the quality-estimation
accuracy was compared between the proposed model and
other quality-estimation models used in quality estimation.
The coefficients of each model were optimized, and the re-
sults were cross-validated between two experiments. The
results revealed that the proposed model can estimate tile-
based VR video quality more accurately than other video
quality-estimate models. Quality-estimation accuracy of the
proposed model is improved by using low-resolution tiles’
QP and delay. Also the results suggest that the proposed
model can estimate the quality with high accuracy between
the training and test datasets.

The purpose of the proposed model is to estimate tile-
based VR video coding quality. However, if this model
is to be used for monitoring session quality of tile-based
VR video, something like the long-time model on P.1203 is
needed. In future work, to improve the quality-estimation

accuracy, we will introduce detailed information such as
motion vectors from the bitstream. To check the effect of
SI on the tile-based VR video quality, experiments with
many SRCs have to be conducted. To investigate how audio
quality affects tile-based VR video quality, audio quality will
be changed in the future experiments.
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