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Energy-Efficient KBP: Kernel Enhancements for Low-Latency and
Energy-Efficient Networking

Kei FUJIMOTO†a), Ko NATORI†, Masashi KANEKO†, and Akinori SHIRAGA†, Members

SUMMARY Real-time applications are becoming more and more pop-
ular, and due to the demand for more compact and portable user devices,
offloading terminal processes to edge servers is being considered. Moreover,
it is necessary to process packets with low latency on edge servers, which
are often virtualized for operability. When trying to achieve low-latency
networking, the increase in server power consumption due to performance
tuning and busy polling for fast packet receiving becomes a problem. Thus,
we design and implement a low-latency and energy-efficient networking
system, energy-efficient kernel busy poll (EE-KBP), which meets four re-
quirements: (A) low latency in the order of microseconds for packet for-
warding in a virtual server, (B) lower power consumption than existing
solutions, (C) no need for application modification, and (D) no need for
software redevelopment with each kernel security update. EE-KBP sets a
polling thread in a Linux kernel that receives packets with low latency in
polling mode while packets are arriving, and when no packets are arriving,
it sleeps and lowers the CPU operating frequency. Evaluations indicate that
EE-KBP achieves microsecond-order low-latency networking under most
traffic conditions, and 1.4× to 3.1× higher throughput with lower power
consumption than NAPI used in a Linux kernel.
key words: low latency, energy efficient, high throughput, network, kernel,
virtual machine

1. Introduction

Real-time applications, such as virtual reality (VR), online
gaming, remote controlled drones, and self-driving cars, are
becoming more and more popular. These real-time applica-
tions require low latency in the order of milliseconds (ms) to
microseconds (µs) [1]–[4]. Due to these high real-time re-
quirements, each applications is often installed and executed
on the same terminal device. However, it is not desirable
to process heavy workloads on the terminal device due to
the requirements for smaller size and longer battery life. To
meet these requirements, the European Telecommunications
Standards Institute (ETSI) has proposed multi-access edge
computing (MEC) [5], which enables a terminal device to
offload these workloads to an edge cloud located near the
terminal device. From the perspective of capital expenditure
and ease of operation, those edge clouds are often imple-
mented by general-purpose servers and use virtual servers
such as virtual machines (VMs) and containers. However,
packet forwarding from a network interface card (NIC) to an
application in a virtual server on a general-purpose server
brings performance problems of longer latency and lower
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throughput due to virtualization overhead [6]–[9]. Indeed,
according to our experimental results, packet-forwarding de-
lays in a VM can easily exceed 1ms [10]. Thus, packet-
forwarding delays in a virtual server needs to be reduced at
least to the order of µs.

Power consumption of edge cloud servers also needs to
be considered. To achieve low latency, performance tunings
for servers are required, such as fixing the central processing
unit (CPU) frequency at maximum and disabling the idle
function of a CPU (C-state) [10], [11]. These tunings lower
the latency at the cost of higher server power consumption.
There is a trade-off between low latency and power saving.
Even if the increase in power consumption per server seems
small, such as a few watts, the result will be a huge increase
in power consumption given the sheer number of servers.
Thus, the power consumption of the server should be as low
as possible.

When designing a low-latency networking solution for a
virtual server, four requirements should be considered. (A):
Low latency in the order of µs for packet forwarding in a
virtual server. (B): Lower power consumption than existing
solutions. (C): No need for application modification. From
an application developer’s viewpoint, it is desirable for appli-
cation developers to use a low-latency networking solution
without application modification. Application developers
can easily use networking functions via the POSIX sockets
application program interface (API) [12] since Linux ker-
nel provides a protocol stack that includes internet protocol
(IP), user datagram protocol (UDP), and other popular pro-
tocols. If a low-latency networking solution requires special
network functions, application developers will need to ac-
quire complicated network expertise, and this will increase
the cost of application development. (D): No need for soft-
ware redevelopment for each kernel security update. Since
kernel security updates occur frequently, the cost of rede-
veloping software for each kernel security update would be
enormous. From a service provider’s viewpoint, it is desir-
able for service providers to apply kernel security updates
without redeveloping software of a low-latency networking
solution.

We thus designed and implemented a low-latency and
energy-efficient networking system, energy-efficient kernel
busy poll (EE-KBP), which meets requirements (A), (B),
(C), and (D). This EE-KBP has polling threads that con-
stantly check for packets arriving in a kernel and immedi-
ately transfers them to a kernel network protocol stack to
meet requirement (A). This is the same as KBP [10]. The
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base system, KBP, cannotmeet requirement (B) since polling
threads constantly check the arrival of packets, regardless of
whether packets arrive or not, and this consumesmore power.
Thus, EE-KBP extends KBP to achieve lower power con-
sumption by controlling to sleep polling threads. Sleeping
polling threads is challenging since the overhead of recov-
ering from sleep increases tail delays of packet forwarding.
EE-KBP minimizes this negative effect by waking up the
sleeping polling thread when a hardware interrupt request
(hardIRQ) is triggered by a packet arrival. In addition, to
increase the power-saving effect of putting polling threads to
sleep, EE-KBP dynamically controls the CPU frequency of
CPU cores used by polling threads. These extensions enable
requirements (A) and (B) to be met simultaneously. Since
EE-KBP uses an existing kernel protocol stack and does not
change it, applications can use the POSIX sockets API, and
this meets requirement (C). Furthermore, since the changes
caused by these extensions are small, they can be applied to
the existing kernel by a kernel livepatch framework [13], and
this meets requirement (D).

The rest of this paper is organized as follows:

• Analysis of how to combine low latency and power
saving: we analyze packet forwarding methods that
simultaneously achieve low latency and power saving
(see Sect. 3);

• Design and implementation of EE-KBP: we design and
implement a low-latency and energy-efficient network-
ing system (see Sect. 4);

• Demonstration of the benefits of EE-KBP: our exper-
imental results indicate that EE-KBP can improve en-
ergy efficiency, reduce packet-forwarding delay on the
µs-scale, and achieve high throughput in a VM config-
uration (see Sect. 5).

2. Related Work

Linux kernel uses an interrupt-mode packet-receiving
method. When a NIC receives a packet, the NIC triggers
a hardIRQ to notify a kernel of the packet arrival. After
this, a software interrupt request (softIRQ) is scheduled for
subsequent protocol processing. Since hardIRQs have high
priority, when a hardIRQ occurs, a process running on a
CPU core is stopped, and work in progress is evacuated to
the memory area, so this overhead is significant. When the
packet arrival frequency is high, many hardIRQs are gen-
erated, and the overhead caused by the hardIRQs results in
performance degradation. To overcome this problem, New
API (NAPI) [14], adopted from a newer version of kernel
2.4.20, uses a hybrid method of an interrupt mode and a
polling mode. When the packet arrival frequency is high,
NAPI suppresses hardIRQs and a kernel thread polls a re-
ceiving buffer. However, subsequent protocol processing is
performed in a softIRQ context. NAPI cannot avoid softIRQ
competition and ms-scale delays [10], thus NAPI cannot
meet requirement (A).

The Data Plane Development Kit (DPDK) [15] pro-

vides a polling-mode packet-receiving framework. Polling
threads in user space constantly check for packets arriving
and immediately transfer them to a user program. Since
the DPDK bypasses a kernel protocol stack and does not
generate any interrupts, it can achieve low latency. How-
ever, since polling threads in user space constantly check for
packet arrivals regardless of whether packets arrive or not,
this method consumes more power and cannot meet require-
ment (B). In addition, to use the DPDK, a function of polling
and network protocol functions, such as layer 2 (L2) / layer 3
(L3) / layer 4 (L4), needs to be integrated to a user program.
Thus, the DPDK cannot meet requirement (C).

l3fwd-power [16] is a DPDK sample application for
low power consumption. l3fwd-power provides multiple
application modes. In APP_MODE_INTERRUPT, l3fwd-
power uses a hybrid packet-receiving method of an interrupt
mode and a polling mode. When no packets arrive dur-
ing 10 consecutive polling cycles, the polling interval is
made sparse by putting a pause instruction in the polling
loop. After that, when no packets arrive during 300 con-
secutive polling cycles, the polling thread is put into sleep.
When a packet arrives after the polling thread has entered
sleep state, eventfd calls up the polling thread and restarts
polling. Since this sleeping logic is intended to follow slow
traffic fluctuations such as tidal scale and is not suitable
for high frequency sleeping, the power-saving effect is lim-
ited when the traffic fluctuation frequency is high. In addi-
tion, this APP_MODE_INTERRUPT does not have a func-
tion to dynamically control CPU frequency of CPU cores
used by polling threads. In APP_MODE_LEGACY, l3fwd-
power uses only polling mode. In this mode, polling threads
sleep, and it dynamically controls the CPU frequency of
CPU cores used by polling threads when no packets arrive.
Since this mode does not have a function for fast restart-
ing of polling threads, such as an interrupt mode, it can
cause large delays and cannot meet requirement (A). In both
APP_MODE_INTERRUPT and APP_MODE_LEGACY, to
use packet-receiving functions of l3fwd-power, a function of
polling and network protocol functions, such as L2/L3/L4,
need to be integrated to a user program and this cannot meet
the requirement (C).

Li et al. [17] formulated the relationship between the
CPU utilization of the CPU core used by a polling thread
and the packet-forwarding delay. When the CPU utiliza-
tion is below a constant value, such as 80%, it reduces the
frequency of polling by adding a short pause. Since this
method is intended to follow slow traffic fluctuations such
as tidal scale at low-speed link and is not suitable for high
frequency sleeping, the power-saving effect is limited when
the traffic fluctuation frequency is high. In addition, since
this method is intended to be applied to a DPDK solution, a
function of polling and network protocol functions, such as
L2/L3/L4, need to be integrated to a user program and this
cannot meet requirement (C).

Busy Poll Sockets (BPS) [18] provides a hybrid packet-
receiving method of an interrupt mode and a polling mode,
adopted from a newer version of kernel 3.11. When an
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application calls a SO_BUSY_POLL socket option and sets
the time for busy polling, busy polling is performed to receive
packets for the specified period. Except for the specified
period, softIRQ-based packet receiving is performed. If an
application does not knowwhen the packets will arrive, busy
polling cannot be performed in accordance with the packet
arrival timing. Thus, this method is not suitable for traffic
where the packet arrival timing cannot be predicted. In
addition, since an application needs to include a function to
specify the period of time for busy polling, this cannot meet
requirement (C).

AF_XDP [19] is a new socket type for raw frame pro-
cessing, adopted from a newer version of kernel 4.18. Since
an application can receive raw frames via anAF_XDP socket
without a kernel protocol stack, AF_XDP provides a fast data
path. However, since AF_XDP is an interrupt-mode packet-
receiving data path and notifies an application of frame ar-
rival in a context of NET_RX_SOFTIRQ, it cannot avoid
softIRQ competition and ms-scale delays. Thus AF_XDP
cannot meet requirement (A). In addition, to use AF_XDP,
network protocol functions, such as L2/L3/L4, need to be in-
tegrated to an application and this cannot meet requirement
(C).

KBP [10] enhances a kernel to provide low-latency net-
working by enabling polling-mode packet receiving. Since
KBP launches kernel threads to perform busy polling instead
of softIRQ-based packet receiving and avoids softIRQ com-
petitions, KBP can achieve low latency in the order of µs for
packet forwarding. In addition, KBP does not modify exist-
ing kernel protocol stack, so application modification is un-
necessary. Furthermore, since functions of KBP are applied
to existing kernels by using a kernel livepatch, software re-
development for each kernel security update is unnecessary.
However, polling threads occupy CPU cores and prevent the
threads from sleeping, which incurs greater power usage and
cannot meet requirement (B).

IX [20] provides a run-to-completion networking fea-
ture in a kernel for low latency. Zygos [21] provides the
original scheduler, and Shenango [22] and Shinjuku [23]
provide inter-processor interrupts algorithm in a kernel for
low latency. These solutions require core parts of a kernel
to be modified and do not meet requirement (D).

DMM lwIP [24] and Slim [25] provide low-latency
packet-forwarding solutions. To add special functions
to a kernel protocol stack without modifying a kernel,
these solutions use the LD_PRELOAD framework. The
LD_PRELOAD framework enables an application to use
custom functions by hijacking lib.c libraries, such as socket.c.
This framework needs to implement custom functions to an
application for interworking the special functions and this
cannot meet requirement (C).

3. Analysis of Low Latency and Power Saving

We discuss the factors and mechanisms that cause delays in
packet forwarding using the current NAPI packet-forwarding
method as an example. Figure 1 shows the architecture of

Fig. 1 NAPI architecture.

NAPI. For the receiving (Rx) side, when a NIC receives a
packet, the NIC copies the packet data into the host memory
space by direct memory access (DMA) without using CPU
resources. To report the packet arrival, the NIC invokes a
hardIRQ and registers the network device information to a
poll_list in the hardIRQ context. After that, a softIRQ is
scheduled to poll packets from the poll_list and performs
subsequent protocol processing, such as Ethernet, IP, and
UDP. Since hardIRQ has extremely high priority, and other
processes cannot use its CPU core during its context, heavy
processing should not be allocated in a hardIRQ context
for system stability. Thus, these heavy protocol processes
are performed in softIRQ context. However, this softIRQ
of NET_RX_SOFTIRQ can be competed by other softIRQs,
such as local timer interrupts and ata_piix, and ksoftirqd
schedules these softIRQs, which must wait until the sched-
uled time. In addition, when ksoftirqd does not have enough
CPU time, softIRQ scheduling is delayed. This softIRQ
competition causes ms-scale delays as discussed in previous
work [10]. This softIRQ competition can occur on a kernel
in a bare-metal configuration, on a host kernel in a container
configuration, and on a host kernel and a guest kernel in a
VM configuration. Since this softIRQ competition cannot
be avoided by any kernel tuning, architectural changes are
required to obtain a low-latency data path. For the transmis-
sion (Tx) side, since the packet is transmitted without any
interrupt after an application sends out a packet, a kernel
does not incur any ms-scale delay.

Polling-mode packet-receiving methods such as the
DPDK, BPS, and KBP are suitable for avoiding softIRQ
competition. Since a polling-mode packet-receiving method
can detect the arrival of packets quickly by busy polling,
there is no need to report the arrival of packets by interrupts.
Thus, polling-mode packet-receiving methods do not incur
softIRQ competition of NET_RX_SOFTIRQ. However, the
DPDK needs a function of polling and network protocol
functions, such as L2/L3/L4, to be integrated to a user pro-
gram. BPS needs a function to be integrated that specifies
the period of time for busy polling. Therefore, the DPDK
and BPS cannot meet requirement (C). To obtain a polling-
mode packet-receiving method that does not require appli-
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Fig. 2 KBP architecture.

cation modification, polling threads need to be integrated in
a kernel. However, since there is a constraint that multiple
softIRQ processes cannot be executed in a CPU core, and
implementing a network protocol process, which is executed
in a softIRQ context in NAPI, with a polling thread requires
deadlocking of softIRQs, which is challenging. KBP, our
previous work as shown in Fig. 2, has polling threads in a
kernel and deadlock-control feature of softIRQs, and it does
not change existing kernel packet protocol stack and the
POSIX sockets API, thus enabling low-latency packet for-
warding and making application modification unnecessary.
Furthermore, KBP can be applied to existing NAPI by a ker-
nel livepatch since KBP offers these polling functions with
few changes to NAPI. Thus, KBP meets requirements (A),
(C), and (D). However, since polling threads always perform
busy polling regardless of whether packets have arrived or
not, KBP wastes CPU resources and increases power con-
sumption. Thus, KBP does not meet requirements of (B).

Since KBP can meet requirements (A), (C), and (D), if
KBP can be improved to meet requirement (B), then all re-
quirements can be satisfied. The basic idea for power saving
is to put the polling threads to sleep while no packets arrive.
Packet arrival timing is often unpredictable for real-time ap-
plications, such as VR, online gaming, remote controlled
drones, and self-driving cars. For example, in VR, it is
difficult to predict when a user will move his or her gaze,
so it is difficult to predict when the gaze information from
the head-mounted display will arrive at the server. Thus, it
is difficult to control the timing of sleeping polling threads
by using a timer. It is desirable that a solution can be also
applied to traffic where the arrival timing of packets is un-
predictable. Thus, in this paper, we attempt to find a way to
wake up sleeping polling threads quickly after a packet ar-
rives, as we discuss in Sect. 4. In addition, simply putting the
polling thread to sleep will only have a limited power-saving
effect. Even if polling threads stop busy polling and call
CPU pause instruction, the CPU core continues to read and
execute the instruction from a program counter and registers
the next instruction to prevent memory order violation from
occurring. This means that the power supply to the CPU

core will not stop and the CPU core continues to operate
and consumes CPU cycles. Since fewer CPU cycles are con-
sumed by pause instruction than by busy polling, the power
consumption of the CPU core can be reduced by stopping
busy polling. However, the power-saving effect is limited
since the CPU core does not stop operating. As methods to
increase the power-saving effect, power management tech-
nologies, dynamic voltage and frequency scaling (DVFS)
and low power idle (LPI), are implemented in CPUs. DVFS
dynamically controls power supply voltage and operating
frequency of CPU cores in response to changes in load and
temperature. LPI controls the sleep state of the CPU core
when the core is inactive and is often called C-state. LPI
enables some circuits in cores to be powered off while there
is no CPU load. DVFS and LPI are implemented and used
in almost all modern CPUs. Since most of these functions
including LPI are operated by hardware control of CPUs,
these power-saving effects can be obtained by just reducing
the CPU load by putting the polling threads to sleep. When
the polling threads go to sleep and the CPU load drops, the
CPU autonomously deepens the sleep state of CPU cores
by LPI under hardware control. However, these functions
can cause processing delays when recovering from an idle
state, increasing networking latency. Since LPI can be en-
abled/disabled by turning C-state ON/OFF, in the perfor-
mance evaluation in Sect. 5, we use an Intel Xeon processor
to evaluate the power-saving effect and networking latency
by controlling polling threads to sleep for each case of C-
state ON/OFF. In addition, a CPU operating frequency can
be controlled by using CPU-frequency governor [26] from
a kernel. If a CPU operating frequency can be controlled
in accordance with the arrival timing of packets as well as a
sleep control of polling threads, further power-saving effects
can be expected. Thus, we attempt to control a CPU operat-
ing frequency with a sleep control of polling threads, as we
discuss in Sect. 4.

4. Architecture of Energy-Efficient KBP

We designed and implemented a low-latency and energy-
efficient networking system, energy-efficient KBP (EE-
KBP), which meets all requirements: (A) low latency in
the order of µs for packet forwarding in a virtual server,
(B) lower power consumption than existing solutions, (C) no
need for application modification, and (D) no need for soft-
ware redevelopment for each kernel security update. Since
KBP is a low-latency networking system that can satisfy re-
quirements (A), (C), and (D), we adopted KBP as the base
system and attempt to lower power consumption to meet re-
quirement (B). As discussed in Sect. 3, the polling threads of
KBP have higher power consumption since busy polling is
performed regardless of whether packets arrive or not. Thus,
the basic idea for power saving is to put the polling threads to
sleep while no packets arrive. Figure 3 shows the high-level
architecture of EE-KBP. To reduce power consumption of
polling threads, EE-KBP has a sleep-control function for an
EE-KBP thread and a CPU-frequency control function for a
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Fig. 3 Energy-efficient KBP architecture.

CPU core that is used by a polling thread. EE-KBP has four
novel points. The first is EE-KBP wakes up a polling thread
and resumes polling fast by using the context of hardIRQ
when a packet arrives while the polling thread is asleep in
order not to compromise low latency (see Sect. 4.1). The
second is EE-KBP dynamically controls a CPU operating
frequency from a kernel to increase the power saving effect
of a sleeping polling thread (see Sect. 4.2). The third is EE-
KBP has a conflict control logic to execute these functions in
a kernel since a kernel has a restriction that multiple softIRQ
processes cannot be executed simultaneously on the same
CPU core (see Sect. 4.1). The fourth is that these functions
can be applied to the existing kernel by a kernel livepatch
since these changes to the existing kernel have been made as
small as possible (see Sect. 4.3).

This EE-KBPcan be deployed to a host kernel for a bare-
metal server. In addition, EE-KBP can be deployed to a host
kernel and a guest kernel for a VM configuration as shown
in Fig. 4 and to a host kernel for container configuration as
shown in Fig. 5. Since a guest kernel in a VM configuration
can cause a CPU time shortage of ksoftirqd due to emulation
overheads of a VM, which can cause ms-scale latency, EE-
KBP to a guest kernel is highly effective in reducing latency.
According to our previous work [10], since a host kernel of
a container configuration in Kubernetes [27] cluster can also
cause a CPU time shortage of ksoftirqd due to a Kubernetes
scheduler and other related threads, which can cause ms-
scale latency, EE-KBP to a host kernel is effective in reducing
latency.

To achieve low latency using EE-KBP, an EE-KBP
thread should have a dedicated CPU core, and no other pro-
cesses should coexist on the CPU core where the EE-KBP
thread runs. Since modern CPUs have many CPU cores,
this limitation is not a major disadvantage, but EE-KBP is
expected to be difficult to apply to a single board computer
with a small number of CPU cores, such as Raspberry Pi.

Fig. 4 Energy-efficient KBP architecture for VM.

Fig. 5 Energy-efficient KBP architecture for container.

4.1 Hybrid Algorithm of Sleep and Busy Poll

If busy polling by polling threads can sleep while no packets
are arriving, the increase in power consumption by polling
threads can be lowered. However, overhead of sleeping
polling threads can increase delay time of packets receiv-
ing. We attempt to control the polling threads to sleep with-
out compromising low latency as much as possible. First,
we need to design when to put a polling thread to sleep and
when to wake it up. Figure 6 shows a simplified trafficmodel
that describes the timing at which packets arrive. Ideally, a
polling thread should be woken up when a packet arrives and
sleep when a packet stops arriving. However, as discussed
in Sec. 3, since packet arrival timing is often unpredictable
for real-time applications, it is difficult to predict the packet
arrival timing and wake up a polling thread in advance with
a timer. In addition, when packets are arriving in succes-
sion, it is difficult to predict when the packet arrivals will
stop, so it is also difficult to predict when to sleep the polling
thread. For the method of waking up a polling thread, EE-
KBP wakes up the polling thread as fast as possible after the
packet arrives at the NIC. HardIRQ has extremely high pri-
ority, and when the hardIRQ is triggered, a process running
on a CPU core must suspend and give up CPU time to the
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Fig. 6 Wake up and sleep timing for polling threads.

hardIRQ. When a NIC receives a packet, the NIC notifies
a kernel that a packet has arrived by generating a hardIRQ.
Thus, using this hardIRQ context enables the polling thread
to be woken up fast. As for when to put the polling thread to
sleep, poll_list can be used to judge whether to sleep or not.
When a NIC receives a packet, the NIC registers its network
device to a poll_list and a kernel can recognize whether there
is a packet to receive or not by checking the poll_list. As
long as the network device is registered in the poll_list, it
means that unprocessed packets are being buffered, so the
polling thread should continue polling. When the network
device does not exist in the poll_list, it means that there is no
packet to be processed by the polling thread, so the polling
thread can stop polling and sleep. Thus, when the network
device is not registered in a poll_list, the EE-KBP thread
stops polling and sleeps.

Algorithm 1 shows a hybrid algorithm of sleep and
busy poll for EE-KBP. To disable a softIRQ for network-
ing of NAPI to avoid softIRQ competition, which causes
delays, EE-KBP removes a function of raising a softIRQ
of NET_RX_SOFTIRQ in netif_rx. Instead, EE-KBP added
a function to wake up an EE-KBP thread in a context of
hardIRQ for networking in netif_rx. An EE-KBP thread is
a kernel thread that performs busy polling to receive pack-
ets and sleeps when there is no registered network device in
poll_list. By combining modified netif_rx and the EE-KBP
thread, the EE-KBP thread performs busy polling to receive
packets with low latency while there are unreceived packets,
the EE-KBP thread sleeps when poll_list becomes empty to
reduce power consumption, and when a packet arrives while
the EE-KBP thread is asleep, a handler of a hardIRQ of
packet arrival wakes up the EE-KBP thread to resume busy
polling quickly. Q (quota) is the value of the number of
packets to be received in one polling, and the default value
of NAPI of existing kernel is 64. This value is used in the
performance evaluation as will be discussed in Sect. 5.

There is a restriction that multiple softIRQ processes
cannot be executed simultaneously on the same CPU core.
In NAPI of existing kernel, network protocol processes are
processed in a softIRQ context. Since EE-KBP uses an
existing network protocol stack in a kernel to meet require-
ments (C) and (D), EE-KBP does not make any changes
to the functions after netif_receive_skb. Thus, we need to
consider this restriction when the EE-KBP thread pulls a
packet and proceeds to network protocol processing. To

Algorithm 1 Hybrid algorithm of sleep and busy poll
netif_rx for EE-KBP
1: // This function is invoked by hardIRQ from a network device
2: Disable hardIRQ of this network device
3: Add the device to poll_list
4: /* Raise softIRQ of NET_RX_SOFTIRQ */ // removed
5: if EE-KBP thread is not running then // new
6: Wake up EE-KBP thread // new
7: end if // new

EE-KBP thread (new)
1: quota Q = 64
2: Maximize the CPU operating frequency for this EE-KBP thread
3: while poll_list is not empty do
4: Extract a network device from poll_list
5: Using this device, poll up to Q packets or until no more pack-

ets in ring buffer of the device and process the packets calling
netif_receive_skb

6: if Ring buffer is empty then
7: Remove the network device from poll_list
8: Enable hardIRQ of the network device
9: else
10: Place the network device at the end of poll_list
11: end if
12: end while
13: Minimize the CPU operating frequency for this EE-KBP thread
14: Sleep this thread

control this restriction of prohibiting execution of multiple
softIRQs, EE-KBP has a conflict control logic. After the
EE-KBP thread pulls a packet, the EE-KBP thread prohibit
other softIRQs and proceeds to subsequent network proto-
col processing. After protocol processing finishes, EE-KBP
releases this prohibition.

4.2 CPU-Frequency Control Feature

To further reduce power consumption of a CPU corewhile an
EE-KBP thread is sleeping, EE-KBP dynamically controls
the CPU operating frequency of the CPU core. As dis-
cussed in Sect. 3, even if a polling thread stops busy polling
and sleeps, the CPU core continues to read and execute an
instruction from a program counter, and registers the next
instruction to prevent memory order violation. This means
the CPU core continues to consume power while the polling
thread is sleeping. Since the operating frequency of a CPU
core can be changed dynamically from a kernel, it is expected
to reduce this power wastage of the CPU core by lowering
the CPU operating frequency while the polling thread is
sleeping. EE-KBP has a function of CPU-frequency control
and sets the CPU operating frequency of the CPU core low
when the EE-KBP thread sleeps, and restores the CPU op-
erating frequency when it wakes up from sleep, as shown in
algorithm 1. EE-KBP uses the CPU-frequency governor to
change a CPU operating frequency. There are multiple types
of governor policy, such as “performance,” “powersave,”
“userspace,” and “ondemand.” We use the CPU-frequency
governor “userspace” since it enables a specific frequency to
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be set for a CPU core. By using CPU-frequency governor
“userspace,” the EE-KBP thread sets the maximumCPU fre-
quency at the timing triggered by a hardIRQ of networking,
and sets the minimum CPU frequency just before the EE-
KBP thread goes to sleep. The time lag between changing a
CPU operating frequency and the change being reflected to
a CPU core needs to be short, on the order of µs, but we have
determined that it is short enough based on performance
evaluation results as will be discussed in Sect. 5.

As for power saving functions by hardware control that
many CPUs have, such as DVFS and LPI (C-state), their
operation cannot be controlled from a kernel, but these func-
tions can be activated by just putting a polling thread to sleep,
as discussed in Sect. 3. Thus, EE-KBP does not have a fea-
ture to control these CPU-hardware functions, but EE-KBP
changes the utilization rate of a CPU core by controlling the
sleep state of a polling thread, which indirectly increases the
effectiveness of these power-saving functions. The effect of
these functions and long delay time due to overhead will be
discussed in the performance evaluation in Sect. 5.

4.3 Applying by Kernel Livepatch

The features of EE-KBP can be enabled by making a few
changes from NAPI of an existing kernel. As shown in al-
gorithm 1, EE-KBP only removes the function of raising
a softIRQ of NET_RX_SOFTIRQ and adds the function of
waking up the EE-KBP thread in netif_rx of NAPI. The
EE-KBP thread is woken up by netif_rx, and after pulling
packets, it passes the process to netif_receive_skb. Thus, un-
less either netif_rx or netif_receive_skb is changed, EE-KBP
can be run on any version of kernel after version 2.4.20, when
NAPI was implemented. A kernel has a mechanism called
kernel livepatch, which is used to apply security patches to
a kernel or change some of behaviors of a kernel. Since
EE-KBP needs a few changes from NAPI, EE-KBP can be
applied by a kernel livepatch. If a security update occurs
to a kernel, EE-KBP can be enabled by simply applying the
kernel livepatch to a new version of kernel again. Thus,
unless either netif_rx or netif_receive_skb is changed, ser-
vice providers do not need to modify software of the kernel
livepatch. In addition, since kernel livepatch can be applied
without rebooting a system, service providers can apply EE-
KBP without service interruption.

4.4 Scaling Out

If the amount of incoming traffic is too large for a single
EE-KBP thread to handle, multiple EE-KBP threads can be
deployed in a kernel. Almost all modern NICs have a feature
of receive-side scaling (RSS) and use multiple CPU cores for
packet receiving. When a NIC receives a packet, it chooses
to which CPU core to invoke a hardIRQ. Scaling out can
be obtained by launching EE-KBP threads on multiple CPU
cores and linking those CPU cores to the CPU cores to which
hardIRQs are generated by RSS.

5. Performance Evaluation

To evaluate the effect of power saving and low latency of
EE-KBP, we conducted performance evaluations comparing
EE-KBP with existing NAPI and KBP adopted as a base
machine of EE-KBP. We measured power consumption,
packet-forwarding latency, and throughput when traffic load
was added to the target solutions. As discussed in Sect. 4,
EE-KBP can be deployed to a host kernel for a bare-metal
server, to a host kernel and a guest kernel for a VM config-
uration, and to a host kernel for container configuration. In
a VM configuration, a host and a guest each have a polling
thread, and since the number of polling threads to be slept
by EE-KBP is larger than in a bare-metal server or a con-
tainer configuration, the power saving effect can be largely
measured. In addition, in a VM configuration, since packet
forwarding delays are likely to be long due to an emula-
tion overhead to create a VM, the low-latency effect with
EE-KBP can be largely measured. For these reasons, we
used a VM configuration for performance evaluations. To
evaluate the effect of the sleep control feature of EE-KBP
with hardware-controlled power-saving features of CPU, we
evaluated each case when C-state was enabled and disabled.
In addition, to evaluate the effect of the CPU-frequency con-
trol feature of EE-KBP, we evaluated whether each case
when the CPU-frequency control feature was enabled and
disabled. Thus, we conducted comparative evaluations of
solutions and settings for (a) NAPI, (b) KBP, (c) EE-KBP
when C-state was disabled and the CPU-frequency control
feature was disabled, (d) EE-KBP with C-state was disabled
and the CPU-frequency control feature was enabled, (e) E-
KBP when C-state was enabled and the CPU-frequency con-
trol feature was disabled, and (f) EE-KBP when C-state was
enabled and the CPU-frequency control feature was enabled.

Table 1 shows experimental platform specifications.
For low latency, CPU cores used for packet processing were
set to a high performance governor, and virtual-CPU emu-
lation threads of kernel-based virtual machine (KVM) and
vhost-net were allocated dedicated CPU cores and isolated
from other processes using isolcpus. For power saving,
C-state was enabled for (a) NAPI and (b) KBP. For the
CPU-frequency control feature of EE-KBP in (d) and (f), a
“userspace” governor was used, and themaximum frequency
that could be set for the Intel Xeon processor used was 2.8
GHz, and the minimum frequency was 1.2 GHz.

We added a round-trip traffic load as shown in Fig. 7.
Since transmission control protocol (TCP) has retransmis-
sion control and congestion control, and the effect of the
sleep-control feature of EE-KBP is difficult to evaluate, we
used UDP traffic. To evaluate the power-saving effect and
the increase of delay time due to the overhead of waking
up from sleep of EE-KBP by varying the time when polling
threads were asleep, six conditions of traffic with different
traffic rates and frame sizes were used as shown in Table 2.
In these traffic conditions, one packet arrives at the packet-
arrival interval described in Table 2. When a packet arrives,
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Table 1 Experimental platform specifications.
Host server

Machine Dell PowerEdge R730
CPU Intel Xeon CPU E5-2660 v4 2.0GHz, 14 cores
Memory 64GB
NIC Intel X520 DP 10Gb DA/SFP+
kernel / OS 4.15.0-20-generic / Ubuntu 18.04
Hypervisor KVM

Guest server
vCPU 4 cores
Memory 4GB
kernel / OS 4.15.0-20-generic / Ubuntu 18.04

Fig. 7 Evaluation configuration.

Table 2 Traffic conditions.
Traffic rate Frame size Packet arrival interval

80 Mbps
1518 byte 151.8 µs
512 byte 51.2 µs
64 byte 6.4 µs

1 Gbps
1518 byte 12.1 µs
512 byte 4.1 µs
64 byte 0.5 µs

a polling thread is woken up by a hardIRQ of the packet
arrival and immediately sleeps after that, and this process
is repeated as shown in Fig. 6. It is not possible to pull
packets continuously by busy poll. These traffic conditions
are disadvantageous for EE-KBP. However, these are suit-
able traffic conditions to evaluate overhead caused by polling
thread sleep of EE-KBP. 80 Mbps is the traffic rate at which
no packet loss occurs in any of the solutions being compared.

5.1 Power Consumption

There are three methods to measure power consumption of a
server. The first is to physically measure power consumption
of an entire server by inserting a power meter into a power
supply line of the server. This method does not depend on
the accuracy of a sensor of a server and can measure power
consumption with high accuracy. However, it requires on-
site work to install a powermeter and check themeasurement
values of a power meter. Since it was difficult to perform on-
site work for a long time this time, we used this method only
to check the measurement accuracy of a method described
below. The second is to use Intel’s running average power
limit (RAPL) interface. Intel’s CPU provides an RAPL in-
terface that enables power consumption information to be
obtained. It is reported that RAPL provides high accuracy

power consumption data of CPU [28] and dynamic random-
access memory (DRAM). However, power consumption of
an entire server cannot be measured by using an RAPL in-
terface. Since performance and power consumption of CPU
cores are closely related to the cooling fan speed of a server
chassis, it is necessary to evaluate power consumption of
an entire server that includes power consumption of cooling
fans. The third is to use an intelligent platform management
interface (IPMI). IPMI enables a server to be controlled and
monitored remotely. By using this IPMI, we can measure
power consumption of an entire server. However, it was re-
ported that the accuracy of power consumptionmeasurement
using an IPMI is low in some cases, depending on the accu-
racy of a server onboard sensors [29]. Thus, we compared
results of power measurement between using an IPMI and a
power meter to verify the accuracy of an onboard sensor on
a server (Dell PowerEdge R730). The result of the measure-
ment by the IPMI was 0.29% smaller than the result of the
measurement by the power meter and the difference between
the two was stable, so we concluded that the accuracy of the
IPMI power measurements for this server was high enough.
We measured power consumption of each solution and set-
ting when trafficwith the conditions described in Table 2 was
added. To add these conditions of traffic, we used a Spirent
Test Center SPT-N4U (STC) as a performance tester. We
added a traffic load and measured power consumption for 60
seconds and repeated the measurement 5 times.

Figure 8 shows power-consumption measurement re-
sults of each solution and setting over time. We started
applying traffic 10 seconds after we started the test, and
then kept applying traffic for 60 seconds. First, we analyze
the increase in power consumption due to busy polling of
a polling thread by comparing the results of (a) NAPI and
(b) KBP. Comparing the results of power consumption with
no traffic applied, (a) NAPI was 170 watt (W) and (2) KBP
was 181 W, a difference of 11 W. In a VM configuration
with KBP, there was a polling thread on each of a host and a
guest, which means that the incremental power consumption
of busy polling by the two polling threads was 11 W. Thus,
the power consumption due to useless busy polling when no
packets were comingwasted 5.5W per polling thread. As for
the analysis of the effect of EE-KBP to put a polling thread
to sleep, the power consumption of (e) and (f) with C-state
enabled was 170 W while no traffic was added, which was
the same as (a) NAPI. These results mean that EE-KBP can
reduce power consumption to the same level as NAPI while
no packets are arriving by putting polling threads to sleep.
On the other hand, the results of (c) and (d), which are the re-
sults when the C-state is disabled, show power consumption
increasing over about 25 W even while no traffic is added.
Since C-state cannot be changed for each CPU core, for the
entire CPU, the hardware-controlled power-saving functions
of all 14 CPU cores were disabled, resulting in such a large
increase in power consumption. If service providers need
saving power, it is desirable to set C-state to enabled.

Next, we analyzed the power-saving effect of EE-KBP
while traffic was added. Figures 9 and 10 classify the re-
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Fig. 8 Results of time-lapse power-consumption measurement.

sults of power consumption for each solution and setting by
frame size and traffic rate. Figures 9 and 10 show the re-
sults with 80 Mbps and 1 Gbps traffic loads, respectively.
Comparing the results of (b) KBP and (e) EE-KBP without
CPU-frequency control, EE-KBP reduced the power con-
sumption by 3 W in all traffic conditions compared with
KBP by putting polling threads to sleep. These results of (e)
EE-KBP were almost the same as the results of (a) NAPI.
This means that EE-KBP solves the problem of increased
power consumption due to busy polling of polling threads in
KBP. Furthermore, comparing the results of (b) KBP and (f)
EE-KBP with CPU-frequency control, EE-KBP with CPU-
frequency control consumed about 5 to 7 W less power than
KBP, except for the 1-Gbps 64-byte traffic condition. The
CPU-frequency control function of EE-KBP reduces power
consumption by an additional 2 to 4 W compared with the
results in (e) EE-KBP without CPU-frequency controlling.
By controlling a CPU frequency as well as putting polling
threads to sleep, EE-KBP could further reduce power con-
sumptionmore thanNAPI. In the 1-Gbps 64-byte traffic con-
dition, EE-KBP with CPU-frequency control could not fur-
ther reduce power consumption more than EE-KBP without
CPU-frequency control. In the 1-Gbps 64-byte traffic con-
dition, packet-arrival interval is 0.5 µs, which is quite short.
It is thought that changing CPU operating frequency by EE-

Fig. 9 Results of power consumption measurement with 80 Mbps traffic.

KBP was not reflected in time during this short interval. In
1-Gbps 512-byte traffic condition, since EE-KBP with CPU-
frequency control could further reduced power consumption
more than EE-KBP without CPU-frequency control, it was
shown that a CPU operating frequency can be changed on
the order of µs by the function of EE-KBP. These results
are in a VM configuration in which there are two polling
threads, which are in a host and a guest. When providing
real-time services, a large number of users is expected to
be accommodated in the server, and the number of polling
threads is also expected to increase, so the power-saving ef-
fect of EE-KBP increases with each additional polling thread
compared with existing KBP. In addition, in this test traffic,
packets arrived continuously and the sleep time was short, so
the power-saving effect of EE-KBP was limited. If the traffic
has a long sleep time, such as intermittent packets incoming,
the power-saving effect of EE-KBP will be even higher.

5.2 Latency

To evaluate the increase of packet-forwarding latency in EE-
KBP due to overhead of sleep control and CPU-frequency
control, we measured maximum round-trip latency of each
solution and setting when traffic with the conditions de-
scribed in Table 2 was added. To add these conditions of
traffic and measure latency, we used the STC as a perfor-
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Fig. 10 Results of power consumption measurement with 1Gbps traffic.

mance tester. We added a traffic load and measured latency
for 60 seconds and repeated the measurement 5 times.

Figures 11 and 12 show the latency-measurement with
80 Mbps and 1 Gbps traffic loads, respectively. Compar-
ing the results of (b) KBP and (e) EE-KBP without CPU-
frequency control, although themaximum round-trip latency
was increased by up to 87 µs compared with KBP, EE-KBP
achieved low latency in the order of µs. For 1-Gbps traf-
fic, the increase in delay time of EE-KBP compared with
KBP was small, and for 80-Mbps traffic, the increase in de-
lay time tended to be larger. Since 80-Mbps traffic has a
longer packet interval and polling threads can sleep for a
longer period of time, it is assumed that polling threads need
longer time to recover due to deeply sleeping by a hardware
power-saving feature of a CPU. Although latency slightly
increased due to the overhead of putting polling threads to
sleep, EE-KBP without CPU-frequency control can achieve
power savings without compromising low latency. With the
1-Gbps 64-byte traffic condition, all solutions and settings
incurred ms-scale delays and packet losses. This is due to
the limit of a processing performance of a kernel protocol
stack in a guest, which is a performance limit of the KBP ar-
chitecture without any changes to the kernel protocol stack,
as discussed in our previous work [10].

Next, we analyze the overhead caused by the CPU-
frequency control function of EE-KBP. Comparing the re-

Fig. 11 Results of latency measurement with 80 Mbps traffic.

sults of (e) EE-KBP without CPU-frequency control and
(f) EE-KBP with CPU-frequency control, (f) EE-KBP with
CPU-frequency control achieved low latency in the order
of µs except for 64-byte frames at 80-Mbps and at 1-Gbps,
although the maximum round-trip latency was increased by
up to 260 µs compared with (e) EE-KBP without CPU-
frequency control. (f) EE-KBP with CPU-frequency con-
trol incurred ms-scale delays with 64-byte frames at 80-
Mbps traffic rate. Even though the packet arrival interval
was shorter for 512-byte frames at 1-Gbps than for 64-byte
frames at 80-Mbps, ms-scale delays occurred for 64-byte
frames at 80-Mbps. These delays correlate with the number
of hardIRQ times that were triggered by a NIC. Figure 13
shows the number of hardIRQs when traffic with each con-
dition described in Table 2 was added for 60 seconds. The
number of hardIRQs in 64-byte frames at 80-Mbps traffic
rate was the highest. If the number of hardIRQs of packet ar-
rival is large, a packet-receiving process must be interrupted
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Fig. 12 Results of latency measurement with 1Gbps traffic.

at each hardIRQ, the data being processed must be stored
in memory space, and CPU time must be given over to the
hardIRQ, resulting in a large overhead. This caused a short-
age of CPU time for a packet-receiving function that ran on
the CPU core where the EE-KBP thread operated, and since
the CPU-frequency control function was also attempted on
the same CPU core, the CPU time was further shortened, re-
sulting in ms-scale packet-forwarding delays. As discussed
in Sect. 4.1, when there is no more packet data to be received
in a poll_list, an EE-KBP thread permits hardIRQ and goes
into sleep. If a packet arrival frequency is relatively sparse, a
hardIRQ will be triggered every time a packet arrives, so the
number of hardIRQs will become high. If a packet arrival
frequency is higher than the speed of packet receiving and
processing by a kernel protocol stack, subsequent packets
will be stored in a ring buffer and the NET_DEVwill remain
in the poll_list, so the time that hardIRQ is prohibited and the
thread continues polling will be longer. Whenmultiple pack-

Fig. 13 Trend in number of hardIRQs.

ets are stored in the ring buffer, the EE-KBP thread receives
Q packets at once to batch them, so the ring buffer will be
empty again. EE-KBP with C-state was disabled achieved
smaller maximum round-trip latency than EE-KBP with C-
state was enabled by comparing the results of (c), (d), (e),
and (f). However, since disabling C-state causes a significant
increase in power consumption as discussed in Sect. 5.1, a
use case of disabling C-state is considered to be rare.

EE-KBP without CPU-frequency control achieved low
latency in the order of µs with small degradation of latency
compared with KBP and the same level of power saving
effect as NAPI used in existing kernel by overcoming the
problem of KBP, which is increased power consumption by
continuous busy polling. By enabling the CPU-frequency
control function of EE-KBP, EE-KBP further reduced power
consumption to a lower level than that of NAPI and achieved
low latency in the order of µs under many traffic conditions.
However, in the case of a traffic condition in which EE-KBP
invoked a lot of hardIRQs for networking, measured max-
imum round-trip latency of EE-KBP with CPU-frequency
control was 1.3ms, we note that this value was smaller than
NAPI. Although the number of hardIRQs in EE-KBP is dif-
ficult to estimate since the packet processing time by a ker-
nel protocol stack varies depending on CPU performance,
packet length, and protocol used, which affect the speed at
which packets are pulled from a ring buffer, EE-KBP with
CPU-frequency control may be used for a service that has
traffic consisting of packets with long or short packet-arrival
intervals.

5.3 Throughput

We conducted a throughput measurement evaluation to mea-
sure the maximum throughput performance without packet
loss as specified in the RFC2544 [30]. We used the Pktgen-
DPDK [31] as a traffic generator and traffic of 64-, 512-,
and 1518-byte frames was added. We repeatedly added traf-
fic from the Pktgen-DPDK by gradually increasing the traffic
rate, measured themaximum throughputwithout packet loss.
We repeated the measurement five times.
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Fig. 14 Results of throughput measurement.

Figure 14 shows the results of throughput measure-
ments. Comparing the results of (b) KBP, (e) EE-KBP
without CPU-frequency control, and (f) EE-KBP with CPU-
frequency control, EE-KBP had only a maximum through-
put reduction of 4.6% compared with KBP. In through-
put testing, there is not much opportunity for the EE-KBP
polling threads to sleep since a large number of test pack-
ets are added, so the behavior is almost the same as KBP
where the polling threads keep busy polling. The through-
put performance degradation to KBP was small since there
was little opportunity for overhead due to sleep control of
polling threads by EE-KBP. Compared with NAPI, EE-
KBP achieved a throughput improvement of 1.4× to 3.1×
higher. The results of (c) and (d) with C-state disabled
showed lower throughput than the results of (e) and (f) with
C-state enabled. This is due to a specification of the Intel
Xeon processor used, which has a maximum CPU frequency
of 2.4GHz when C-state is disabled, and 2.8GHz when C-
state is enabled.

5.4 Discussion

On the basis of the results in Sects. 5.1 to 5.3, we discuss the
characteristics and desirable tuning of EE-KBP with respect
to performance. LPI (C-state) and CPU-frequency control
are independent features, and the evaluation results did not
reveal any special synergy between these functions. Thus,
a service provider who uses EE-KBP should enable/disable
these functions in accordance with the guidelines described
below. As for EE-KBP with C-state, the power saving effect
with C-state enabled was large, the maximum delay time
with C-state enabled worsened only by a few tens to 200 µs,
and the throughput was better with C-state enabled than
with C-state disabled. EE-KBP with C-state enabled was
superior to NAPI in terms of power saving, low latency,

and throughput under all traffic conditions. Based on these
results, when a server needs to save power, C-state should
be enabled regardless of traffic conditions. As for EE-KBP
with CPU-frequency control, the power saving effect and the
throughput were higher with CPU-frequency control than
without it. However, in the case of traffic with packet arrival
intervals where many hardIRQs were generated in EE-KBP,
ms-order delays occurred on very rare occasions with CPU-
frequency control. For use cases where a very rare ms-
order delay is acceptable, CPU-frequency control should be
enabled, since higher power savings can be achieved. For
use cases where a very rare ms-order delay is unacceptable,
CPU-frequency control should be disabled.

Since ms-order delays only rarely occur with CPU-
frequency control, a service provider may check whether
the traffic of its service meets this specific condition. How-
ever, it is highly challenging for a service provider to add
traffic and count the number of hardIRQs to see if they meet
specific conditions. In addition, the number of hardIRQs in
EE-KBP is difficult to estimate since the packet processing
time by a kernel protocol stack varies depending on CPU
performance, packet length, and protocol used, which affect
the speed at which packets are pulled from a ring buffer.
Thus, we believe that a feature to suppress the number of
hardIRQs in accordance with the traffic conditions is neces-
sary to prevent ms-order delays. This is our future work, as
will be discussed in Sect. 6.

6. Conclusion and Further Study

We designed and implemented a low-latency and energy-
efficient networking system, energy-efficient kernel busy poll
(EE-KBP), which meets four requirements: (A) low latency
in the order of µs for packet forwarding in a virtual server,
(B) lower power consumption than existing solutions, (C)
no need for application modification, and (D) no need for
software redevelopment for each kernel security update. EE-
KBP achieves low-latency networking by performing busy
polling in a kernel, and saves power by putting polling threads
to sleep while no packets are coming in, and by dynamically
controlling the operating frequency of CPU cores for the
polling threads. EE-KBP reduced power consumption by
1.5W per polling thread in a VM configuration by control-
ling polling threads to sleep, with only an 87 µs increase in
latency compared with our conventional KBP, which keeps
busy polling in a kernel. EE-KBP achieved low-latency net-
working on the order of µs, while consuming power as low
as NAPI adopted in a current kernel. Furthermore, by dy-
namically controlling a frequency of a CPU core used by the
EE-KBP’s polling thread, EE-KBP reduced power consump-
tion by 2.5 to 3.5W per polling thread compared with KBP,
and this was lower power consumption than NAPI. However,
due to overhead of the CPU-frequency control function, EE-
KBP caused a round-trip delay time of up to 1.3ms under
certain traffic conditions, but it achieved much lower latency
than NAPI. EE-KBP achieved 1.4× to 3.1× higher through-
put than NAPI, and the performance degradation from KBP
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was limited to 4.6% at most.
EE-KBP achieved low latency networking in the order

of µs under most traffic conditions and lower power con-
sumption than NAPI, but the dynamic CPU-frequency con-
trol function caused a slight delay in the order of ms for some
traffic conditions. For future work, we plan to study tuning
the CPU-frequency control function by hardIRQ count in
accordance with traffic conditions. In addition, since we
only measured the effectiveness of EE-KBP in a VM config-
uration, we plan to evaluate its effectiveness in a bare-metal
configuration and a container configuration.
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