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Accuracy Improvement in DOA Estimation with Deep Learning∗
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SUMMARY Direction of arrival (DOA) estimation of wireless signals
is demanded in many applications. In addition to classical methods such
as MUSIC and ESPRIT, non-linear algorithms such as compressed sensing
have become common subjects of study recently. Deep learning or machine
learning is also known as a non-linear algorithm and has been applied in
various fields. Generally, DOA estimation using deep learning is classified
as on-grid estimation. A major problem of on-grid estimation is that the
accuracy may be degraded when the DOA is near the boundary. To reduce
such estimation errors, we propose amethod of combining twoDNNswhose
grids are offset by one half of the grid size. Simulation results show that
our proposal outperforms MUSIC which is a typical off-grid estimation
method. Furthermore, it is shown that the DNN specially trained for a
close DOA case achieves very high accuracy for that case compared with
MUSIC.
key words: DOA estimation, deep learning, machine learning

1. Introduction

Direction of arrival (DOA) estimation of radio signals is
a technique required for user localization in various target
tracking applications and becomes important in recent mo-
bile communication systems. For these several decades, it
has been common to use an antenna array for DOA estima-
tion instead of narrow beam antennas. Thus, many signal
processing techniques, e.g., beamforming, Capon, multiple
signal classification (MUSIC), estimation of signal param-
eters via rotational invariance techniques (ESPRIT), have
been investigated [3].

In recent years, compressed sensing has been applied
to the DOA estimation field [4]. Compressed sensing is a
technique exploiting sparseness of the solution in the target
vector space [5]. In DOA estimation, the number of arrivals
is much fewer than the number of angle domain grids in gen-
eral if we divide the angle space into small angle bins. Thus,
the compressed sensing technique is applicable to DOA esti-
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mation, and it has been reported that DOA estimation using a
compressed sensing solver called half-quadratic regulariza-
tion (HQR) shows higher accuracy compared with MUSIC
in the case of multi-band signals [6].

The compressed sensing technique is classified as on-
grid (discrete) estimation. This means that the estimated
DOA angles are quantized on a pre-determined grid in the
angle domain. Thus, quantized distortion is inevitable unlike
the general DOA estimation methods classified as off-grid
(continuous) estimation such as MUSIC. However, if such
quantized distortion is acceptable, the on-grid estimation is
attractive because other recent discrete estimation algorithms
can be applied.

Deep learning or machine learning is a typical appli-
cation suitable for on-grid estimation problems. The deep
neural network (DNN) proposed by Hinton et al. [7], [8] has
been extensively studied in the fields of images, sounds, lan-
guages, and so on. Although DNN requires a large amount
of calculations during the training phase, estimation using
the trained DNN is performed with mainly matrix-vector
multiplications, and thus the computational complexity in
estimation phase is lower than the ones of MUSIC (requiring
eigenvalue decomposition) and HQR (requiring a number of
inverse matrix calculations) when the vector size is large.
In addition, the advantage that we can design the DNN for
specific scenarios such as rare but severe cases is unique to
machine-learning-based estimation. Thus, in this paper, we
focus on DOA estimation using deep learning.

DOA estimation using deep learning was first applied
in the speech source localization field [9]. [10] uses a convo-
lutional neural network (CNN) to estimate near-field sources
with spherical wavefront model. In the radio resource lo-
calization field, several papers can be seen recently [11]–
[15]. In [11], the DOA estimation results are used for mas-
sive multiple-input multiple-output (MIMO) channel esti-
mation, and estimation performance related to the number
of hidden layers was precisely demonstrated. The DNN pro-
posed in [12] consists of two parts, a spatial filtering part for
subregion decomposition and a spatial spectrum estimation
part, and succeeds in obtaining accurate spectra. In [13],
their DNN estimates DOAs under a massive MIMO system
with a uniform circular array and achieves lower computa-
tional complexitywhile offering similar or even better perfor-
mance compared with the conventional maximum likelihood
method. By converting DOA estimation problem into a re-
gression task, [14] proposes a DOA estimation framework in
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the near-fieldMIMO system based on complex-valued resid-
ual network (ResNet). These papers discuss application-
oriented performance, and the DNN configurations are not
general in terms of the array size [11], [13], [14], the array
geometry [13], the use of subregion decomposition [12], or
the use of complex-valued network [14]. Our previous study
verified the estimation capabilities of DNNs under a sim-
ple estimation situation and discussed the parallel use of a
general-purpose DNN and the DNN designed for a specific
scenario where two close DOA signals were incident [15].
However, [15] treats an integer DOA estimation problem. Is-
sues of on-grid problems in theDNNhave not been discussed
yet in comparison to other off-grid estimation techniques.

In this paper, we analyze DOA estimation capabilities
of DNNs with different numbers of layers/units using batch
learning and some optimizing techniques. A comparison of
DOA estimation accuracies between a deep learning based
technique (on-grid estimation) and MUSIC (off-grid estima-
tion) shows that the DNN frequently fails to estimate the
correct bin when a signal arrives at angles near the grid bor-
der. As a solution for this problem, we propose a method
of combining two DNNs whose grids are staggered. Fur-
thermore, we train the DNN suitable to the close DOA case,
evaluate the estimation accuracy, and propose a parallel use
of multiple DNNs designed for different scenarios as in [15].
In the rest of paper, the configuration and training process
of DNN are shown after formulation of the array structure
and signal arrival model. Finally, performance evaluation by
computer simulations is described.

2. Correlation Matrix of Array Antenna

2.1 Formulation of Received Signal

Figure 1 shows that K plane waves with a wavelength λ
and complex amplitudes sk(t), k = 1, . . . , K are incident
at angles θk , k = 1, . . . , K on an L-element uniform linear
array with an element spacing of d. The received signal at
the lth antenna is expressed as

xl(t) =
K∑
k=1

sk(t)e−j
2π
λ (l−1)d sin θk + nl(t), (1)

where nl(t) is an additive white Gaussian noise at the lth

Fig. 1 An L-element uniform linear array and incident waves.

antenna.
The received signals at all the antennas can be expressed

in a vector-matrix form as

x(t) = [x1(t), x2(t), . . . , xL(t)]T

= [a(θ1), a(θ2), . . . , a(θK )] s(t) + n(t)
= As(t) + n(t), (2)

where [·]T denotes the transpose. x(t), s(t), and n(t) are
the received signal vector, transmit signal vector, and noise
vector, respectively. a(θ) is a mode vector of which lth entry
is exp(− j 2π

λ (l − 1)d sin θ), and A denotes a mode matrix
with K mode vectors as columns.

The L × L correlation matrix of x(t) is expressed as

Rxx = E
[
x(t) xH(t)

]
= ASAH + σ2I, (3)

where E[·], [·]H , and I denote the ensemble average, the
conjugate transpose, and the identity matrix, respectively.
S = E

[
s(t) sH(t)

]
is the K × K signal correlation matrix,

and σ2 is the noise power. Note that this Rxx is a Hermitian
matrix.

2.2 DOA Estimation Based on MUSIC

The rank of ASAH is K at most. Then, the eigenvectors
corresponding to the (L − K) smallest eigenvalues of Rxx

span the noise subspace which is orthogonal to the signal
subspace. MUSIC is a typical technique based on subspace
projection. It is written as a problem of finding θ which
satisfies

L∑
ν=K+1

��aH(θ) eν ��2 = 0, (4)

where eν is the noise eigenvector.
Defining ζ = exp(− j 2π

λ d sin θ), we can rewrite Eq. (4)
as

Q(ζ) = pH(ζ)ENE
H
N p(ζ) = 0, (5)

where p(ζ) =
[
1, ζ, ζ2, . . . , ζL−1]T is a rewrite of a(θ) us-

ing ζ , andEN is an L×(L−K)matrixwith noise eigenvectors
as columns. The method of estimating DOAs by finding the
roots of Eq. (5) is particularly called Root MUSIC [16]. In
this paper, Root MUSIC is used as a baseline because MU-
SIC is applicable to any array structures and Root MUSIC
requires no peak searching. Cramér-Rao bound (CRB) [17],
is also a very common baseline. However, the on-grid esti-
mation is always distorted by quantization. Thus, the MSE
comparison to the CRB is not enough to discuss the perfor-
mance. This is another motivation to use Root MUSIC as a
baseline. In the later part of this paper, we use the estimation
success rate as an evaluation measure.

3. Application of Deep Learning

3.1 Formulation of DNN

Figure 2 shows a general single-layer dense neural network
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Fig. 2 A single-layer dense neural network.

of J units with I inputs and J outputs. The J outputs zj ,
j = 1, . . . , J can be expressed as

[z1, z2, . . . , zJ ]T = [ f (u1), f (u2), . . . , f (uJ )]T (6)
u1
u2
...

uJ


=


w1,0 w1,1 · · · w1,I
w2,0 w2,1 · · · wj ,I

...
...

...
wJ ,0 wJ ,1 · · · wJ ,I




1
y1
...
yI


, (7)

where f , yi , and wj ,i represent an activation function, the
ith input, and the weight for the jth unit multiplied by yi ,
respectively. Note that these are all real-valued and that wj ,0
works as a bias added to u j .

Equations (6) and (7) can be expressed in a vector-
matrix form as

z = f (u) (8)

u = W

[
1
y

]
, (9)

where each entry of y , W , u, and z are yi , wj ,i , u j , and zj ,
respectively.

DNN has a multilayer structure. Figure 3 shows a gen-
eral dense DNN where M single-layer neural networks are
stacked. The output of the mth layer can be expressed as

z(m) = f (m)
(
u(m)

)
(10)

u(m) = W (m)
[

1
z(m−1)

]
, (11)

where [·](m) denotes the mth layer index. z(0) (= y) and
z(M)

(
= f (M)

(
u(M)

) )
correspond to the DNN input and out-

put, respectively. By using nonlinear functions for f and
adjusting weights appropriately, DNN can express arbitrary
functions.

3.2 Application to DOA Estimation

In this paper, we use the L × L correlation matrix Rxx as
an input to the DNN. Since Rxx is a Hermitian matrix, we
use only the lower triangular part for the input of the DNN.
Equations (10) and (11) are defined in real space. Therefore,
the input vector y of theDNN is decomposed to real elements

Fig. 3 A deep neural network (DNN).

as

y =
[
r1,1, r2,2, . . . , rL,L, <(r2,1), =(r2,1),

<(r3,1), =(r3,1), <(r3,2), . . . , =(rL,L−1)
]T
,

(12)

where <(·) and =(·) denote the real and imaginary parts,
respectively. The dimension of y , i.e., the number of inputs
becomes L2.

We define the output of DNN as the probability that
an incident wave exists in each direction bin from −60◦ to
60◦, i.e., the output is a on-grid angular spectrum. In this
paper, we set the angle resolution as 1◦. Thus, DNN has 121
outputs. In the training phase, each output value is set as

z(M)j =


1 if a wave is incident

from the jth angle bin
0 else.

(13)

Note that the estimated DOAs are determined by outputs
providing K highest probabilities in all the outputs with no
other restrictions for the single DNN case.

4. Evaluation of Estimation Accuracy

4.1 Simulation Conditions

We performed training and estimation simulations to eval-
uate the DOA estimation performance of the DNN. We use
TensorFlow [18] to design and process the DNN. The fol-
lowing are parameters used here. The number of incident
signals was two where both were narrowband signals having
equal power and uncorrelated. The DOA of each signal was
off-grid and ranged from −60◦ to 60◦. The number of array
elements was five, and element spacing was half-wavelength
of incident signals. We used 100 snapshots of received sig-
nals to calculate the correlation matrix in each estimation.

According to the number of array elements, the number
of inputs of the DNN was 25. The number of outputs of the
DNN was 121 as described above. The number of interme-
diate layers was changed from two to five, and the number of
units of each layerwas selected from121, 182, 242, 303, 363,
424, 484, 545, and 605. These correspond to 1.0,1.5, . . . ,5.0
times the number of outputs. Thus, we trained 36 DNNs.
The activation function of the intermediate layer was set to
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a ramp function:

f (u) = max(u,0) =

{
u for u ≥ 0,
0 elsewhere.

(14)

The activation function of the output layer was set to standard
sigmoid function:

f (u) =
1

1 + e−u
. (15)

Batch learning based on back propagation was applied
to the DNN using 200,000 training data where each training
data sample was generated by two different random DOAs
within the range from −60◦ to 60◦ and white Gaussian noise.
The signal-to-noise ratio (SNR) was fixed at 20 dB. Our
previous study shows that the DNN trained using high SNR
data provides higher performance in the same SNR range
than the DNNs trained using random or low SNR data [15].
Therefore, in this paper, we fixed the SNR of the training
data at 20 dB. The number of epochs and batch size were set
to 999 and 128, respectively. The learning rate was changed
using adaptive moment estimation (Adam) [19], which is
a method to determine the rate adaptively from the past
gradient, to adjust the learning rate automatically. It is known
that Adam provides better DNN learning performance than
other techniques such as AdaGrad [20] and AdaDelta [21].
Also, batch normalization [22], which normalizes the input
to each unit to an average of 0 and a variance of 1 on a
batch basis, was applied. The technique makes the training
of the DNN an easier optimization problem and reduces the
sensitivity to initial weights of the DNN.

During the training process, the DNN performance is
validated each epoch based on the estimation success rate
using 10,000 validation data which differed from training
data but were generated by the same conditions as training
data. The success of estimation is defined as the case where
both true DOA values are included in the estimated bins (i.e.,
the allowable estimation error is ±0.5◦). Finally, preventing
the overfitting, we picked up the DNN providing the highest
success rate in the validation.

In the evaluation phase, the estimation performancewas
evaluated using two measures: estimation success rate and
RMSE:

RMSE =

√√√
1

KN

K∑
k=1

N∑
n=1

(
θ̂
(n)
k
− θ
(n)
k

)2
, (16)

where [·](n) and N denote the nth test index and the num-
ber of tests, respectively. In the following, we evaluate the
performance with N = 100,000.

4.2 Dependency on DNN Structure

Tables 1 and 2 show estimation success rates and RMSEs
for the case where we estimate two DOAs with the SNR of
20 dB using trained 36 DNNs. The definition of DNN A is

Table 1 Estimation success rate with different parameters in evaluation
for DNN A.

Table 2 RMSE [degree] with different parameters in evaluation for
DNN A.

stated below.
The DNN showing the highest success rate has four

intermediate layers and each layer has 363 units. Then, the
success rate is 83.7%. The lowest RMSE is 1.090◦ obtained
when the DNN has four intermediate layers and the each
layer has 424 units. They are shown in bold font in Tables 1
and 2, respectively. Although the highest success rate is
achieved at a certain condition, we can obtain a reasonably
accurate DNN without exact parameter optimization when
theDNNhas three or four intermediate layers and the number
of units is not less than 242 which is twice the number of
units of the output layer. We selected the DNN providing
the highest success rate, i.e., the one with four intermediate
layers and 363 units, for the later performance evaluation
because this paper focuses on success rate performance. We
label this DNN as DNNA to distinguish it from other DNNs
discussed later.

Figure 4 shows the estimation success rate and RMSE
of the DNN A versus the number of epochs in the training
phase obtained using 10,000 validation data. Both tend to
improve gradually with the progress of training. However,
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Fig. 4 Transition of estimation success rate and RMSE of DNN A in
the training phase. For estimation performance confirmation, success rate
and RMSE of DNN A fixed at the abscissa epoch obtained using 100,000
evaluation data are also shown.

those values fluctuate at each epoch and the last epoch does
not always provide the best performance. The highest suc-
cess rate is obtained where the number of epochs is 755.
Therefore, the parameters of DNN A were fixed to ones at
the 755th epoch. For estimation performance confirmation,
the success rate and RMSE of DNN A fixed at the abscissa
epoch obtained using 100,000 evaluation data are also shown
in Fig. 4. The success rate curve is almost the same as one
obtained by validation. On the other hand, the RMSE ob-
tained using evaluation data becomes gradually worse from
about 200 epochs. This can be regarded as overfitting in
terms of the RMSE measure, and it can be said that 10,000
validation date is not enough to select the best DNN in terms
of the RMSE.

4.3 Estimation Accuracy

Figures 5 and 6 show the estimation success rates and RM-
SEs, respectively, for the case using DNN A, i.e., the one
with four intermediate layers and 363 units, Root MUSIC,
and HQR†. CRB is also shown in Fig. 6. The numerical
value in the parentheses in the legend indicate allowable es-
timation errors. The value of ±1.5◦ will be stated later. Note
that the abscissa represents SNR for the estimation phase,
not for the learning one. For Root MUSIC, we assume that
the number of incident signals is known.

As shown in Table 1, the success rate of DNN A is
83.7% at the SNR of 20 dB. As described above, the success
of estimation means that the estimation error is within±0.5◦.
When the same requirement is applied, i.e., the allowable
estimation error is set to ±0.5◦ for the Root MUSIC, the
†Hyperparameters of HQR, µ, ε , and p in [6] were empirically

set to 10, 3 × 10−6, and 3 × 10−6, respectively.

Fig. 5 Success rates of the DNNA, Root MUSIC, and HQR. As a special
case, success rates when ±1.5◦ is allowed are also shown.

Fig. 6 RMSEs of DNN A, Root MUSIC, HQR, and CRB.

success rate for the Root MUSIC becomes higher than 90%
at the SNR of 20 dB. The RMSE of DNN A is smaller than
the that of Root MUSIC at the SNR of 10 dB and 15 dB.
However, it converges at about 1.2◦ and the RMSE of Root
MUSIC becomes smaller again than the that of DNN A at
the SNR of 20 dB or higher. To discuss this performance
difference, let us examine an example when DNN A failed
the DOA estimation, i.e., the estimation error was larger than
the allowable range.

Figure 7 shows an example of the output of DNN A.
The estimated DOAs were −2◦ and 10◦ although true DOAs
are −2.21◦ and 9.49◦. In this case, the estimation error of the
latter DOA is beyond the allowable estimation error ±0.5◦.
This is caused because the DOA of 9.49◦ is almost on the
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Fig. 7 Output example of DNN A when estimation fails. True DOAs:
−2.21◦ and 9.49◦, estimated DOAs: −2◦ and 10◦.

boundary of bins of 9◦ and 10◦. Thus, it is supposed that
estimation errors of more than ±0.5◦ may be often observed
when one or both of DOAs are on the boundary of bins.

To confirm our surmise, the success rates when the al-
lowable estimation error is ±1.5◦ are also shown in Fig. 5 as
a special case. The success rate of DNN A for this relaxed
condition is highly increased and reaches about 100% at the
SNR of 15 dB. Note that this success rate is better than that
of Root MUSIC. So, we can conclude that the DOA estima-
tion using DNN A has a possibility achieving very accurate
estimation performance if we solve the on-grid related issue.

The success rates of HQR are lower than those of Root
MUSIC and DNN A even when the allowable estimation
error is ±1.5◦. Multi-band expansion may be needed to
obtain higher performance as in [6].

4.4 Proposed Solution for the On-Grid Related Issue

As described above, it is shown that the DNN frequently fails
to estimate the correct binwhen a signal arrives at angles near
the grid border. One approach of solving this on-grid related
issue is to reconstruct the DNN as a regression model rather
than a classificationmodel [14]. In this case, each output unit
of the DNN gives the estimated DOA angle directly. Thus,
the regression-based DNN can estimate off-grid DOAs and
this grid-border problem does not occur.

However, the regression-based approach has different
problems. The structure of the output layer must be changed
depending on the number of incident signals. In addition, the
training complexity of the DNN increases with the number
of incident signals since the DOA output order may change
the training performance in spite of the fact that the DOA
output order has no meaning for the accuracy.

Another approach is to make the angle resolution
smaller than 1◦. However, in this case, the number of units
of each layer may increase in inverse proportion to the reso-

Fig. 8 Staggered grids of DNN A and DNN B.

lution, and the training time and difficulty may also increase.
Moreover, the on-grid related issue shown in Sect. 4.3 is still
unavoidable even if the resolution is reduced.

Here, we propose a method using another DNN (la-
beled DNN B) which has a grid shifted half the grid spacing
from the that of DNN A and combining these two DNNs in
order to reduce the estimation error caused by the on-grid
related issue. The grids of DNN A and DNN B are stag-
gered as shown in Fig. 8. In the estimation phase, the DOAs
are determined by searching peaks in the combined angular
spectrum of DNNA and DNNB. The DNNB can be trained
independently at almost the same cost as DNN A. Note that
the DNN B has 122 output units from −60.5◦ to 60.5◦ to
cover the output range of DNN A.

4.5 Verification of the Proposed Method

We trained and validated 36 DNNs to determine configura-
tion and parameters of DNN B. The DOA of each signal is
ranged from −60.5◦ to 60.5◦. The number of units of each
layer was selected from 122, 183, 244, 305, 366, 427, 488,
549, and 610. These correspond to 1.0,1.5, . . . ,5.0 times
the number of outputs. The other conditions were the same
as those in Sect. 4.1. Tables 3 and 4 show estimation success
rates and RMSEs for the case where we estimate two DOAs
with the SNR of 20 dB using trained 36 DNNs.

The DNN showing the highest success rate has three
intermediate layers and each layer has 366 units. Then, the
success rate is 83.8%. The lowest RMSE is 0.976◦ obtained
when the DNN has five intermediate layers and each layer
has 488 units. They are shown in bold font in Tables 3 and 4,
respectively. We use the DNN showing the highest success
rate, i.e., the onewith three intermediate layers and 366 units,
as the DNN B.

Figures 9 and 10 show the estimation success rates and
RMSEs of DNN A, DNN B, staggered combination of these
DNNs, and Root MUSIC as a baseline. Note that “MUSIC”
and “DNN A” in Figs. 9 and 10 are the same as “MUSIC
(±0.5◦)” and “DNNA (±0.5◦)” in Figs. 5 and 6, respectively.
CRB is also shown in Fig. 10.

In addition to the above DNNs, we tested another DNN
(DNN H) whose angle resolution is 0.5◦ (half grid size).
The estimation success rate and RMSE of DNN H are also
shown in Figs. 9 and 10. This DNN has 241 output units
from −60◦ to 60◦, five intermediate layers, and each layer
has 603 units which is 2.5 times the number of the outputs.
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Table 3 Estimation success rate with different parameters in evaluation
for DNN B.

Table 4 RMSE [degree] with different parameters in evaluation for
DNN B.

These parameters were determined in a similar manner as
DNN A.

Although the success rates of DNN A and DNN B are
almost equal and overlapped as shown in Fig. 9, the RMSEs
of DNN A and DNN B are different as in Fig. 10. This is
because the success rate and RMSE at each epoch in the
training phase fluctuate individually as shown in Fig. 4 and
the epoch providing the highest success rate does not always
provide the small RMSE.

Compared with Root MUSIC, DNN A and DNN B
have lower success rates than the that of Root MUSIC over
all the SNR range. However, the success rate of the pro-
posed method, i.e., staggered combination of DNN A and
DNN B is higher than the that of Root MUSIC at the SNR
of 15 dB or higher and reaches 99% at the SNR of 20 dB or
higher. DNN H shows much higher success rates than those
of DNN A and DNN B at the SNR of 10 dB or higher. How-
ever, the success rate of the proposed method is slightly
higher than that of DNN H. The RMSE is significantly
improved compared with the single use cases of DNN A,
DNN B, and DNN H. It implies that most of estimation

Fig. 9 Success rates of DNN A, DNN B, staggered combination of
DNN A and DNN B, DNN H, and Root MUSIC.

Fig. 10 RMSEs of DNN A, DNN B, staggered combination of DNN A
and DNN B, DNN H, Root MUSIC, and CRB.

errors caused by the bin boundary problem are effectively
resolved by our proposed method. Note that the RMSE of
the proposed method is about 0.4◦ at the SNR of 15 dB and
is close to CRB.

Figure 11 shows an example of the combined angular
spectrum of DNNA andDNNB. In this example, the signals
arrive from −2.21◦ and 9.49◦ as in Fig. 7. The second peak
of DNNA is 10◦, and thus DNNA fails to estimate 9◦, which
is the correct unit including 9.49◦. On the other hand, the
proposed method succeeds in estimating this signal because
DNNBoutputs higher probability at 9.5◦ than that ofDNNA
at 10◦.

It was also confirmed that the estimation failed when
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Fig. 11 An example of combined angular spectrum of DNN A and
DNN B. True DOAs are −2.21◦ and 9.49◦. Output units: −2◦ and 9.5◦ are
selected correctly by searching peaks in this spectrum.

two signals arrived from similar directions. TheRMSEof the
proposed method fluctuates slightly at the SNR of 15 dB or
higher in Fig. 10 because therewere a few special caseswhere
an output bin far away from the true DOA was estimated due
to failing in separating such proximity signals. In success
rate evaluation, any error of 0.5◦ or higher is regarded as a
failure, whereas a large error in the angle domain has a big
impact on RMSE.

4.6 Close DOA Scenario

The feature that DNN can be trained for specific scenarios
is unique to machine-learning-based methods. In order
to reduce the estimation error occurring when two signals
arrive from close directions, we design a DNN suitable to
estimate the special case |θ1−θ2 | = 1◦ similar to our previous
evaluation under an on-grid DOA scenario [15]. We trained
36 DNNs each for DNN A and DNN B with an additional
restriction of |θ1−θ2 | = 1◦. Hereinafter, we call these DNNs
DNN C and DNN D, respectively.

Tables 5 and 6 show estimation success rates for DNNC
andDNND tested and validated using datawith |θ1−θ2 | = 1◦
at the SNR of 20 dB. In the following, we used the DNNs
providing the highest success rate where the number of in-
termediate layers was four and the each layer had 424 units
as shown in Table 5 for DNN C and where the number of in-
termediate layers was three and the each layer had 305 units
as shown in Table 6 for DNN D.

Figures 12 and 13 show the estimation success rates and
RMSEs for the case of 1◦ DOA difference. The success rates
of DNN C and DNN D are 97.3% and 97.6%, respectively,
at the SNR of 30 dB whereas the that of Root MUSIC is
47.9% which is less than half of the success rates of DNN C
and DNN D. The success rates at the SNR of 0 dB and 5 dB
differ betweenDNNCandDNNDbecauseDNNChasmore
layers and units than DNN D. Our several evaluation results
show that the estimation accuracy at the low SNR is highly

Table 5 Estimation success rate with different parameters in evaluation
for the case of 1◦ DOA difference for DNN C.

Table 6 Estimation success rate with different parameters in evaluation
for the case of 1◦ DOA difference for DNN D.

affected by the number of layers and the number of units.
Thus, it might be important to select an appropriate SNR
condition for training. Note that the RMSEs of DNN C and
DNNDconverge to 0.291◦which is close to the lower bound,
1/
√

12 ≈ 0.289◦, when the DOA distribution is uniform.
However, this RMSEperformance should be considered

too optimistic since we tested the DNN C and DNN D based
on the prior knowledge of 1◦ DOA difference. Actually,
the RMSEs of these DNNs at the SNR of 10 dB or higher
are much lower than CRB. In general, we cannot know the
DOA difference in advance. As described next subsection,
these DNNs do not work well when there is no restriction
in DOA difference. However, the feature that the estimation
accuracy can be improved if the DOA difference is known
or able to be estimated is advantageous to machine-learning-
based methods.

On the other hand, the success rate of the staggered
combination of DNN C and DNN D becomes smaller than
the that of Root MUSIC at the SNR of 30 dB. In fact, it is
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Fig. 12 Success rates of several types of DNNs and Root MUSIC for the
case of 1◦ DOA difference.

Fig. 13 RMSEs of several types of DNNs, Root MUSIC, and CRB for
the case of 1◦ DOA difference.

frequently observed that the combined angular spectrumwith
the resolution of 0.5◦ shows only one peak near the DOAs.
Therefore, it can be said that the staggered combination is
not a good choice when the DOA difference is so small.

4.7 Ideal Use of DNN A, DNN B, and DNN C

As described above, the staggered combination of DNN C
and DNN D is not suitable for the severe condition of 1◦
DOA difference. Instead, two single DNN, i.e., DNN C and
DNND achieve the success rate higher than 97%. Therefore,
we verify a possibility of ideal use of DNN A, DNN B, and
DNN C in the the case where no DOA restriction is assumed
as in Sect. 4.5. Here, DNN A and DNN B are combined in

Fig. 14 Success rates for the case switching the staggered combination
of DNN A and DNN B or DNN C ideally.

Fig. 15 RMSEs for the case switching the staggered combination of
DNN A and DNN B or DNN C ideally.

the angular spectrum domain as the best choice for the case
where the DOA difference is not so small. On the other hand,
for the case of proximity signals, it is better to use DNN C
(or DNN D) alone. In the following, we simply take either
set of the estimated DOAs of the staggered combination of
DNN A and DNN B or DNN C which provides lower sum
of squared errors calculated using the correct DOAs.

Figures 14 and 15 show the success rates and RMSEs
for the single and parallel use cases of the staggered ones
and DNN C. “MUSIC” in Figs. 14 and 15 are the same as
“MUSIC (±0.5◦)” in Figs. 5 and 6, respectively. Similarly,
“Staggered (A and B)” in Figs. 14 and 15 are the same as
“Staggered comb. of DNN A and B” in Figs. 9 and 10, re-
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spectively.
Since DNN C is trained only for the case of |θ1 − θ2 | =

1◦, the success rate of DNN C is much lower than that
of others. The best selection case of the staggered ones
or DNN C shows a slightly-better success rate than only
the staggered ones. However, as mentioned in Sect. 4.5,
the RMSE of the ideal use case is visibly improved in any
SNR compared with the single use cases of the staggered
ones and DNN C. This result clearly shows the possibility
of performance improvement by parallel use of specially-
trained DNNs. The RMSEs of the ideal use case at the SNR
of 10 dB and 15 dB are lower than CRB because the best
estimated DOA set is ideally selected based on the correct
DOAs. The results based on a trial selecting the DOA set
are shown in Appendix.

5. Conclusion

In this paper, we evaluated a DOA estimation method us-
ing deep learning in the case where two narrowband signals
of equal power are incident on a uniform linear array from
off-grid angles. Computer simulations have indicated high
estimation accuracy of the DNN equal to or higher than
Root MUSIC when we allow single-bin error. To reduce
the estimation error, we proposed a method of combining
two DNNs that the grids of them are off by half the resolu-
tion. The success rate of this staggered DNN combination
is higher than that of Root MUSIC at the SNR of 15 dB
or higher and reaches 99% at the SNR of 20 dB or higher.
It is also confirmed that most of estimation errors at high
SNR regions are caused by the bin boundary problem and
that the staggered combination is an effective solution to this
problem.

In addition, we designed a DNN suitable to the case
where two signals are incident with close DOAs and ex-
amined the parallel use of staggered combination and the
specially-designed DNN. It has been indicated that the DNN
designed for the specific scenario achieves the success rate
of 97.6% and that the integrated use of specialized DNN
improves the DOA estimation performance.

Currently, the computational load of the matrix-vector
multiplications required by DNN (O(I J); I J = 3632 =
131,769 in DNNA) is heavier than the that of the eigenvalue
decomposition required byMUSIC (O

(
L3); L3 = 53 = 125).

If such a computational complexity is allowed, DNN-based
DOA estimation will be definitely a useful and accurate
choice. Further optimization of the DNN model is an ur-
gent issue.
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Appendix: A DNN Selection Trial

Here, we show the results of selecting a set of estimated
DOAs from the staggered combination of DNN A and
DNN B or DNN C using another DNN to detect 1◦ DOA
difference. We used the input vector (12) for this close-
DOA-detection DNN, which is the same as the input vector
for DNN A, DNN B, and DNN C. The intermediate lay-
ers were also the same as those described in Sect. 4.1. We
allocated two output units corresponding to the 1◦ DOA dif-
ference case and the other case. The output of the DNN was
set to the probability of the case. Since the desired output
was one-hot, the activation function of the output layer was
set to a softmax function:

z(M)j =
exp

(
u(M)j

)
∑J

j=1 exp
(
u(M)j

) . (A· 1)

In the training phase, 100,000 random DOA difference
data and 100,000 1◦ DOA difference data were used. The
SNR was randomly set within the range from 0 dB to 30 dB.
As a result of the training, the DNN showing the highest
detection success rate (99.2%) had five intermediate layers
and each layer had 545 units.

Figures A· 1 and A· 2 show the DOA estimation success
rates and RMSEs for the case switching the staggered com-
bination of DNN A and DNN B or DNN C based on close
DOA detection. The success rate of switching the staggered
ones orDNNCbased on the closeDOAdetection are slightly
degraded in any SNR compared with the single use cases of
the staggered ones. However, the RMSE is visibly improved
compared with the staggered ones and is close to that of
the ideal selection case of the staggered ones or DNN C at
the SNR of 25 dB and 30 dB. It is highly expected that the
degradation of the success rate can be reduced by improving
the detection success rate in the future study.

Fig. A· 1 Success rates for the case switching the staggered combination
of DNN A and DNN B or DNN C based on close DOA detection.

Fig. A· 2 RMSEs for the case switching the staggered combination of
DNN A and DNN B or DNN C based on close DOA detection.
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