
522
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

PAPER
KBP: Kernel Enhancements for Low-Latency Networking for
Virtual Machine and Container without Application
Customization∗

Kei FUJIMOTO†a), Masashi KANEKO†, Members, Kenichi MATSUI††, Senior Member,
and Masayuki AKUTSU†, Member

SUMMARY Packet processing on commodity hardware is a cost-
efficient and flexible alternative to specialized networking hardware. How-
ever, virtualizing dedicated networking hardware as a virtual machine (VM)
or a container on a commodity server results in performance problems, such
as longer latency and lower throughput. This paper focuses on obtaining a
low-latency networking system in a VM and a container. We reveal mech-
anisms that cause millisecond-scale networking delays in a VM through a
series of experiments. To eliminate such delays, we design and implement
a low-latency networking system, kernel busy poll (KBP), which achieves
three goals: (1) microsecond-scale tail delays and higher throughput than
conventional solutions are achieved in a VM and a container; (2) application
customization is not required, so applications can use the POSIX sockets
application program interface; and (3) KBP software does not need to be
developed for every Linux kernel security update. KBP can be applied to
both a VM configuration and a container configuration. Evaluation results
indicate that KBP achieves microsecond-scale tail delays in both a VM and
a container. In the VM configuration, KBP reduces maximum round-trip
latency by more than 98% and increases the throughput by up to three times
compared with existing NAPI and Open vSwitch with the Data Plane De-
velopment Kit (OvS-DPDK). In the container configuration, KBP reduces
maximum round-trip latency by 21% to 96% and increases the throughput
by up to 1.28 times compared with NAPI.
key words: low latency, high throughput, network, kernel, virtual machine,
container

1. Introduction

Packet processing on commodity hardware is a cost-efficient
and flexible alternative to specialized networking hardware.
Network function virtualization (NFV) [2] has been pro-
posed by the European Telecommunications Standards In-
stitute (ETSI) and is being put into practical use in telecom
networks. In addition, multi-access edge computing (MEC)
[3] has been proposed by the ETSI, which enables terminal
devices to offload their workloads to edge clouds located near
the terminal. From an operational flexibility perspective, vir-
tual servers such as virtual machines (VMs) and containers
are used in the edge cloud. However, virtualizing dedicated
hardware as VMs or containers on commodity servers results

Manuscript received June 17, 2021.
Manuscript revised August 23, 2021.
Manuscript publicized October 26, 2021.
†The authors are with the NTT Network Service Systems Lab-

oratories, NTT Corporation, Musashino-shi, 180-8585 Japan.
††The author is with the Nippon Telegraph and Telephone West

Corporation, Osaka-shi, 534-0024 Japan.
∗A part of this paper was presented at IEEE CCNC 2021 [1].

a) E-mail: kei.fujimoto.rg@hco.ntt.co.jp
DOI: 10.1587/transcom.2021EBT0004

in performance problems [4]–[7], such as longer latency and
lower throughput. Since low latency is required by various
real-time applications, such as online gaming, virtual real-
ity, and autonomous vehicles [8]–[10], and a virtual server
such as a VM and a container is expected to be used for
operational flexibility, packet processing delay in a VM or a
container needs to be reduced.

Two requirements from application-developer-friendly
and service-provider-operability viewpoints should be con-
sidered when designing a low latency solution for a VM or
a container. From an application-developer-friendly view-
point, application customization should not be required. Ap-
plication developers no longer need to develop networking
functions in applications since a kernel provides network-
ing functions and developers can easily use these functions
via the POSIX sockets application program interface (API)
[11], [12]. If a solution requires customizing applications,
developers need to study and develop complicated network-
ing functions, which impedes widespread use of the solu-
tion. In addition, from a service-provider viewpoint, soft-
ware should not need to be developed for reducing network-
ing delay to keep up with Linux kernel security updates. If
software for reducing delay is needed to keep up with kernel
updates, which incurs high cost, service providers must con-
tinue to develop new versions of the software for every kernel
security update. As discussed in Sect. 2, existing technolo-
gies to reduce delay in a VM or a container cannot meet the
requirements of making both application customization and
redevelopment with kernel security update unnecessary.

We thus designed and implemented a low-latency net-
working system, kernel busy poll (KBP), which achieves
three goals: (1) microsecond-scale tail delays and higher
throughput than conventional solutions are achieved in a
VM and a container; (2) application customization is unnec-
essary, so an application can use the POSIX sockets API; and
(3) software for reducing networking delay does not need to
be developed for every Linux kernel security update. KBP
has a kernel thread that constantly checks for the arrival of
incoming network packets without being interrupted and im-
mediately transfers them to a kernel network protocol stack.
Since these changes for existing kernels are minimal, KBP
can be applied using a kernel livepatch framework [13] and
does not need to be developed every time kernel security
is updated, unless there is a change in netif_rx_schedule or

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers



FUJIMOTO et al.: KBP: KERNEL ENHANCEMENTS FOR LOW-LATENCY NETWORKING FOR VIRTUAL MACHINE AND CONTAINER
523

netif_receive_skb. In addition, KBP does not change the ex-
isting POSIX sockets API, so application customization is
unnecessary. KBP can be applied to both aVMconfiguration
and a container configuration.

The rest of this paper is organized as follows:

• Understanding of millisecond-scale networking de-
lays: mechanisms that cause millisecond-scale packet-
forwarding delays in a VM are revealed (see Sect. 3.2);

• Design and implementation of KBP: we designed and
implemented a low-latency networking system that
avoids the causes of networking delays (see Sect. 4);

• Demonstration of the benefits of KBP: our experimental
results indicate that KBP can reduce packet-forwarding
delay on themicrosecond-scale and improve throughput
in both a VM and a container compared with conven-
tional technologies (see Sects. 5 and 6).

2. Related Work

The current Linux kernel uses a receiver (Rx) interrupt
processing scheme called NAPI [14], adopted from ker-
nel 2.4.20. Instead of using one hardware interrupt re-
quest (hardIRQ) per packet, NAPI combines interrupts with
polling so that multiple packets can be processed within
a single hardIRQ. NAPI achieves higher throughput than
a conventional scheme of per-packet interrupt. However,
NAPI is an interrupt model, and packet processing occurs
via software interrupt requests (sofIRQs). As discussed in
Sect. 3.2, these softIRQs incur millisecond-scale delays.

TheData PlaneDevelopmentKit (DPDK) [15] is a user-
space packet-processing framework. The DPDK enables
low-latency packet processing since a DPDK Poll Mode
Driver (PMD) can directly access a network interface card
(NIC) over a kernel and does not generate any interrupt when
packets arrive [16]. To use the DPDK, a PMD and layer 2
(L2) / layer 3 (L3) / layer 4 (L4) protocol processing func-
tions must be integrated into an application. The DPDK
does not meet the requirement of making application cus-
tomization unnecessary. In addition, since a polling thread
is placed in a user space, the DPDK does not have functions
such as deadlock control for prohibiting multiple executions
of softIRQs, which must be considered if a polling thread is
placed in a kernel.

AF_XDP [17] is an express data path, and a user-space
program can directly access Rx and transmitter (Tx) rings in
a NIC via anAF_XDP socket. To use AF_XDP, a function of
interworking the specialized AF_XDP socket interface and
L2/L3/L4 protocol processing functions must be integrated
into an application. Thus, AF_XDP does not meet the re-
quirement of making application customization unnecessary
either.

ptnet [18] improves the performance of existing VM
network I/O mechanisms by enabling a guest to directly pass
through a host physical interface via netmap [19]. If a guest
application is a netmap-compatible program, the application
can directly access a host NIC. However, this does not

meet the requirement of making application customization
unnecessary. Traditional socket applications also can use this
ptnet network I/Omechanism by deploying the original ptnet
driver in a guest. However, the driver generates softIRQs to
notify a guest of arriving packets. As discussed in Sect. 3.2,
these softIRQs incur millisecond-scale delays. Either way,
ptnet requires the original NIC driver and hypervisor. If a
security update occurs, we need to continue to develop the
driver and hypervisor for every security update.

Busy Poll Sockets (BPS) [20] enhances the native ker-
nel networking stack by enabling the socket layer code to
directly poll an Rx queue of a Ethernet device and pro-
vides low-latency networking performance without applica-
tion customization. However, BPS needs to modify a device
driver and core parts of the kernel, such as sk_buff and a
kernel socket. In BPS, an application thread evokes a system
call to trigger a polling thread with a fixed execution time
in a context of the application, not a dedicated kernel thread
for polling. Therefore, application developers need to be
aware of the timing of busy polling of BPS when developing
applications, and they also need to tune and set the polling
execution time. Other approaches to reduce delay in a vir-
tual server are implementing a run-to-completion network-
ing feature [21] and implementing the original scheduler and
inter-processor interrupts algorithm [22]–[24]. These solu-
tions need to modify core parts of a kernel and do not meet
the requirements of not needing to develop an original ker-
nel and not needing to continue to develop it for every kernel
security update.

DMM lwIP [25] and Slim [26] provide low-latency
data paths without the need to customize an application or
modify a kernel. They use the LD_PRELOAD mechanism
available in Linux that enables interception of any function
call to any shared library to intercept the POSIX sockets API.
However, the LD_PRELOAD mechanism does not work for
applications that do not use lib.c libraries, such as socket.c
for socket programming.

3. Analysis of Networking Delays

To design a low-latency data path, we need to know key
factors of packet-forwarding delays in a server. Since a
VM has a larger virtualization overhead and incurs higher
latency than a container, we used a VM and analyzed the
factors that cause packet-forwarding delays. As discussed
in previous work [1], we measured networking delays by
setting various measurement points and analyzed the causes
by using the ftrace, kernel tracing tool. In Sect. 3.1, we
discuss themeasurement results regarding networking delays
in a VM, and discuss millisecond-scale delay occurrence
mechanisms and current countermeasures to suppress these
delays in Sect. 3.2. On the basis of these mechanisms, we
present KBP for a low-latency data path in Sect. 4.

3.1 Measurement Results of VM Networking Delays

For measuring networking delays inside a kernel, we used



524
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

Fig. 1 Delay measurement points in virtual server.

Table 1 Experimental platform specifications.
Host server

CPU Intel Xeon CPU D-1587 1.70Ghz
Memory 32GB
NIC Intel Ethernet Controller I350AM2 (1000Base-T)
OS Ubuntu 18.04
kernel 4.15.0-20-generic
Hypervisor KVM

Guest server
vCPU 2 cores
Memory 1 GB
OS Ubuntu 18.04
kernel 4.15.0-20-generic

Table 2 Maximum packet-forwarding delays in VM.

the extended Berkeley Packet Filter (eBPF), a built-in kernel
feature that enables eBPF programs to be executed at hook
points. We set measurement hook points as shown in Fig. 1.
Table 1 lists the platform specifications for thismeasurement.
We used a kernel-based virtual machine (KVM) hypervisor-
based VM (KVM is an inbuilt hypervisor available in Linux)
and vhost-net, a kernel-level back-end for virtio networking
that reduces virtualization overhead by moving virtio-packet
processing tasks out of the QEMU process. Table 2 lists the
results of delay measurement at 1-Gbps one-way traffic with
1518-byte user datagram protocol (UDP) frames. Since the
eBPF approach negatively affects packet forwarding perfor-
mance [27], the results listed are worse than those without
measuring delay. However, we can find bottlenecks where
delays occur. The bottlenecks are txg1-txg2, txg2-txh0, and
txh1-txh2 in the Tx traffic flow and rxh1-rxg0 in the Rx
traffic flow.

Fig. 2 Measurement results of PIT.

3.2 Mechanisms of Packet-Forwarding Delays in Server

In this section, we discuss the mechanisms that cause the
millisecond-scale delays shown in Table 2. We analyzed the
causes of the millisecond-scale delays by using trace tools,
such as ftrace, and found the following are millisecond-scale
delay-occurrence mechanisms:

3.2.1 Congestion in Physical NIC

Kernel and virtual NIC (vNIC) packet processing, such as
virtio-net and vhost-net, causes packet jitter. We measured
the packet interval time (PIT) at a 1-Gbps traffic rate with
1518-byte UDP frames. Figure 2 shows the results of PIT-
measurement tests at txg2 and txh0 in the Tx traffic flow.
In theory, the PIT should be 12 µs. However, after passing
through a kernel and vNIC, the number of packets arriving at
intervals of 7 to 8 µs increased. This means that microburst
occurs after passing through a kernel and vNIC. Since the
1000BASE-T Gigabit Ethernet NIC cannot process over 1-
Gbps traffic, this microburst incurs congestion in the NIC,
and this congestion causes a 2.5-ms delay of interval txh1-
txh2 of Tx in Table 2. A higher-throughput-performance
NIC can suppress this delay.

3.2.2 CPU Frequency Variation

To reduce power consumption and heat output, the central
processing unit (CPU) clock speed changes dynamically.
A governor defines the power characteristics of the sys-
tem CPU. For example, when cpufreq_ondemand is set,
the minimum clock frequency is used when the system is
idle. A lower frequency clock causes packet congestion in
kernel-packet processing. This is one cause of delays of
intervals txg1-txg2 and txg2-txh0 of Tx and rxh1-rxg0 of
Rx in Table 2. Such delays can be suppressed by using a
high-performance governor, such as cpufreq_performance.

3.2.3 Instantaneous Stop of vCPU

The KVM virtual CPU (vCPU) emulation thread cannot
completely monopolize a physical CPU core since this core
is interrupted by hardIRQs, such as local timer interrupts,
and interfered with by high-priority kernel threads such as
migration threads. This causes the vCPU to instantaneously



FUJIMOTO et al.: KBP: KERNEL ENHANCEMENTS FOR LOW-LATENCY NETWORKING FOR VIRTUAL MACHINE AND CONTAINER
525

stop, and the guest kernel cannot process packets during
these periods. This is one cause of delays of intervals txg1-
txg2 of Tx and rxh1-rxg0 of Rx in Table 2. These delays
can be suppressed by setting a real-time scheduling policy
for the KVM vCPU thread, such as using the chrt command.

3.2.4 Competition between Vhost-Net and Other Kernel
Threads

When a CPU core used by vhost-net is interfered with by
other kernel threads, vhost-net cannot process packets during
this period and packet delay occurs. This is another cause
for delays of intervals txg1-txg2 of Tx and rxh1-rxg0 of Rx
in Table 2. These delays can be suppressed by setting a
dedicated CPU core for vhost-net, such as using taskset and
isolcpus.

3.2.5 softIRQ Competition

To notify the guest kernel of arriving packets, vhost-net noti-
fies a KVM kernel thread of the arriving packet and triggers
a guest interrupt using eventfd. After this, a softIRQ oc-
curs in the guest kernel for packet processing. When other
softIRQs, such as local timer interrupts and ata_piix, com-
pete with the softIRQ, ksoftirqd schedules these softIRQs,
which must wait until the scheduled time. Furthermore,
when the ksoftirqd is not given enough CPU time, softIRQ
scheduling is delayed. This waiting causes delays of interval
rxh1-rxg0 of Rx in Table 2. This competition is unavoidable
with any tuning. This softIRQ competition can occur not
only in the guest, but also in the host. So this softIRQ can
also occur in the host of a container-based server.

4. KBP Architecture

Since the delay factor of the softIRQ competition mentioned
in Sect. 3.2.5 cannot be avoided when using any tuning or
high-throughput performance NIC, we designed KBP [1]
to avoid the softIRQ competition. Figure 3 shows the
high-level architecture of KBP compared with NAPI. To
avoid the softIRQ competition and achieve the goal of (1)
microsecond-scale tail delays and high throughput, KBP has
a kernel thread, KBP thread, which constantly checks for
the arrival of incoming network packets without being inter-
rupted and immediately transfers them to a kernel network
protocol stack (see Sect. 4.1). To achieve the goal of (2)
making application customization unnecessary, KBP does
not change the existing POSIX sockets API (see Sect. 4.2).
In addition, to achieve the goal of (3) making it unnecessary
to develop software for every Linux kernel security update,
KBP can be deployed to existing kernels by using a kernel
livepatch framework (see Sect. 4.3). No existing technology
has all these features: having a busy-poll thread in a kernel,
not modifying the existing kernel protocol stack, and being
deployed by a kernel livepatch. To achieve these three re-
quirements, a low-latency and high-throughput feature such
as busy-poll thread needs to be developed in a kernel without

Fig. 3 High-level architecture.

modifying the existing kernel protocol stack. However, in a
kernel, there is a restriction that when a softIRQ is being exe-
cuted on a CPU core, another softIRQ cannot be executed on
the same CPU core. Busy polling in a kernel is technically
challenging to perform under this restriction. In addition, if
we develop a busy-poll thread in a kernel without any effort,
we will need to develop our own kernel, and we need to
keep developing the kernel for every kernel security update.
To avoid this, KBP was designed to reduce the number of
changes to the existing NAPI as much as possible, and thus
only two changes to NAPI were needed to create a polling
thread in a kernel. Thus, KBP can be applied to a kernel
by using a framework of the kernel livepatch. KBP can be
applied to both a guest kernel and a host kernel for VM archi-
tecture as shown in Fig. 4 and to a host kernel for container
architecture as shown in Fig. 5. KBP has the disadvantages
that it limits flexibility of CPU core usage for applications,
VMs, and containers and possibly consumes more power
than NAPI since KBP occupies a CPU core for busy polling.



526
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

Fig. 4 KBP architecture for VM.

Fig. 5 KBP architecture for container.

4.1 Busy Poll Feature

To suppress softIRQs for packet processing that cause delays
asmentioned in Sect. 3.2.5, KBPuses a pollingmodel instead
of an interrupt model. The following lists the changes made
to NAPI.

• In NAPI, when NIC receives packets and de-
livers them to an Rx queue, it raises a
hardIRQ and activates a softIRQ with type
NET_RX_SOFTIRQ in netif_rx_schedule. KBP dis-
ables this NET_RX_SOFTIRQ and never activates a
softIRQ.

• KBP has an original kernel thread, KBP thread, which
constantly checks a poll_list for the arrival of in-
coming packets without being interrupted and imme-
diately transfers the packets from a ring buffer to
netif_receive_skb.

A KBP thread is deployed in a kernel as a kernel thread.
In a kernel, there is a restriction that when a softIRQ is being
executed on a CPU core, another softIRQ cannot be executed
on the same CPU core. Polling performed by a KBP thread
and the subsequent processes such as netif_receive_skb are
originally performed in the context of softIRQs in the base
system, NAPI. If a KBP thread keeps busy polling without

deadlock control, it will fall under the restriction of prohibit-
ing multiple executions of softIRQs, and other softIRQs will
not be executed. Busy polling is technically challenging
to perform in a kernel. Therefore, KBP enables a dead-
lock control mechanism that prohibits the execution of other
softIRQs when a KBP thread receives a packet and releases
the prohibition once the packet processing is finished. In
addition, since a KBP thread keeps polling all the time in
a kernel, application developers do not need to consider the
timing of polling or tuning the polling execution time at all,
making KBP an application developer-friendly solution for
low latency.

For low latency and high throughput, a KBP thread oc-
cupies a CPU core and should not be preempted by other
processes. This may limit flexibility of CPU core usage for
applications, VMs, and containers. In addition, the busy
polling prevents the CPU from sleeping to save power, pos-
sibly incurring greater power usage. There is a trade-off
between low latency and power savings.

The steps of packet processing in a kernel with KBP are
as follows:

1. When NIC receives a packet, it directly copies the
packet to a ring buffer via direct memory access and
notifies a kernel by raising a hardIRQ, which calls
netif_rx_schedule and adds pointer information to a
poll_list. NET_RX_SOFTIRQ is disabled and never
activates a softIRQ.

2. The KBP thread constantly checks whether the poll_list
is empty or not. If the poll_list is not empty, it disables
other softIRQs and derives the pointer information from
the poll_list and pulls packets from the ring buffer. Af-
ter this, it passes them to netif_receive_skb for further
processing. After the processing, the prohibition of
other softIRQs is released.

In VM configuration, the delay factor of the softIRQ
competition mentioned in Sect. 3.2.5 can occur in a guest
kernel and a host kernel. Therefore, KBP should be de-
ployed in both the guest kernel and the host kernel as shown
in Fig. 4. Especially, since the ksoftirqd in the guest kernel
is more likely to run out of CPU time due to the overhead
of emulating a VM and cause delays, applying KBP to the
guest kernel is more effective. For further lower latency
and higher throughput, KBP should be deployed in both the
guest kernel and the host kernel. In container configuration,
the delay factor of the softIRQ competition can occur in a
host kernel. Therefore, KBP should be deployed in the host
kernel as shown in Fig. 5. This is supplemental informa-
tion, but softIRQs occur in not only the host kernel but also
a container when veth (virtual ethernet device) receives a
packet. Since veth is not a NAPI device, the old receiving
function process_backlog is used. These softIRQs for veth
are immediately processed right after they are invoked and
the softIRQ competition mentioned in Sect. 3.2.5 is hard to
occur. As we discuss in Sect. 6, we have found that applying
KBP only to the host kernel can suppress delays.

In terms of scaling out, adding more KBP threads



FUJIMOTO et al.: KBP: KERNEL ENHANCEMENTS FOR LOW-LATENCY NETWORKING FOR VIRTUAL MACHINE AND CONTAINER
527

Fig. 6 High-level architecture of solutions for VM to be evaluated.

can handle more traffic flow streams. By configuring
smp_affinity for the CPU scale-out mechanism of receive-
side scaling (RSS), a service provider can manage the num-
ber of CPU cores used for packet processing and invoke the
KBP threads associated with these CPU cores.

In terms of isolation, when a dedicated CPU core is al-
located to a KBP thread and CPU cores used by applications,
VMs, and containers are allocated separately, KBP does not
degrade the performance of the applications, the VMs, or
the containers.

4.2 No Modification of Kernel Protocol Stack

Since KBP does not change the existing kernel protocol stack
upstream from netif_receive_skb, applications can use the
POSIX sockets API. Service providers can use KBP without
any application customization.

4.3 Deploying by Kernel Livepatch

The kernel livepatch enables critical kernel security updates
or additional functions to be installed without rebooting a
system by directly patching the running kernel. KBP can
be applied to a kernel by using a framework of the kernel
livepatch since it needs only two changes to NAPI: disabling
NET_RX_SOFTIRQ in netif_rx_schedule and starting up a
KBP thread. By using this framework, service providers
do not need to develop their original kernel and can obtain
low latency by simply applying the livepatch of KBP to
the kernel. Unless netif_rx_schedule or netif_receive_skb is
changed, the livepatch of KBP does not need to be modified.
In addition, when a security update occurs in a kernel, it can
be dealt with by reapplying the livepatch of KBP after the
security update.

5. Performance Evaluation of VM

We conducted a series of experiments of VM to compare
KBP with current solutions, NAPI and Open vSwitch with

Table 3 Experimental platform specifications of VM.
Host server

CPU Intel Xeon CPU E5-2660 v4 2.0GHz
Memory 64GB
NIC Intel X520 DP 10Gb DA/SFP+
OS Ubuntu 18.04
kernel 4.15.0-20-generic
Hypervisor KVM

Guest server
vCPU 4 cores
Memory 4GB
OS Ubuntu 18.04
kernel 4.15.0-20-generic

the DPDK (OvS-DPDK) for none-DPDK applications [28]
as discussed in previous work [1]. Figure 6 shows the high-
level architecture of these solutions. These solutions met the
requirements of making both application customization and
redevelopmentwith each kernel security update unnecessary.
In this OvS-DPDK architecture, the DPDK was not used for
a guest application to meet the requirement of making ap-
plication customization unnecessary as shown in Fig. 3. We
measured latency and throughput performance. Table 3 lists
the platform specifications for these experiments. To use a
high-throughput NIC, we used a different machine from the
one used in the analysis of networking delays in Sect. 3.1
due to the space limitations of the PCI card. Note that the
CPU performance used for this performance evaluation is
higher than the CPU used for the analysis of networking de-
lays in Sect. 3.1. To suppress the delay factors mentioned
in Sect. 3.2.1 to Sect. 3.2.4, we used a high-throughput NIC
of Intel X520 DP 10Gb, the CPU cores that process pack-
ets were set using a high performance governor, KVM vCPU
thread and vhost-netwere set as the real-time scheduling pol-
icy, and these CPU cores were isolated from user processes
using isolcpus. In the OvS-DPDK architecture, dedicated
CPU cores were allocated for the DPDK PMD threads and
isolated from user processes using isolcpus. The server to
be evaluated and a traffic generator were directly connected
with an optical cable. We added a traffic load to a single



528
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

Fig. 7 Evaluation configuration.

flow.

5.1 Latency

5.1.1 Measurement Methodology

We measured round-trip latency by using a performance
tester, Spirent Test Center SPT-N4U (STC). Figure 7 shows
the traffic flow. The STC sent a UDP packet to the server to
be evaluated. The server received the packet and transmitted
it to an application on the server. The application transmit-
ted the packet to the STC. The STC received the packet
and then calculated the round-trip latency between sending
and receiving times. We added a traffic load and measured
the maximum round-trip latency for 60 s and repeated the
measurement 5 times.

5.1.2 Results

The left side of Fig. 8 shows the measured maximum round-
trip latency at 80-Mbps traffic rate with 64-, 512-, and 1518-
byte UDP frames. The 80-Mbps traffic rate was that at
which no packet loss occurred in NAPI, OvS-DPDK, or
KBP. KBP achieved maximum round-trip latency within
200 µs with all byte frames. NAPI and OvS-DPDK in-
curred millisecond-scale latencies with all byte frames. As
discussed in Sect. 3.2.5, NAPI and OvS-DPDK cannot pre-
vent softIRQ competition, which caused these latencies. On
the other hand, KBP can prevent softIRQ competition and
immediately transfers incoming packets to a kernel network
protocol stack by busy polling, KBP improves latency per-
formance.

The right side of Fig. 8 shows the measured maximum
round-trip latency at a 1-Gbps traffic rate with 64-, 512-, and
1518-byte UDP frames. KBP achieved maximum round-
trip latency within 250 µs with 512- and 1518-byte frames.
However, it incurred millisecond-scale latency with 64-byte
frames. At 1 Gbps with 64-byte frames, frames arrived at
0.5 µs intervals. According to the measurement experiments
using an eBPF program discussed in Sect. 3.1, the average
time to process a frame from rxg0 to rxg1 for Rx is 2.20 µs;

Fig. 8 Latency performance.

the guest kernel cannot process the frames at 0.5 µs intervals,
causing frame congestion. The congestion incurs delays and
frame losses. Since the average time to process a frame from
rxg0 to rxg1 for Rx is 2.20 µs, the frame-size limit at which
KBP can suppress delay is 282 bytes at 1-Gbps traffic rate
in theory. NAPI and OvS-DPDK incurred millisecond-scale
latencies and packet loss with all byte frames.

KBP improved average round-trip latency compared
with NAPI except for at a 1-Gbps traffic rate with 64-byte
frames. In terms of average latency, OvS-DPDK outper-
forms KBP. KBP uses an existing framework of vhost-net
for interworking with virtio-net, and this incurs higher costs
than vhost-user of OvS-DPDK. However, OvS-DPDK in-
curred millisecond-scale delays. The frequency at which
millisecond-scale delays occur depends on the frequency of
the softIRQ competition, such as local timer interrupts and
swapping. In this environment, instantaneous burst delays
over a millisecond occurred once per second. OvS-DPDK is
not suitable for mission-critical services such as controlling
drones since control signals can be delayed. On the other
hand, KBP achieved microsecond-scale tail latencies and



FUJIMOTO et al.: KBP: KERNEL ENHANCEMENTS FOR LOW-LATENCY NETWORKING FOR VIRTUAL MACHINE AND CONTAINER
529

suits those services. To elucidate stability, we added a traffic
load for 12 hours, and KBP achieved maximum round-trip
latency within 250 µs except for at a 1-Gbps traffic rate with
64-byte frames.

5.2 Throughput

5.2.1 Measurement Methodology

We adopted the RFC2544 [29] benchmark to measure
throughput at zero frame loss. We used the Pktgen-DPDK
[30] as a traffic generator. Figure 7 shows the traffic flow.
The Pktgen-DPDK sent a UDP packet to the server to be
evaluated. The server received the packet and transmitted it
to an application on the server. The application transmitted
the packet to the Pktgen-DPDK, and the Pktgen-DPDK re-
ceived the packet. We repeatedly added a traffic load for 60 s
while gradually increasing the load amount little by little and
calculated the maximum throughput at zero frame loss. We
repeated the measurement 10 times.

5.2.2 Results

Figure 9 shows the results of throughput measurement.
KBP achieved up to 1.36× higher throughput than NAPI
and 2.77× higher throughput than OvS-DPDK with 64-byte
UDP frames, up to 1.75× higher throughput than NAPI and
6.48× higher throughput than OvS-DPDK with 512-byte
UDP frames, and up to 3.28× higher throughput than NAPI
and 3.39× higher throughput than OvS-DPDK with 1518-
byte UDP frames. As discussed in Sect. 3.2.5, NAPI and
OvS-DPDK cannot prevent softIRQ competition, so retriev-
ing incoming packets from poll_list is delayed, which causes
buffer overflow and packet loss. Since this RFC2544 bench-
mark is an evaluation method that measures the maximum
throughput without packet loss, throughput performance is
measured to be low if packet loss is likely to occur. In this
OvS-DPDK architecture, since packets are transferred fast
in the host by the DPDK, buffer overflow is more likely to
occur at the bottleneck point in the guest than NAPI. On
the other hand, KBP can prevent softIRQ competition and
immediately transfers incoming packets to a kernel network
protocol stack by busy polling, so KBP improves throughput

Fig. 9 Throughput performance.

performance.

6. Performance Evaluation of Container

Similar to the performance evaluation of VM, we conducted
a series of experiments of containers to compare KBP with
current solutions. Figure 10 shows the high-level architec-
ture of these solutions. (d) NAPI with docker container [31]
was a simple container architecture. (e) KBP with docker
container was an architecture in which KBP was applied to
the host of a docker container. (d) NAPI with docker con-
tainer and (e) KBP with docker container used the standard
docker network model, the host and the container were con-
nected by a bridge device and network address translation
(NAT) rules were applied. (f) NAPI inKubernetes [32] clus-
ter was a simple Kubernetes Pod architecture. (g) KBP in
Kubernetes cluster was an architecture in which KBP was
applied to the host of a Kubernetes pod. These solutions met
the requirements of making both application customization
and redeveloping with each kernel security update unnec-
essary. We measured latency and throughput performance.
Table 4 lists the platform specifications for these experi-
ments. To use a high-throughput NIC, we used a different
machine from the one used in the analysis of networking de-
lays in Sect. 3.1 due to the space limitations of the PCI card.
Note that the CPU performance used for this performance
evaluation is higher than the CPU used for the analysis of
networking delays in Sect. 3.1. Flannel [33] was installed as
the container network interface (CNI) in (f) NAPI in Kuber-
netes cluster and (g) KBP in Kubernetes cluster. However,
in this performance test, flannelwas not used in the test route
since the server to be evaluated communicated with nodes
outside the Pod, so the effect of performance degradation
due to flannel software processing did not need to be consid-
ered. To suppress the delay factors mentioned in Sect. 3.2,
the CPU cores that process packets were set using a high
performance governor, and these CPU cores were isolated
from user processes using isolcpus. The server to be evalu-
ated and a traffic generator were directly connected with an
optical cable. We added a traffic load to a single flow.

6.1 Latency

6.1.1 Measurement Methodology

We measured round-trip latency in the same way as the test
of VM as discussed in Sect. 5.1.1. We added a traffic load
and measured the maximum round-trip latency for 60 s and
repeated the measurement 5 times.

6.1.2 Results

The left side of Fig. 11 shows themeasuredmaximum round-
trip latency at a 100-Mbps traffic rate with 64-, 512-, and
1518-byte UDP frames. (e) KBP with docker container
achieved maximum round-trip latency within 200 µs with
all byte frames. (d) NAPI with docker container incurred



530
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

Fig. 10 High-level architecture of solutions for container to be evaluated.

Table 4 Experimental platform specifications of container.
Host server

CPU Intel Xeon CPU E5-2660 v4 2.0GHz
Memory 64GB
NIC Intel X520 DP 10Gb DA/SFP+
OS Ubuntu 18.04
kernel 4.15.0-20-generic

Container / Pod
Docker 19.03.8
kernel the same as host (4.15.0-20-generic)
Pod one-container-per-Pod mode
Kubernetes 1.18.4
CNI flannel (vxlan)

millisecond-scale latencieswith 64-byte frames and achieved
maximum latency within 200 µs with 512- and 1518-byte
frames. In the 64-byte frames test, KBP was effective at
reducing tail latency, but in the 512- and 1518-byte frames
tests, its effectiveness was limited. Since container does not
need to emulate VM and the virtualization overhead is small,
softIRQ competitions and lack of CPU time for ksoftirqd are
hard to generate. Thus, the effect of KBP was limited in
the 512- and 1518-byte frames tests. (f) NAPI in Kuber-
netes cluster incurred millisecond-scale latencies with all
byte frames. (g) KBP in Kubernetes cluster achieved maxi-
mum round-trip latency within 550 µs with all byte frames.
Kubernetes schedulers (kube-scheduler) and other related
threads are running in Pods of Kubernetes cluster and these
threads deprive ksoftirqd of CPU time. Due to lack of CPU
time for ksoftirqd and softIRQ competitions, (f) NAPI inKu-
bernetes cluster incurred millisecond-scale latency. On the
other hand, KBP can prevent softIRQ competition by busy
polling, so KBP improved latency performance.

The right side of Fig. 11 shows the measured maxi-
mum round-trip latency at a 1-Gbps traffic rate with 64-,
512-, and 1518-byte UDP frames. (e) KBP with docker con-
tainer achieved maximum round-trip latency within 350 µs
with 512- and 1518-byte frames. (d) NAPI with docker
container incurred millisecond-scale latencies with 64- and
512-byte frames. (f) NAPI in Kubernetes cluster incurred
millisecond-scale latencies with all byte frames. (g) KBP
in Kubernetes cluster achieved maximum round-trip latency

Fig. 11 Latency performance.

within 700 µs with 512- and 1518-byte frames. Since the
packet arrival interval was short at a 1-Gbps traffic rate and
the frequency of softIRQ competitions of NAPI was high,
NAPI incurredmillisecond-scale latency. On the other hand,
KBP can prevent softIRQ competition by busy polling, so



FUJIMOTO et al.: KBP: KERNEL ENHANCEMENTS FOR LOW-LATENCY NETWORKING FOR VIRTUAL MACHINE AND CONTAINER
531

KBP improved latency performance. However, (e) KBPwith
docker container and (g) KBP inKubernetes cluster incurred
millisecond-scale latency with 64-byte frames. As discussed
in Sect. 5.1.2, at 1Gbps with 64-byte frames, frames arrived
at 0.5 µs intervals and the protocol stack in the container
could not process the frames at 0.5 µs intervals, causing
frame congestion. This was beyond the performance limits
of (e) KBPwith docker container and (g) KBP inKubernetes
cluster architecture.

6.2 Throughput

6.2.1 Measurement Methodology

We adopted the RFC2544 benchmark to measure throughput
at zero frame loss in the same way as in the test of VM as
discussed in Sect. 5.2.1. We repeated the measurement 10
times.

6.2.2 Results

Figure 12 shows the results of throughput measurement. (e)
KBP with docker container achieved up to 1.25× higher
throughput with 1518-byte UDP frames, up to 1.05× higher
throughput with 512-byte UDP frames, and up to 1.07×
higher throughput with 1518-byte UDP frames than (d)
NAPI with docker container. (g) KBP in Kubernetes cluster
achieved almost the same throughput with 1518-byte UDP
frames as (f) NAPI in Kubernetes cluster but up to 1.28×
higher throughput with 512-byte UDP frames and up to
1.10× higher throughput with 1518-byte UDP frames. Com-
pared with the effect in the VM configuration as discussed in
Sect. 5.2.2, the effect of KBP in the container configuration
was limited. One reason for this is the network-processing
overhead such as NAT in the host. This is necessary to con-
nect the container network. Another reason is the overhead
of the container network layer. Even if KBP is used to sup-
press the softIRQ competition, these overheads can become
a bottleneck, so throughput performance cannot be improved
very much.

Fig. 12 Throughput performance.

7. Conclusion and Further Study

To design a low-latency networking system, we measured
networking delays inside a kernel and analyzed their causes.
The analysis revealed that the main cause of the delays was
the softIRQ competition, and this cannot be avoided by using
any tuning or high-throughput performanceNIC.We thus de-
signed and implemented a low-latency networking system,
kernel busy poll (KBP), which can avoid the softIRQ com-
petition and achieves microsecond-scale tail delays and high
throughput in a VM and a container. KBP does not require
any application customizations, and a service provider does
not need to develop KBP software for every kernel secu-
rity update. Evaluation results indicate that KBP achieves
microsecond-scale tail delays in both a VM and a container.
In the VM configuration, KBP reduces maximum round-trip
latency by 98.8% compared with NAPI and 98.5% compared
withOvS-DPDKat a 1-Gbps traffic ratewith 1518-byteUDP
frames, and it achieves up to 3.28× higher throughput than
NAPI and 3.39× higher throughput than OvS-DPDK with
1518-byte UDP frames. In the container configuration, KBP
reduces maximum round-trip latency by 21.1% to 96.1% but
improves the throughput by only up to 1.28× compared with
NAPI. KBP achieves a microsecond-scale latency and does
not require application customization, so it can be used for
various real-time applications, such as online gaming, vir-
tual reality, and autonomous vehicles. Since KBP occupies
a CPU core and consumes more power than NAPI, it may
be difficult to use in a mobile device with a battery, but it is
expected to be used in a server in a data center.

For future work, since KBP has the disadvantage that
the busy-poll thread occupies a CPU core and consumes
more power than NAPI, we plan to study a method to save
power while maintaining low latency.

References

[1] K. Fujimoto, K. Matsui, and M. Akutsu, “KBP: Kernel enhance-
ments for low-latency networking without application customization
in virtual server,” IEEE CCNC, 2021.

[2] ETSI, “Network Function Virtualization: An Introduction, Benefits,
Enablers, Challenges, & Call for Action,” 2012.

[3] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A. Neal,
“Mobile edge computing introductory technical white paper,” 2014.

[4] D.B. Oljira, A. Brunstrom, J. Taheri, and K.J. Grinnemo, “Analy-
sis of network latency in virtualized environments,” IEEE Global
Communications Conference (GLOBECOM), pp.1–6, 2016.

[5] P. Apparao, S. Makineni, and D. Newell, “Characterization of net-
work processing overheads in Xen,” 2nd International Workshop on
Virtualization Technology in Distributed Computing (VTDC), 2006.

[6] G. Aceto, V. Persico, A. Pescapé, and G. Ventre, “SOMETIME:
Software defined network-based available bandwidth measurement
in MONROE,” Proc. 1st Network Traffic Measurement and Analysis
Conference, 2017.

[7] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empir-
ical study of container networks,” IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, pp.189–197, 2018.

[8] S. Harcsik, A. Petlund, C. Griwodz, and P. Halvorsen, “Latency
evaluation of networking mechanisms for game traffic,” Proc. 6th
ACM SIGCOMM workshop on Network and system support for

http://dx.doi.org/10.1109/ccnc49032.2021.9369603
http://dx.doi.org/10.1109/ccnc49032.2021.9369603
http://dx.doi.org/10.1109/ccnc49032.2021.9369603
http://dx.doi.org/10.1109/glocom.2016.7841603
http://dx.doi.org/10.1109/glocom.2016.7841603
http://dx.doi.org/10.1109/glocom.2016.7841603
http://dx.doi.org/10.1109/vtdc.2006.3
http://dx.doi.org/10.1109/vtdc.2006.3
http://dx.doi.org/10.1109/vtdc.2006.3
http://dx.doi.org/10.23919/tma.2017.8002918
http://dx.doi.org/10.23919/tma.2017.8002918
http://dx.doi.org/10.23919/tma.2017.8002918
http://dx.doi.org/10.23919/tma.2017.8002918
http://dx.doi.org/10.1109/infocom.2018.8485865
http://dx.doi.org/10.1109/infocom.2018.8485865
http://dx.doi.org/10.1109/infocom.2018.8485865
http://dx.doi.org/10.1145/1326257.1326280
http://dx.doi.org/10.1145/1326257.1326280
http://dx.doi.org/10.1145/1326257.1326280


532
IEICE TRANS. COMMUN., VOL.E105–B, NO.5 MAY 2022

games - NetGames’07, pp.129–134, 2007.
[9] M.S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward

low-latency and ultra-reliable virtual reality,” IEEE Network, vol.32,
no.2, pp.78–84, 2018.

[10] M.A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Mark-
endahl, and M. Dohler, “Business case and technology analysis for
5G low latency applications,” IEEE Access, vol.5, pp.5917–5935,
2017.

[11] IEEE Std, “Standard for Information Technology–Portable Operating
System Interface (POSIX),” 1003.1, 2001.

[12] W.R. Stevens, B. Fenner, and A.M. Rudoff, UNIXNetwork Program-
ming, Addison-Wesley, 2004.

[13] The Linux Kernel Organization, “Kernel livepatch.” https://
www.kernel.org/doc/Documentation/livepatch/livepatch.txt

[14] J.H. Salim, “When NAPI comes to town,” Linux Conference, 2005.
[15] Intel Corp., “Dpdk: Data plane development kit,” http://dpdk.org/,

2014.
[16] R.Kawashima, S.Muramatsu, H.Nakayama, T.Hayashi, andH.Mat-

suo, “A host-based performance comparison of 40G NFV envi-
ronments focusing on packet processing architectures and virtual
switches,” Fifth EuropeanWorkshop on Software-Defined Networks
(EWSDN), pp.19–24, IEEE, 2016.

[17] T. Høiland-Jørgensen, J.D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The eXpress data path: Fast
programmable packet processing in the operating system kernel,”
Proc. 14th International Conference on emerging Networking EX-
periments and Technologies (CoNEXT), pp.54–66, 2018.

[18] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine
networking using netmap passthrough,” IEEE International Sym-
posium on Local and Metropolitan Area Networks (LANMAN),
pp.1–6, 2016.

[19] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of
software packet forwarding using netmap,” Proc. IEEE International
Conference on Computer Communications (INFOCOM), pp.2471–
2479, 2012.

[20] J. Cummings and E. Tamir, “Open source kernel enhancements for
low latency sockets using busy poll,” Intel White Paper, 2013.

[21] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “IX: A protected dataplane operating
system for high throughput and low latency,” 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
pp.49–65, 2014.

[22] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving low tail
latency for microsecond-scale networked tasks,” 26th ACM Sympo-
sium on Operating Systems Principles (SOSP), pp.325–341, 2017.

[23] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads,” 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

[24] K. Kaffes, T. Chong, J.T. Humphries, D. Mazières, C. Kozyrakis,
A. Belay, and D. Mazì Eres, “Shinjuku: Preemptive scheduling for µ
second-scale tail latency,” 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

[25] Huaweii, “Dmm lwip,” https://github.com/huawei/dmm, 2018.
[26] D. Zhuo, K. Zhang, Y. Zhu, H. Harry Liu, M. Rockett, A. Krish-

namurthy, and T. Anderson, “Slim: OS kernel support for a low-
overhead container overlay network slim: OS kernel support for
a low-overhead container overlay network,” 16th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI),
pp.331–344, 2019.

[27] W. Tu, J. Stringer, Y. Sun, and Y.H. Wei, “Bringing the power of
eBPF to open vSwitch,” Linux Plumbers Conference, 2018.

[28] Intel Corp., “Open vswitch with dpdk,” https://software.intel.com/
en-us/articles/open-vswitch-with-dpdk-overview

[29] S. Bradner and J. McQuaid, “RFC 2544: Benchmarking methodol-
ogy for network interconnect devices,” IETF, 1999.

[30] Intel Corp., “Pktgen-dpdk,” https://github.com/pktgen/pktgen-dpdk

[31] Docker Inc., “Docker engine,” https://www.docker.com
[32] Kubernetes, https://kubernetes.io
[33] flannel, https://coreos.com/flannel/docs/latest

Kei Fujimoto received his B.E. degree in
electrical and electronic engineering and M.S.
degree in informatics from Kyoto University in
2008 and 2010, respectively. Since joining NTT
Network Service System Laboratories in 2010,
he had engaged in development of a transfer sys-
tem for ISDN services and research of network-
system reliability and network API. From 2016
to 2018, he engaged in creation of new services
related to big data inNTTWest Corporation. His
current research fields are low-latency network-

ing and power-aware computing. He is a member of IEICE.

Masashi Kaneko received an M.E. from
the University of Electro-Communications, To-
kyo, in 2004. He joined NTT Network Service
Systems Laboratories the same year and studied
network server platform technologies including
web-telecom service convergence, and a shard-
ing method of telecom systems. From 2015 to
2017, he engaged in the development of commer-
cial NFV/software-defined wide area network
services at NTT Communications Corporation.
He is currently studying photonic disaggregated

computers.

Kenichi Matsui received his B.E. and M.S.
in information engineering/sciences from To-
hoku University in 1995 and 1997, respectively.
Since joining NTT laboratories in 1997, he had
engaged in research on traffic engineering, net-
work security and authentication, cloud comput-
ing. He is currently working in NTT West R&D
center where his focus is on communication ser-
vices. He is a senior member of the IEICE, and
member of IPSJ and the IEEE.

Masayuki Akutsu received his M.S. from
University of Electro-Communications, Tokyo,
in 1994. Since joiningNTT laboratories in 1994,
he had engaged in research on PSTN software,
VoIP system, network API, NFV/SDN server
platform and network security. From 2003 to
2005, he engaged in the development of commer-
cial VoIP services in NTT East Corporation. He
is currently working on network R&D strategies
in NTT Network Service Systems Laboratories.

http://dx.doi.org/10.1145/1326257.1326280
http://dx.doi.org/10.1145/1326257.1326280
http://dx.doi.org/10.1109/mnet.2018.1700268
http://dx.doi.org/10.1109/mnet.2018.1700268
http://dx.doi.org/10.1109/mnet.2018.1700268
http://dx.doi.org/10.1109/access.2017.2685687
http://dx.doi.org/10.1109/access.2017.2685687
http://dx.doi.org/10.1109/access.2017.2685687
http://dx.doi.org/10.1109/access.2017.2685687
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
http://dpdk.org/
http://dpdk.org/
http://dx.doi.org/10.1109/ewsdn.2016.11
http://dx.doi.org/10.1109/ewsdn.2016.11
http://dx.doi.org/10.1109/ewsdn.2016.11
http://dx.doi.org/10.1109/ewsdn.2016.11
http://dx.doi.org/10.1109/ewsdn.2016.11
http://dx.doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1145/3281411.3281443
http://dx.doi.org/10.1109/lanman.2016.7548852
http://dx.doi.org/10.1109/lanman.2016.7548852
http://dx.doi.org/10.1109/lanman.2016.7548852
http://dx.doi.org/10.1109/lanman.2016.7548852
http://dx.doi.org/10.1109/infcom.2012.6195638
http://dx.doi.org/10.1109/infcom.2012.6195638
http://dx.doi.org/10.1109/infcom.2012.6195638
http://dx.doi.org/10.1109/infcom.2012.6195638
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
http://dx.doi.org/10.1145/3132747.3132780
http://dx.doi.org/10.1145/3132747.3132780
http://dx.doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://github.com/huawei/dmm
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://www.usenix.org/conference/nsdi19/presentation/zhuo
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://dx.doi.org/10.17487/rfc2544
http://dx.doi.org/10.17487/rfc2544
https://github.com/pktgen/pktgen-dpdk
https://www.docker.com
https://kubernetes.io
https://coreos.com/flannel/docs/latest

