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PAPR Reduction of OFDM Signals Using Null Space in MIMO
Channel for MIMO Amplify-and-Forward Relay Transmission∗

Yuki SEKIGUCHI†, Student Member, Nobuhide NONAKA††, Member, and Kenichi HIGUCHI†a), Senior Member

SUMMARY In this paper, we propose applying our previously re-
ported adaptive peak-to-average power ratio (PAPR) reduction method us-
ing null space in a multiple-input multiple-output (MIMO) channel for
orthogonal frequency division multiplexing (OFDM) signals to the down-
link MIMO amplify-and-forward (AF) relaying transmission. Assuming
MIMO-OFDM transmission, mitigating its high PAPR not only at the base
station (BS) but also at the relay station (RS) transmitters is essential to
achieve sufficient coverage enhancement from the RSs by minimizing the
transmission power backoff levels at the nonlinear power amplifier. In this
study, we assume an AF-type RS with multiple antennas. In the proposed
method, the BS suppresses the PAPR of the transmitted signal through
adaptive PAPR reduction utilizing the null space of the integrated overall
MIMO channel that combines the channel between the BS and RS and the
channel between the RS and a set of user equipment (UE). However, the
PAPR of the received signal at each RS antenna is increased again due to the
MIMO channel between the BS and RS. The proposed method reduces this
increased PAPR at the AF-type RS transmitter by PAPR reduction process-
ing that utilizes the null space in the MIMO channel between the RS and
UE. Since the in-band PAPR reduction signal added at the RS transmitter
is transmitted only in the null space of the MIMO channel between the RS
and UE, interference at the UE receiver is mitigated. Computer simulation
results show that the proposed method significantly improves the PAPR-vs.-
throughput performance compared to that for the conventional one thanks
to the reduced interference levels from the PAPR reduction signal observed
at the UE receiver.
key words: OFDM, PAPR, MIMO, null space, relaying, amplify-and-
forward

1. Introduction

The combination of massive multiple-input multiple-output
(MIMO) [1], [2] using beamforming (BF) and orthogo-
nal frequency division multiplexing (OFDM) signals offers
wide-coverage enhanced mobile broadband communication.
Furthermore, in the 5th generation mobile communication
system New Radio (NR) [3] and beyond [4], in order to pro-
vide wireless transmission in a high frequency band such
as the millimeter wave band with wide coverage, the im-
portance of relay transmission [5]–[7] increases. In this
paper, we consider downlink MIMO-OFDM transmission
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using amplify-and-forward (AF) type relaying. Here, the
AF relay station (RS) is equipped with multiple antennas
and transfers the received signal from the base station (BS)
to a set of user equipment (UE) after power amplification
without decoding the data signal.

The major drawback to OFDM signals is their high
peak-to-average power ratio (PAPR). When a signal with a
high PAPR is amplified by a power amplifier, the input signal
power must be decreased in order to suppress the in-band
and out-of-band distortion signals generated due to the non-
linearity of the power amplifier, which leads to a decrease in
the transmission power. InmassiveMIMO, in which a power
amplifier is prepared for each of a large number of transmitter
antennas, reducing the PAPR is particularly important. This
problem is the same for the RS, and PAPR reduction both at
the BS and RS transmitters is very important to achieve high-
speed high-quality transmission with wide coverage through
relaying.

A number of PAPR reduction methods employing
OFDM have been investigated, e.g., in [8]–[16]. Among
these methods, when a powerful channel code such as the
turbo code or low-density parity check (LDPC) code is em-
ployed, [17] revealed that the PAPR reduction method that
does not reduce the frequency efficiency at the cost of in-
band interference such as the clipping and filtering (CF)
method [9], [10] is superior to those that consume a part of
the frequency bandwidth to reduce the PAPR such as the tone
reservation method [13] from the viewpoint of the tradeoff
between the PAPR reduction and the error rate.

Various studies have also been conducted on PAPR re-
duction methods for OFDM signals in relay transmission.
Basically, the PAPR reduction method described above can
be applied to PAPR reduction of the OFDM signal at the RS
transmitter. For example, in [18], reducing the PAPR in an
RS based on CF is investigated. In [19], PAPR reduction in
the RS based on a partial transmit sequence (PTS) is investi-
gated. In [20], the PAPR reduction method applied to an RS
based on the superimposition of the Golay sequence and the
Reed-Muller code on the transmission signal is investigated.
In either method, in-band interference and distortion occur
in the received signal at the UE due to the PAPR reduction
process, and the reception quality of the data signal deterio-
rates or complicated signal processing is required in the UE
receiver to avoid this.

Members of our research group reported on a PAPR
reductionmethod utilizing the null space in aMIMO channel
for MIMO-OFDM signals [21]–[24]. Hereafter, this method
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is simply referred to the adaptive PAPR reduction method.
The adaptive PAPR reduction method restricts the in-band
PAPR reduction signal transmitted to only the null space
in the given MIMO channel to suppress the degradation
in the transmission quality of the data streams due to the
interference from the in-band PAPR reduction signal. Since
all the transmitter antennas are fully utilized in transmitting
the data streams, the achievable BF gain of the adaptive
PAPR reduction method is higher than that for the method
in [25]. We note that [26] investigates the unused beam
reservation-based PAPR reduction method, which is similar
to the method originally reported in [21] and [22] in which
the null space in a MIMO channel is utilized.

In this paper, we propose a method that applies the
adaptive PAPR reduction method utilizing the null space in
the MIMO channel for MIMO-OFDM signal to the multi-
antenna AF type RS. In the proposed method, the BS sup-
presses the PAPR of the transmitted signal through adaptive
PAPR reduction utilizing the null space of the integrated
overall MIMO channel that combines the channel between
the BS and RS and the channel between the RS and UE. As
a result, the PAPR at the BS transmitter is suppressed, while
the PAPR reduction signal transmitted from the BS is not
observed at the UE receiver. Therefore, it does not interfere
with the data signal. At the RS, the transmission signal in
which the PAPR is suppressed once at the BS transmitter
is received. However, the signals transmitted from each BS
antenna are superposed via the MIMO channel between the
BS and RS, and then received by the RS. Furthermore, the
noise component generated at the RS receiver is added to
the received signal at the RS. Therefore, the PAPR of the
received signal at each RS antenna is increased again. This
increased PAPR at the AF-type RS transmitter is reduced
by PAPR reduction processing that utilizes the null space
in the MIMO channel between the RS and UE. Since the
in-band PAPR reduction signal added at the RS transmitter
is transmitted only in the null space of the MIMO chan-
nel between the RS and UE, interference at the UE receiver
is mitigated. Computer simulation results show the effec-
tiveness of the proposed method from the viewpoints of the
PAPR and throughput, quantitatively. We note that the con-
tents of this paper are based on [27], but include enhanced
evaluation and discussions.

The remainder of the paper is organized as follows.
First, Sect. 2 describes the system model. Section 3 presents
the proposed method. Section 4 presents numerical results
based on computer simulations. Finally, Sect. 5 concludes
the paper.

2. System Model

Figure 1 shows the system model assumed in this paper. The
number of BS transmitter antennas is NB and that for RS
antennas is NR. We consider downlink multiuser MIMO
transmission where NU users each having a single receiver
antenna are spatially multiplexed. Assuming a typical mas-
sive MIMO environment, we set NB > NR > NU. The

Fig. 1 System model.

NR × NB-dimensional channel matrix between the BS and
RS is denoted as HBR. The NU × NR-dimensional channel
matrix between the RS and UEs is denoted as HRU. In this
paper, we assume that the MIMO channel is not frequency-
selective for the sake of simplicity.

The NU-dimensional data stream vector before BF is
denoted as s. Assuming that the NB × NU-dimensional BF
matrix is B, the NB-dimensional transmission signal vector
after BF, x, is expressed as Bs. In this paper, we assume
zero-forcing-based BF applied to the overall MIMO channel,
Htotal = HRUARHBR. Thus, x is represented as

x = Bs =
√

PH−totals =
√

P (HRUARHBR)
− s. (1)

Here,
√

P is a channel-dependent constant that is determined
so that the maximum transmission power constraint holds.
Matrix AR is a diagonal matrix showing the power amplifi-
cation operation in the RS. It is assumed that the BS knows
Htotal and the RS knows HRUAR in advance.

3. Proposed Method

The proposed method applies the adaptive PAPR reduction
method utilizing the null space in a MIMO channel to the
BS transmitter and RS transmitter in the multi-antenna AF
relay transmission system shown in Fig. 1. Since frequency
selectivity of the channel is not considered in this paper, the
time-domain signal at the time of interest is described in the
following signal notation. As an implementation algorithm
of the adaptive PAPR reduction method using the null space
in the MIMO channel, two algorithms are considered: the
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CF followed by the channel-null constraint (CFCNC) [21],
[22] and peak cancellation (PC) signal with the channel-
null constraint (PCCNC) [23], [24]. In this paper, we use
CFCNC.

3.1 PAPR Reduction Process at BS

Regarding the NU × NB-dimensional overall channel ma-
trix, Htotal = HRUARHBR, we have the NB × (NB − NU)-
dimensional matrix, Vtotal, which corresponds to the null
space in Htotal, since we set NB > NU. Thus, HtotalVtotal = O
and we assume that all column vectors of Vtotal are orthonor-
mal.

The BS performs CF, which includes amplitude clip-
ping and filtering that suppresses out-of-band distortion due
to clipping, on transmission signal vector x with power
threshold TB. Assuming that x is converted to x̃ by CF
processing, ∆B = x̃ − x corresponds to the PAPR reduction
signal vector generated by CF. In the proposed method, in
order to ensure that ∆B is emitted only into the null space in
the overall MIMO channel, ∆B is projected onto null space
Vtotal of the overall channel matrix, Htotal.

∆̃B = VtotalVH
total∆B. (2)

The PAPR reduction effect by amplitude clipping is
decreased due to the filtering operation in the CF and the
projection processing onto the null space using (2). So,
the CF operation and the projection of the PAPR reduction
signal vector onto null space Vtotal are repeated LB times,
and x + ∆̃B at the final iteration is transmitted.

3.2 PAPR Reduction Process at RS

After the BS transmits x + ∆̃B, the NR-dimensional received
signal vector at the RS, yR, is represented as

yR = HBR(x + ∆̃B) + zR, (3)

where zR is the noise vector observed at the RS receiver.
Although the PAPR of x + ∆̃B is low, the PAPR of yR is
increased again since yR is a linear sum of all elements of
x + ∆̃B depending on the MIMO channel between the BS
and RS, HBR. Noise zR is another source of the PAPR
enhancement. Therefore, in the proposed method, the PAPR
reduction method using the null space in the MIMO channel
is applied again to yR at the RS.

The effective MIMO channel between the RS and UEs
including amplification matrix AR is NU × NR-dimensional
matrix HRUAR. Since we set NR > NU, we have the NR ×
(NR − NU)-dimensional matrix, VRU, which corresponds to
the null space in the effectiveMIMO channel between the RS
and UEs, HRUAR. Thus, HRUARVRU = O and all column
vectors of VRU are assumed to be orthonormal.

The RS performs CF on received signal vector yR with
power threshold TR. Assuming that yR is converted to ỹR by
CF, ∆R = ỹR − yR corresponds to the PAPR reduction signal
vector generated by CF at the RS. In the proposed method,

in order to ensure that ∆R is emitted only into the null space
in the effective MIMO channel between the RS and UEs, ∆R
is projected onto null space VRU of effective channel matrix
HRUAR.

∆̃R = VRUVH
RU∆R. (4)

The PAPR reduction effect by amplitude clipping is
decreased due to the filtering operation in the CF and the
projection processing onto the null space using (4). So,
the CF operation and the projection of the PAPR reduction
signal vector onto null space VRU are repeated LR times, and
yR + ∆̃R at the final iteration is amplified and forwarded as
xR = AR(yR + ∆̃R).

3.3 Received Signal at UEs

From the above, the received signal vector, yU, in NU UEs in
the proposed method is expressed by the following equation.

yU = HRUxR + zU = HRUAR
(
yR + ∆̃R

)
+ zU

= HRUARyR +HRUARVRUVH
RU∆R + zU

= HRUAR
(
HBR

(
x + ∆̃B

)
+ zR

)
+ zU

= HRUARHBRx +HRUARHBRVtotalVH
total∆B

+HRUARzR + zU

= HRUARHBR
√

P (HRUARHBR)
− s +HRUARzR + zU

=
√

Ps +HRUARzR + zU. (5)

Vector zU is the noise vector observed at the UE receivers.
Therefore, in the proposed method, the PAPR reduction sig-
nal generated by the BS and RS does not appear in the
received signal of the UE, so that the PAPR reduction can be
actualized at the BS and RS transmitters while abating the
deterioration in throughput.

4. Numerical Results

4.1 Simulation Parameters

The performance of the proposed method is evaluated based
on computer simulations. Table 1 gives the major simulation
parameters. The number of BS transmitter antennas, NB, is
set to 128. The number of RS antennas, NR, and the number
of UEs, NU, are parameterized. The number of OFDM sig-
nal subcarriers is 512. The number of fast Fourier transform
(FFT)/inverse FFT (IFFT) points is set to 2048, which cor-
responds to four-times oversampling in the time domain in
order to measure the PAPR levels accurately [28]. For eval-
uation generality, we assume that the symbol constellation
of each subcarrier follows an independent standard complex
Gaussian distribution. Zero-forcing BF is applied. As the
channel model, we assume flat Rayleigh fading, which is
independent between any pairs of transmitter and receiver
antenna branches. As for power amplification matrix AR at
the RS,AR is set to be an identitymatrix assuming a common
amplification gain for all NR antennas, except in Figs. 11 and
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Table 1 Simulation parameters.

12 where the amplification gain of each antenna at the RS
is channel-dependently controlled so that the transmission
power levels of all antennas are equalized. The signal-to-
noise ratio (SNR) is set to 10 dB between the BS and RS and
between the RS and all UEs. The PAPR is defined as the ratio
of the peak signal power to the average signal power across
all the transmitter antennas per OFDM symbol. The power
thresholds, TB and TR, in the PAPR reduction process are
defined as the signal power threshold normalized by the sig-
nal power per antenna averaged over the channel realizations.
The sum throughput of NU streams (users) is calculated based
on the Shannon formula considering the Bussgang theorem
[29]. The numbers of iterations in the proposed CFCNC at
the BS and RS, LB and LR, respectively, are parameterized.

4.2 Simulation Results

Figure 2 shows the complementary cumulative distribution
function (CCDF) of the PAPR before and after the PAPR
reduction process at the BS and RS. For both the BS and
RS, the proposed adaptive PAPR reduction method utilizing
the null space in the MIMO channel is applied. The number
of RS antennas, NR, and the number of UEs, NU, are 64
and 4, respectively. Power thresholds TB and TR in the PAPR
reduction at the BS and RS are both set to 7 dB. The numbers
of iterations of adaptive PAPR reduction using CFCNC at
the BS and RS, LB and LR are both set to 20. Figure 2 shows
that the PAPR of the BS transmission signal is significantly
reduced by the PAPR reduction process, but returns to a
high PAPR when it is received by the RS. This is because
the transmission signals of the NB of 128 BS antennas after
PAPR reduction are received at each of the NR = 64 RS
antennas in a superposed manner via the MIMO channel. In
addition, the influence of noise at the RS receiver is added.
We note that the PAPR of the received signal before PAPR
reduction at the RS is distributed at a value approximately
1 dB lower than that for the PAPR of the transmission signal
before PAPR reduction at the BS. This is because the number
of RS antennas, NR, is set to 1/2 that of the BS antennas,
NB, in this evaluation. This reduces the variation in signal
power between the antennas at the RS receiver. To confirm
this, Fig. 3 shows the CCDF of the PAPR when NR is set

Fig. 2 CCDF of PAPR when NR = 64.

Fig. 3 CCDF of PAPR when NR = NB = 128.

equal to NB = 128. We see that the distribution of the
PAPR of the received signal before PAPR reduction at the
RS becomes close to that of the transmission signal before
PAPR reduction at the BS when NR = NB. From Figs. 2 and
3, we confirm that sufficient PAPR reduction processing is
required at the RS as well as at the BS in a MIMO-relaying
scenario.

In Figs. 2 and 3, the PAPR at the RS is lower than
that at the BS after PAPR reduction. The reason for this
can be explained by using the analysis presented in [30].
Based on [30], in order for the adaptive PAPR reduction
method utilizing the null space in theMIMO channel to work
well, the cross correlation of the transmission signal among
antennas must be as low as possible. Since channel HBR
randomizes the received signals at the RS antennas, the cross
correlation of the received signals among the RS antennas
becomes lower than that for the transmission signals among
the BS transmitter antennas. For example, in Fig. 3 where
NB = NR = 128, the average of the normalized squared cross
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Fig. 4 Average PAPR as a function of NR.

correlation of the transmission signals at the BS transmitter
antennas is approximately 0.216. Meanwhile, the average
of the normalized squared cross correlation of the received
signals at the RS antennas is approximately 0.194. This
makes the adaptive PAPR reductionmethod utilizing the null
space in the MIMO channel work better at the RS and the
resultant PAPR at the RS for the same number of iterations
become lower than that at the BS.

The PAPR distribution at the RS after the PAPR re-
duction process in Fig. 3 is better than that in Fig. 2. This
is mainly due to the larger dimensions of the null space in
the MIMO channel between RS and UEs as NR is increased.
To clarify this, the PAPR distribution at the RS when CF is
applied at the RS is presented in Figs. 2 and 3. We see that
as NR is increased from 64 to 128, the PAPR distribution at
the RS with the proposed PAPR reduction method becomes
closer to that with CF. This is because the dimensions of the
null space in channel HRU are increased with a larger NR
and this makes the proposed PAPR reduction method work
better at the RS. An additional reason for this is that the
cross correlation of the received signals among NR antennas
at the RS becomes lower as NR is increased, which helps
the adaptive PAPR reduction utilizing the null space in the
MIMO channel work better at the RS.

Figure 4 shows the average PAPR at the BS and RS as
a function of NR. Here, NU is set to 4, TB and TR are set to
7 dB, and LB and LR are each set to 20. The average PAPR
at the RS before the PAPR reduction process increases as NR
is increased. This is due to the increased variation in signal
power between the antennas at the RS receiver. On the other
hand, the average PAPR at the RS after the PAPR reduction
process decreases as NR is increased. This is mainly due to
the larger dimensions of the null space in the MIMO channel
between the RS and UEs as NR is increased. An additional
reason for this is that the cross correlation of the received
signals among NR antennas at the RS becomes lower as NR is
increased, which helps the adaptive PAPR reduction utilizing
the null space in the MIMO channel work better at the RS.

Fig. 5 Average PAPR as a function of NU.

Figure 5 shows the average PAPR at the BS and RS
as a function of NU. Here, NR is set to 64, TB and TR
are set to 7 dB, and LB and LR are each set to 20. The
average PAPR before the PAPR reduction process decreases
as NU is increased. This is because the variation in signal
power between the antennas decreases as NU is increased.
This also affects the achievable PAPR levels after the PAPR
reduction process. However, since the larger NU reduces
the dimensions of the MIMO channel on the other hand, the
resultant PAPR levels after the PAPR reduction process are
roughly constant between the NU values of 8 and 16.

In order to assess the computational complexity re-
quired to suppress the PAPR at the BS and RS, in Fig. 6
we show the average PAPR at the BS and RS as a func-
tion of the number of iterations, LB and LR. Here, NR and
NU are set to 64 and 4, respectively. Thresholds TB and
TR are set to 7 dB. From the figure, the PAPR decreases as
LB and LR increase, since a more accurate PAPR reduction
signal can be generated. However, the improving effect of
the PAPR reduction tends to saturate as LB or LR increases.
When comparing the PAPR levels of the BS and RS, the RS
achieves the same PAPR with fewer iterations than that for
the BS. This is because the cross correlation of the received
signals among the RS antennas becomes lower than that for
the transmission signals among the BS transmitter antennas,
which helps the adaptive PAPR reduction utilizing the null
space in the MIMO channel work better at the RS. This is a
favorable tendency because, in general, the RS should avoid
complex processing compared to that at the BS.

Figure 7 shows the average throughput as a function of
the average PAPR at the RSwith LR as a parameter. Here, LB
is fixed at 20. Terms NR and NU are set to 64 and 4, respec-
tively. Thresholds TB and TR are set to equal values, and by
changing these values, the relationship between the average
PAPR at the RS and the average throughput is varied. The
higher the LR is set, the higher the throughput for the same
average PAPR. From this, we confirm that there is a trade-
off relationship between the simplification of processing by
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Fig. 6 Average PAPR as a function of LB and LR.

Fig. 7 Average throughput as a function of average PAPR at RS with LR
as a parameter.

reducing the number of iterations of the PAPR reduction
algorithm and the PAPR vs. throughput characteristics.

Figure 8 shows the average throughput as a function
of the average PAPR controlled equally at the BS and RS.
Here, NR and NU are set to 64 and 4, respectively. The num-
ber of iterations LB and LR are set to 20. After adjusting
power thresholds TB and TR so that the achievable average
PAPRs at the BS and RS are the same, the relationship of
the average throughput with respect to the average PAPR
controlled equally at the BS and RS is traced. In addition to
the proposed method that uses the adaptive PAPR reduction
utilizing the null space in MIMO channels for both the BS
and RS, the case where the adaptive PAPR reduction method
is applied at the BS while the conventional CF is applied at
the RS is tested as the conventional method. Compared to
the conventional method, the proposed method significantly
increases the throughput for the same PAPR value. This is
because the adaptive PAPR reduction method reduces the
interference from the PAPR reduction signal at the UE re-

Fig. 8 Average throughput as a function of average PAPR at BS and RS.

Fig. 9 Average throughput as a function of average PAPR at BS with TR
as a parameter.

ceiver.
Figure 9 shows the average throughput as a function of

the average PAPR at the BS where power threshold TR in the
PAPR reduction at the RS is parameterized. By changing
power threshold TB in the BS, the relationship between the
average PAPR at the BS and the average throughput is varied.
Here, NR and NU are set to 64 and 4, respectively, and LB and
LR are each set to 20. We see that as TR is reduced to lower
the PAPR at the RS, the achievable throughput for a given
PAPR at the BS decreases due to the increased interference
generated at the RS.

Figure 10 shows the average throughput as a function
of the average PAPR at the RS when the average PAPR at
the BS is parameterized. By changing power threshold TR
in the RS, the relationship between the average PAPR at the
RS and average throughput is varied. Here, NR and NU are
set to 64 and 4, respectively, and LB and LR are set to 20.
In the region where the average PAPR required at the RS is
higher than approximately 6 dB, the throughput increases as
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Fig. 10 Average throughput as a function of average PAPR at RS with
average PAPR at BS as a parameter.

Fig. 11 Average throughput as a function of average PAPR at BS when
channel-dependent amplification gain is assumed at RS.

the average PAPR at the BS increases. On the other hand,
in the region where the required PAPR at the RS is less
than approximately 6 dB, the lower the PAPR value at the
BS is, the higher the throughput becomes. This observation
suggests that when achieving a very low PAPR value in the
RS, whether or not the PAPR of the transmitted signal at
the BS is sufficiently suppressed in advance is important in
order to reduce the interference levels generated in the PAPR
reduction process of the entire system.

Figures 11 and 12 show the average throughput as a
function of the average PAPR at the BS and RS, respectively,
when channel-dependent amplification gain is assumed at
the RS. Other settings in the evaluation in Figs. 11 and 12
are the same as those in Figs. 9 and 10, respectively. When
comparing Figs. 9–12, we confirm that the proposed method
works well even when we assume the channel-dependent
amplification gain at the RS.

Fig. 12 Average throughput as a function of average PAPR at RS when
channel-dependent amplification gain is assumed at RS.

5. Conclusion

In this paper, we proposed an adaptive PAPR reduction
method utilizing the null space in MIMO channels applied
to a multi-antenna AF relay transmission system. Based
on computer simulation results, the proposed method sup-
presses the interference with the data stream due to PAPR
reduction at the RS, so the average throughput for the average
PAPR is significantly improved compared to the case where
the conventional CF method is applied to the RS. Therefore,
we expect that the proposed method can suppress the input
backoff of the RS power amplifier to a low level and increase
the coverage expansion effect by introducing the RS. This
paper confirms the effectiveness of the application of the
adaptive PAPR reduction using the null space in a MIMO
channel to the multi-antenna AF-type RS. Meanwhile, the
RS should avoid complex processing compared to that at
the BS in general. Although the simulation results suggest
that the required number of iterations in the PAPR reduction
process can be reduced at the RS compared to that at the BS,
further complexity reduction at the RS should be pursued as
an important research subject. The implementation method
of the adaptive PAPR reduction utilizing the null space in a
MIMO channel in a form in which the calculation cost at the
RS is smaller is left for future study.
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