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Performance Modeling of Bitcoin Blockchain:
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SUMMARY Bitcoin is one of popular cryptocurrencies widely used
over the world, and its blockchain technology has attracted considerable
attention. In Bitcoin system, it has been reported that transactions are pri-
oritized according to transaction fees, and that transactions with high prior-
ities are likely to be confirmed faster than those with low priorities. In this
paper, we consider performance modeling of Bitcoin-blockchain system in
order to characterize the transaction-confirmation time. We first introduce
the Bitcoin system, focusing on proof-of-work, the consensus mechanism
of Bitcoin blockchain. Then, we show some queueing models and its an-
alytical results, discussing the implications and insights obtained from the
queueing models.
key words: Bitcoin, blockchain, performance modeling, queueing theory,
extreme value theory, transaction-confirmation time

1. Introduction

Bitcoin is a decentralized cryptcurrency system supported
by blockchain technology, and it was invented by an un-
known person/group called Satoshi Nakamoto in 2008 [21].
There is no central authority to manage the minting and cir-
culation of Bitcoin. A remarkable feature of Bitcoin is the
Bitcoin cryptcurrency is managed by open-source software,
and the processes of minting and circulating Bitcoin are sup-
ported by volunteer nodes called miners. A key technology
of Bitcoin is blockchain, a distributed ledger maintained by
all the miner nodes joining Bitcoin peer-to-peer (P2P) net-
work. Miner nodes hold the same replica of the blockchain
through the P2P network, verifying the consistency of trans-
actions issued by end users.

In Bitcoin system, transactions issued by end users are
broadcasted over the P2P network and received by miner
nodes. Then, each miner node creates a block from the
transactions and starts solving a puzzle-like mathematical
problem based on a cryptographic hash algorithm. When a
miner node finds its answer, the miner appends the block to
the blockchain and receives the reward called coinbase and
transaction fees included in the block. The difficulty of the
mathematical problem is adjusted automatically such that
the block-generation interval is 10 minutes on average [1].
Transactions registered through blocks in the blockchain
are acknowledged as legitimate ones, and hence called con-
firmed transactions.
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One of important issues for Bitcoin is scalability. Since
the maximum block-size limit is 1 Mbyte and the block-
generation time is 10 minutes on average, the number of
transactions processed per second (tps) is small and at most
seven [25]. In order for Bitcoin to handle tens of thousands
of tps, the same order as the processing speed of credit card
transactions, Bitcoin developers’ community has discussed
the increase of the maximum block-size limit, however, no
agreement has been reached. The alternative approach to
the low-scalability issue of Bitcoin is decreasing the min-
ing difficulty which results in a small interval between two
consecutive blocks. However, a short block-generation time
induces fork, in which more than one block has the same
height because of multiple answer detection by distinct
miner nodes, causing serious security issues [2], [5], [8].

In order to make Bitcoin a sustainable ecosystem, in-
centivisation for miner nodes is indispensable. Since the
coinbase is halved every four years, one direction for real-
izing the Bitcoin ecosystem is designing transaction fees to
give incentives for miners to contribute their computation
power to maintaining the blockchain. Currently, however,
there is no policy/function specified in the Bitcoin proto-
col. This allows miner nodes to make a benefit-based min-
ing strategy. The authors of [16] analyzed the statistical
trends of transaction fees, finding the regime shift of Bit-
coin transaction fees. They reported that transactions with
fee are likely to be processed faster than those without fee.
It was also shown that the transaction latency is not signifi-
cantly affected by the amount of fee. However, they showed
the statistical analysis that transactions with a large amount
of fee are likely to be served faster than those with small fee.

In order to consider the issues of scalability and in-
centive mechanism of Bitcoin, quantitative characterization
of the transaction-confirmation process plays an important
role. As we will describe in the next section, Bitcoin
blockchain processes transactions in block basis. That is,
transactions arriving to the Bitcoin system are simultane-
ously served as a batch manner. From this observation,
the transaction-confirmation process can be modeled as a
single-server queueing system with batch service.

We studied the queueing models for the Bitcoin
blockchain in [9]–[12] for characterizing the transaction-
confirmation time of Bitcoin blockchain. In this paper, we
give the summary of queueing models in [9]–[12]. Through
the research work, a main idea of the analysis is two-fold.
First, the transaction-confirmation process is modeled as a
queueing system with batch service and priority discipline,

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



1456
IEICE TRANS. COMMUN., VOL.E104–B, NO.12 DECEMBER 2021

with which the mean transaction-confirmation time for each
prioritized transaction is derived. Second, focusing on the
block-generation time, which is corresponding to the service
time of the queueing model, we apply the extreme-value the-
ory to the mining process of the proof-of-work consensus
algorithm. We also show some numerical results and dis-
cuss the implications and insights obtained from the queue-
ing models.

The structure of the paper is as follows. In Sect. 2, we
give a brief summary of Bitcoin blockchain and its mining
mechanism. Some related work for the blockchain evalu-
ation is also presented. Section 3 shows the fundamental
queueing model for the Bitcoin blockchain and its analysis.
In Sect. 4, we show an extended queueing model in which
the transaction-arrival process is general one. Finally, we
conclude the paper in Sect. 5.

2. Summary of Bitcoin Blockchain and Related Work
on Performance Modeling

In this section, we briefly give a summary of Bitcoin
blockchain, in particular, mining mechanism and the
transaction-confirmation process. For more details, the
readers are referred to [1], [20]. We also show some related
work on performance modeling for Bitcoin blockchain.

2.1 Mining Mechanism and Transaction-Confirmation
Process

In the Bitcoin system, virtual currency circulation is realized
with two data types: transactions and blocks. A transaction
is the value-transfer base of Bitcoin, while a block is a data
composed of transactions to be verified.

Suppose user A makes payment to user B. User A gen-
erates a transaction including the payment to user B and
transaction fee, then issuing it into the Bitcoin P2P network.
The transaction is broadcasted through the P2P network, and
temporally stored in memory pool of miner nodes.

Each miner node generates a block containing transac-
tions to be validated, and then tries to solve a mathematical
problem based on a cryptographic hash algorithm, which is
associated with the newly generated block. This process is
called proof-of-work [21], which makes consensus among
all the miner nodes joining the P2P network. The miner
who finds its solution first is given the right to add the newly
generated block to the blockchain, being awarded reward†.
Then, the miners restart to solve a new mathematical prob-
lem associated with the next block.

A key feature of the blockchain is that the solution
found by the winning miner is included in the next block to
be generated. The process of finding mathematical solutions
is called mining. The inclusion of the solution of the current

†The reward to the winning miner is composed of coinbase and
fees of transactions included in the generated block. In 2021, the
output value of the coinbase for one-block mining is 6.25 bitcoin.
This output value is halved every 210,000 blocks, corresponding
to a four-year halving schedule.

block to the next block makes the Bitcoin blockchain tamper
resistant, i.e., preventing Bitcoin from tampering previous
blocks. The difficulty of the mathematical problems in min-
ing is automatically adjusted such that the block-generation
time is kept to 10 minutes on average.

In the example of user A’s payment to user B, user B
can use the Bitcoin of the transaction sent by user A after the
transaction is confirmed. Note that the transaction is con-
firmed when a block including the transaction is added to
the blockchain. In the following, we define the transaction-
confirmation time as the time interval from when a user is-
sues a transaction until a block including the transaction is
added to the blockchain.

From the view point of end users, the transaction-
confirmation time is an important performance measure for
the Bitcoin system. The authors in [16] analyzed the trans-
action fees paid with 55.5 million transactions recorded in
the blockchain, investigating trends of transaction-fee con-
vention in Bitcoin. It is reported that the confirmation time
of transactions without fee are longer than those with fee,
and that the latency of transactions with high fee are smaller
than those with low fee. This result suggests some prior-
ity mechanism is equipped in the Bitcoin system, in which
transactions with high fees are included in a block faster
than those with low fees.

2.2 DSS Trilemma

A blockchain technology is classified into two types: pub-
lic and consortium/private [24]. In a public blockchain
network, any node can join the network and verify trans-
actions and blocks without any permission. Bitcoin and
Ethereum are categorized into public blockchain. In consor-
tium/private blockchain network, on the contrary, only the
authenticated nodes can activate functionalities for main-
taining blockchains. Hyperledger projects [27], started by
Linux Foundation and including Hyperledger Fabric and
Hyperledger Iroha, are of consortium-type blockchain.

In terms of the nature of blockchain, the following
three aspects are considered as important characteristics that
blockchain developers must take into account.

• Decentralized: Developing a blockchain system that
does not rely on a single point of control.

• Scalable: Enabling a blockchain system to process an
increasingly growing number of transactions.

• Secure: Making a blockchain system to prevent from
attacks, malfunctions, and unforeseen misbehavings.

It has been known as a rule of thumb that any
blockchain technology satisfies at most two of the above
three aspects and that no blockchain technologies satisfy
all the three features. For example, the Bitcoin blockchain
satisfies decentralized and security natures but is not scal-
able. A permissioned blockchain such as Hyperledger Fab-
ric provides high transaction throughput (scalable) and se-
cure transaction processing, however, only the authenticated
nodes join the blockchain network (not decentralized). This
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Fig. 1 DSS trilemma.

tradeoff among the three characteristics in blockchain mech-
anism is called DSS trilemma [4]. Figure 1 shows the DSS
trilemma of the blockchain.

A crucial key point of blockchain technologies is how
to make consensus for a newly generated block among all
the nodes joining the blockchain network. A long time inter-
val for consensus in public blockchain enables a large num-
ber of nodes to join the blockchain network, however, caus-
ing a low transaction throughput. On the contrary, a short
consensus making time for consortium/private blockchain
provides a high-speed transaction processing, however, in-
creasing security threats if anonymous nodes are allowed to
join the blockchain network.

2.3 Related Work for Performance Modeling of Blockchain

The performance issue of blockchains is classified into two
categories: scalability issue and security one. For both is-
sues, there exist much literature on the performance eval-
uation of blockchains. A comprehensive survey on the
blockchain evaluation research is provided in [23]. The
readers who are interested in the analytical approach to the
blockchain performance are referred to [23].

In terms of the scalability issue, the transaction-
confirmation time (or the transaction throughput) is an im-
portant performance measure. The transaction-confirmation
time of the Bitcoin blockchain is composed of 1) the
transaction-waiting time in memory pools of miner nodes,
2) the block-generation time (the mining time for the block
including the transaction), and 3) the block-propagation de-
lay.

To analyze the transaction-confirmation time, a typical
approach is to model the Bitcoin blockchain as a queueing
model. In [15] and our previous work [9]–[12], a main inter-
est is to characterize the queueing dynamics of transactions
in miner nodes. From this point of view, a basic model of
the Bitcoin blockchain is a single-server queueing system, in
which transactions waiting in the memory pool and block-
generation time are taken into consideration.

In terms of the Bitcoin security issue, however, the
block-propagation delay is also important. A pioneering
work for analyzing the block propagation of Bitcoin is [6].
The authors of [6] focused on how the block propagation

delay affects the security of the Bitcoin blockchain. They
assumed that the block-generation time follows a Poisson
process, deriving the probability of blockchain fork occur-
rence. A further refined model for the fork probability was
proposed in [19].

In [3], the authors extensively studied the block-
generation process, investigating the applicability of
stochastic processes to the block-generation model. They
considered three elements for the block-generation process:
the hash-rate function, difficulty adjustments, and block-
propagation delay, and several block-arrival models were
compared with the real data. It is found that a nonhomo-
geneous Poisson process with periodic hash-rate function is
the simplest model which algorithmically generates arrival
sequences for simulation and reasonably approximates the
block-generation process. From queueing theoretical point
of view, however, queueing systems with nonhomogeneous
Poisson input are hard to analyze in general.

3. Queueing System with Batch Service for Bitcoin
Blockchain

In this section, we summarize the fundamental queueing
model for Bitcoin Blockchain in [11]. We also show some
numerical examples, discussing how transactions are han-
dled in the real Bitcoin system.

3.1 Basic Queueing Model

As we described in Sect. 2, a transaction issued by an end
user is first stored in memory pools of miner nodes. Each
miner node creates a block from the transactions stored in
the memory pool. Then the block created by a winning
miner node is added to the blockchain and the transactions
in the block are removed from the memory pool. Figure 2
shows the transaction-confirmation process in the memory
pool of a miner node.

If we regard a transaction as a customer, the
transaction-confirmation process can be modeled as a
queueing system with batch service, in which several cus-
tomers in the service facility are served and depart from the
system simultaneously at service completion.

We assume that transactions arrive at the Bitcoin sys-
tem according to a Poisson process with rate λ. Arriving
transactions are stored in the queue with infinite capacity
and those are served in a batch manner.

When a transaction arrives at the system in idle, its
service immediately starts. The transactions consecutively
arriving at the system are served in a batch manner until
the number of batch size reaches the batch-size limit b. In
other words, newly arriving transactions are included into
the block under mining as long as the resulting block size
does not reach the batch size b†.

Remind that the service time of the queueing model is

†The default Bitcoin client processes transactions in this man-
ner. See [1] for details.



1458
IEICE TRANS. COMMUN., VOL.E104–B, NO.12 DECEMBER 2021

Fig. 2 Transaction processing in memory pool.

Fig. 3 M/Gb/1 queueing model.

the block-generation time. Suppose that block-generation
times are independent and identically distributed (i.i.d.).
Let S denote the block-generation time, whose distribution
function and probability-density function are G(x) and g(x),
respectively.

From the above assumptions, the resulting queueing
model is an M/Gb/1 queue (Fig. 3).

3.2 Mean Transaction-Confirmation Time

Let N(t) and X(t) denote the number of transactions in the
system at time t and the elapsed service time at t, respec-
tively. We also define for x, t ≥ 0, n = 1, 2, . . .,

Pn(x, t)dx = Pr{N(t) = n, x < X(t) ≤ x + dx},
P0(t) = Pr{N(t) = 0}.

If the stability condition λE[S ] < b holds, the follow-
ing limiting probabilities exist.

Pn(x) = lim
t→∞

Pn(x, t),

P0 = lim
t→∞

P0(t).

From the assumptions of the queueing model, we obtain

λP0 =

b∑
k=1

∫ ∞

0
Pk(x)ξ(x)dx, (1)

d
dx

Pn(x) = −{λ + ξ(x)}Pn(x) + λPn−1(x),

n = 2, 3, . . . , (2)
d
dx

P1(x) = −{λ + ξ(x)}P1(x), (3)

where ξ(x) is the hazard function (or failure rate) in terms of
S and given by

ξ(x) =
g(x)

1 −G(x)
.

In the equation of (1), the left-hand side (l.h.s.) implies the
exiting rate from state 0, while the right-hand side (r.h.s.)
is the entering rate into state 0, that is, (1) is a type of bal-
ance equation. Similarly, the first term in the r.h.s. of (2) is
yielded from the event that the number of transactions re-
mains the same during a small time interval, while the sec-
ond term is induced from the event that a transaction arrival
occurs when there exist n transactions in the system.

We define T as the sojourn time of a transaction in sys-
tem. Note that the transaction-sojourn time T is the time in-
terval from the transaction-arriving time to the time epoch at
which the block including the transaction is confirmed. That
is, T is corresponding to the transaction-confirmation time.
Under the assumptions of the queueing model, we have the
following theorem.

Theorem 1 ([11] Theorem 5.1): The mean transaction con-
firmation time E[T ] is given by

E[T ] =

1
2λ2(b − λE[S ])

 b∑
k=1

αk

[
b(b − 1)

+{(b + 1)b − k(k − 1)}λE[S ] + (b − k)λ2E[S 2]
]

−λ
{
b(b − 1) − λ2E[S 2]

}  ≡ f (λ), (4)

where

αk =

∫ ∞

0
Pk(x)ξ(x)dx.

Proof : See Appendix A.1 in [11].

For later use, we define f (λ) as the function of λ for the
mean transaction-confirmation time E[T ].

3.3 Transaction-Confirmation Time for Priority Queueing
Model

As we described in Sect. 2.1, transactions with high fees are
more likely to be included in a block than those with low
fees. In order to investigate the hypothesis, we consider a
queueing system with batch service and priority discipline.
In this priority-queueing model, transactions are prioritized
for the inclusion to a block.

Let c denote the number of priority classes of transac-
tions. For 1 ≤ i ≤ j ≤ c, class-i transactions have priority
over transactions of class j. We assume that class-i trans-
actions arrive at the system according to a Poisson process
with arrival rate λi, independently of other transaction-class
arrivals. For the system stability,

∑c
i=1 λiE[S ] < b is as-

sumed. Let Ti denote the sojourn time of class-i transac-
tions. We also define λi as

λi =

i∑
k=1

λk, i = 2, 3, . . . , c.
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We define Ti (i = 1, . . . , c) as the confirmation time
of class-i transactions. For the mean confirmation time of
class-i transactions, we have the following theorem.

Theorem 2 ([11] Theorem 5.2): Assume the system is
work conserving. Then, E[T1] is given by

E[T1] = f (λ1).

We can calculate E[Ti] (i = 2, 3, . . . , c) recursively with
E[T j]’s ( j = 1, . . . , i − 1) by

E[Ti] =
1
λi

λi f (λi) −
i−1∑
k=1

λkE[Tk]

 .
Proof : See Appendix A.2 in [11].

If we consider two-priority case (c = 2), we have the
following simple formulae.

Corollary 1: Let λH and λL denote arrival rates of high-
and low-priority transactions, respectively. We define TH
and TL as the sojourn time of high-priority transactions and
that of low-priority ones, respectively. Then E[TH] and
E[TL] are given by

E[TH] = f (λH),

E[TL] =

(
λH

λL
+ 1

)
f (λH + λL) −

λH

λL
f (λH).

3.4 Block-Generation Time

In [7], the authors assumed that the block-generation time
follows an exponential distribution. An idea behind the as-
sumption of the exponential block-generation time is that
the difficulty of hash calculation is too high to detect a solu-
tion, allowing us to suppose that the probability of solution
detection by a miner node is constant and very small. That
is, a hash calculation by a miner node can be regarded as
an independent Bernoulli trial, and this leads to a geomet-
ric distribution of the number of experiments for the first
success. We can approximate this geometric distribution by
exponential one.

It was reported in [1] that a miner explores in the
nonce-word space consisting of 4-byte nonce field in the
block header and the script area of the coinbase transac-
tion. Since the size of the coinbase script area is 100-byte
data, the total amount of the nonce-word space is 104 bytes
(= 832 bits), i.e., 2832 nonce words.

The nonce-word space is huge, however, mining is per-
formed not only by independent miner nodes, but also by
groups of miner nodes called mining pools. A mining pool is
composed of several miner nodes, and those contribute their
computation power to the detection of solutions. The ex-
istence of mining pools suggests that the solution-detection
probability changes over time. The growth of the difficulty
presented in [26] also supports the increase in the solution-
detection probability.

In our previous work [11], we considered a simple

urn model without replacement for modeling the block-
generation process†. Assume that we have an urn containing
M balls: one red ball and M − 1 white ones. We withdraw a
ball from the urn at a time, and then remove it from the urn
without replacement. In this setting, the probability that the
red ball is drawn at kth trial is 1/M, i.e., a discrete-uniform
distribution. Assuming one trial of withdrawing a ball is
performed at a unit time, the probability of the event that the
red ball is drawn at time k is given by 1/M.

Let n denote the number of miner nodes in the system.
We define Xi (i = 1, 2, . . . , n) as the time at which miner i
finds a red ball. Suppose that Xi’s are i.i.d. Then the block-
generation time, denoted by Ln, is given by

Ln = min{X1, X2, . . . , Xn}.

Assuming that Xi follows a continuous-uniform distribution
U(0,M), we have

Pr{Ln ≤ x} = Pr{min(X1, . . . , Xn) ≤ x}
= 1 − Pr{min(X1, . . . , Xn) > x}

= 1 −
(
1 −

x
M

)n
.

Now consider a limit distribution of (Ln−bn)/an for se-
quences of constants {an > 0} and bn. It is known in extreme
value theory that the distribution of (Ln − bn)/an converges
to a Weibull distribution when Xi follows uniform distribu-
tion ([14] p. 59, Table A.1). For 0 ≤ z ≤ n, setting an = 1/n
and bn = 0 for (Ln − bn)/an yields

Pr
{

Ln − bn

an
≤ z

}
= 1 −

{
1 −

(z/M)
n

}n

→ 1 − e−z/M , n→ ∞.

This result enables us to approximate the distribution of Ln
for a large n by

Pr{Ln ≤ x} ≈ 1 − e−(n/M)x,

i.e., Ln approximately follows an exponential distribution
when n is large. Note that M is related to the mining dif-
ficulty. In the Bitcoin system, the value of M is automat-
ically adjusted such that the mean block-generation time
1/µ = M/n remains 600 [s].

Figure 4 illustrates the relative frequency of the block-
generation time for the measured data†† and the proba-
bility density function of the exponential distribution with

†As we explained in Sect. 2.1, the mining difficulty is adjusted
such that the block-generation time is 10 minutes on average. The
Bitcoin system performs this adjustment every two weeks. This
implies that the difficulty just after system adjustment is too high
for miner nodes to detect solutions, while the difficulty at a time
close to the next system adjustment is relatively small so that hash
solutions are likely to be detected. From this observation, the
Bernoulli trial model describes the mining situation just after sys-
tem adjustment, while our urn model mimics the mining process
before updating the mining difficulty.
††We collected two-year data (October 2013 to September

2015) of blocks and transactions from [26].
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Fig. 4 Relative frequency and exponential probability density function
for bock-generation time.

the same rate. The horizontal axis represents the block-
generation time in second, and the vertical axis is the log-
arithmic scale of the frequency values. In this figure, the re-
sulting curve for the exponential distribution exhibits a good
agreement with the measured data.

3.5 Findings from Numerical Examples

3.5.1 Discrepancy between Analysis and Measurement
Data

First, we compare analytical results of the mean transaction-
confirmation time and measurement ones. From the previ-
ous subsection, G(x) is set to the exponential distribution

G(x) = 1 − e−µx,

where µ is set to 1.8379 × 10−3 from the two-year data of
2013–2015. We also obtain from the data the transaction
arrival rate and batch-size limit as λ = 0.97275 and b =

1750, respectively.
From the parameter setting and (4), we obtained

E[T ] = 568.10 [s], while the average of transaction-
confirmation times of the data is 1,075.0 [s]. That is, the
analytical result is almost a half of the averaged value over
the data. Note that the mean block-generation time is 1/µ =

544.095 [s]. It is easily verified that the stability condition
λE[S ] < b is satisfied and that the system is under low uti-
lization.

Remind the assumption of transaction inclusion in our
analytical model; an arriving transaction is included into the
block under mining if the size of the block under mining
does not reach the batch size b. When the system is under
low utilization, the arriving transaction is likely to be in-
cluded in the block following the currently processed block.
The above result suggests, however, that an arriving trans-
action is not included in the block under mining.

The exponential block-generation time also supports
this conjecture. Assume an arriving transaction is not in-
cluded in the block under mining. When the system uti-

Table 1 Comparison of analysis and measurement for the transaction-
confirmation time.

Transaction Type Arrival Rate Measurement Analysis
H 0.90466 874.13 562.16
L 0.068082 3,744.1 647.05

lization is low, the confirmation time of an arriving trans-
action is likely to be composed of the remaining mining
time of the currently processed block and the mining time
for the next block. Since the exponential block-generation
time is memoryless, the remaining block-generation time
also follows the same exponential distribution. Therefore,
the transaction-confirmation time under low utilization is
the sum of two exponential block-generation times, support-
ing that the transaction-confirmation time is almost twice as
large as the block-generation time. See Appendix for the
alternate approximation discussion.

3.5.2 Fee-Based Priority Mechanism

In this subsection, we consider how the transaction-
confirmation time is affected by the amount of fee. We
classify transactions into two types: high (H) and low (L).
Transactions with fee greater than or equal to 0.0001 BTC
are prioritized as H class, while those with fee smaller than
0.0001 BTC are classified into L class. Table 1 shows the re-
sults of measurement and analysis for the confirmation time
for class-H and class-L transaction. We compute E[TH] and
E[TL] from the equations in Corollary 1.

Table 1 shows large discrepancies between measure-
ment and analysis for H and L classes. In particular, we
observe a significant discrepancy for the L class. Note that
in our queueing model, we assumed work conserving with
which low class transactions are served as long as the block
under mining is not filled with higher-priority class trans-
actions. The large discrepancy for the L class in Table 1
suggests that in the real Bitcoin system, L-class transactions
are less likely to be served. We can conjecture the existence
of miners who intentionally exclude transactions with small
fees from the block inclusion process.

3.5.3 Scalability Issue

Figure 5 illustrates how the transaction-arrival rate λ affects
the mean transaction-confirmation time E[T ]. Here, we plot
four cases of b = 1000, 2000, 4000 and 8000. In this figure,
E[T ] for each case rapidly increases when λ is close to the
upper bound b/E[S ] with which the stability condition is
violated. Here, we call b/E[S ] as the maximum transaction
throughput (MTT).

Table 2 shows the relation between the block-size limit
and MTT. In this table, the block-size limit of each b is cal-
culated by b/1750 based on the statistical analysis of the
two-year data, i.e., the 1-Mbyte block accommodates 1750
transactions on average. It is observed from this table that
the MTT slightly increases with the block-size limit. Even
when b = 8000, i.e., the block-size limit is about 4.5 Mbyte,
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Fig. 5 Mean transaction-confirmation time.

Table 2 Approximate block size and maximum transaction throughput.

b 1000 2000 4000 8000
Block Size (Mbyte) 0.5714 1.1429 2.2857 4.5714

MTT (tps) 1.8379 3.6759 7.3517 14.703

the MTT is 14.7 tps. This result implies that enlarging the
block-size limit slightly improves the transaction through-
put but does not fundamentally solve the scalability issue of
Bitcoin†.

4. Batch-Service Queue with General Input

In [9], [12], we developed the M/Gb/1 model [11] of the
previous section to the one in which an arriving transac-
tion is not included in the block under mining. In [9], we
considered a single-server queueing system with batch ser-
vice and multiple vacation policy. The priority mechanism
was further taken into consideration in [12]. In both models,
the resulting mean transaction-confirmation time showed a
good agreement with the measured data. In comparison of
the analysis and trace-driven simulation, however, a large
discrepancy was observed for the transaction-confirmation
time in small block-size limit region. From the measured
data, we found that the variation of the transaction-arrival
process is larger than that of Poisson process.

In order for further improvement of the queueing
model, we considered a queueing system with batch service
and general input [10]. In this queueing model, the transac-
tion interarrival times are i.i.d. according to a general distri-
bution. The resulting queueing model is a GI/Mb/1. In this

†According to [29], VISA can process 65,000 transactions per
second at peak time. We can calculate from Table 2 the maxi-
mum block size, with which Bitcoin can handle the same amount
of transactions as VISA, by:

65, 000
1.8379

× 0.5714 ≈ 20208.0 [Mbytes]

That is, the block size of more than 20 Gigabytes is needed. Such a
large block makes not only the block-transfer delay large, but also
the network overloaded. This large block is not a practical solution
for solving the scalability issue of Bitcoin.

section, we briefly summarize the GI/Mb/1 and numerical
results in [10].

4.1 GI/Mb/1 Queueing Model

Let Ai (i = 1, 2, . . .) denote the i-th transaction interarrival
time. We assume Ai’s are i.i.d. and follow a general distri-
bution H(x). The block-generation time is i.i.d. and follows
an exponential distribution with rate µ. Transactions are
served in a batch-service manner, and we define the max-
imum batch size as b. Suppose that an arriving transaction
is not included in the block under mining.

4.2 Analysis

We define Nn (n = 1, 2, . . .) as the number of transactions
in the system just before the n-th transaction arrival. The
number of mining completions from the n-th and (n + 1)-st
transaction arrival points is denoted by Yn. Let D(n)

k denote
the number of transactions departing from the system at the
k-th mining completion point, counted from the n-th trans-
action arrival epoch.

It is easy to see that for n = 1, 2, . . ., Nn satisfies the
following equation

Nn+1 = max
{
Nn − (Yn − 1)b − D(n)

Yn
+ 1, 0

}
. (5)

Since the block-generation time is i.i.d. and follows an
exponential distribution, {Yn : n = 1, 2, . . .} are i.i.d. and
follows a Poisson distribution. Therefore, {Nn : n = 1, 2, . . .}
satisfying (5) is a discrete-time Markov chain whose state-
transition probability pi j = Pr{Nn+1 = j|Nn = i} is given
by

pi j =


a( j−i−1)/b, if ( j − i − 1)/b is an integer,
abi/bc+1, j = 0,

0, otherwise,

where

ak =

∫ ∞

0
e−µx (µx)k

k!
dH(x), ak =

∞∑
i=k

ai,

and bxc is the floor function of x. Then, the transition-
probability matrix P = (pi j) is given by

P =



B0 C0 O O · · ·

B1 A1 A0 O · · ·

B2 A2 A1 A0 · · ·

B3 A3 A2 A1 · · ·

...
...

...
...

. . .


,

where

C0 = (a0, 0, . . . , 0), B0 = (a1),
Bk = (ak, . . . , ak, ak+1),
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Al =



0 al
0 0 al O
0 0 0
...

. . .

0 0 0 0 al
al+1 0 0 · · · 0 0


.

We can see from the transition matrix P that the
Markov chain {Nn : n = 1, 2, . . .} is irreducible and aperi-
odic. If the stability condition λ/µ < b holds, we have the
steady-state distribution

πk = lim
n→∞

Pr{Nn = k}, k = 0, 1, . . . .

We define π as the steady-state probability vector, given by
π = (πk). Then π satisfies the following system of equations

π = πP, π1 = 1,

where 1 = (1, 1, . . .)> (> means transpose). Defining

π0 = (π0),
πn = (π(n−1)b+1, π(n−1)b+2, . . . , πnb), n = 1, 2, . . . ,

we can rewrite π as π = (π0,π1,π2, . . .). Since the struc-
ture of the transition probability matrix P is a GI/M/1-type
Markov chain, we have [18]

πn+1 = π1Rn, n = 0, 1, . . . .

We can obtain R numerically by the following matrix recur-
sive equation of R(n)

R(n) =

A0 +

∞∑
k=2

[R(n − 1)]k Ak

 (I − A1)−1 .

With R, we can solve π0 and π1 from the following equa-
tions

π0 = π0B0 + π1(
∞∑

l=1

Rl−1Bl),

π1 = π0C0 + π1(
∞∑

l=1

Rl−1 Al),

π01> + π1(I − R)−11> = 1.

Let W denote the transaction waiting time in the mem-
ory pool. Then the mean transaction waiting time E[W] is
given by

E[W] =

∞∑
k=0

πk

(⌊
k
b

⌋
+ 1

)
E[S ].

The mean transaction-confirmation time E[T ] can be calcu-
lated by E[T ] = E[W] + E[S ].

4.3 Numerical Examples

In our previous work [10], we considered a hyper-
exponential distribution for the transaction interarrival time.

Table 3 Comparison of transaction interarrival time statistics for mea-
sured data and estimates by EM algorithm.

Period Type Mean SD CV
Oct. 2013 – Sept. 2014 Data 1.36296 5.07571 3.72401

EM 1.36296 4.42236 3.24465
Oct. 2014 – Sept. 2015 Data 0.82772 12.68489 15.32505

EM 0.82772 12.58913 15.20936
SD: Standard Deviation, CV: Coefficient of Variation

Table 4 Comparison of transaction-confirmation times for data-driven
simulation and analysis.

Period Type Block Size
1000 1500 2000

Oct. 2013 – Sep. 2014 DDS 1080.27 1031.53 1022.77
Analysis 1061.35 1022.95 1015.24

Oct. 2014 – Sep. 2015 DDS 14053.6 1540.40 1240.69
Analysis 1877.20 1337.00 1238.18

DDS: Data-Driven Simulation

Fig. 6 The impact of coefficient of variation of the transaction-
interarrival time on the transaction-confirmation time.

The parameters of the hyper-exponential distribution were
estimated by the EM algorithm [13]. Table 3 shows the
comparison results of statistics for transaction interarrival
times of measured data and estimates by EM algorithm. We
consider two measured data sequences: the period of 1 Oc-
tober 2013 to 30 September 2014, and that of 1 October
2014 to 30 September 2015. In Table 3, the mean, standard
deviation, and coefficient of variation of the resulting hyper-
exponential distribution show a good agreement with those
of actual data.

In terms of the transaction-confirmation time, we also
observed a good agreement between the analytical result
and trace-driven simulation one for large block-size limit.
When the block-size limit is small, however, we observed
a discrepancy between analytical and simulation results.
(See Table 4.) We also found that for the block-size limit
of 1 Mbyte, Poisson process gives a good estimate of the
transaction-confirmation time.

We further investigated how the coefficient of variation
of the hyper-exponential distribution affects the transaction-
confirmation time (Fig. 6). We found from this figure that
the transaction-confirmation time slightly increases with the
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coefficient of variation. When the block size is large, how-
ever, the transaction-confirmation time is not affected by
the variation of the transaction interarrival time. As we ex-
plained in Sect. 3.5, the mean number of transactions in a
block is b = 1750. The result of Fig. 6 suggests that cur-
rent block size is so large that the transaction-confirmation
time is not affected by the variation of the transaction arrival
process significantly.

5. Conclusion

In this paper, we showed queueing models for analyzing the
transaction-confirmation process in the Bitcoin blockchain.
A key observation was that transactions are processed in a
block basis, which can be modeled by a queueing system
with batch service.

We first introduced the single-server queue with batch
service and priority mechanism. We also showed the queue-
ing system with batch service and general input. The sum-
mary of the findings from numerical results of the queueing
models is as follows:

• M/Gb/1 model
The average transaction-confirmation time of measured
data is almost twice larger than that of the analysis.
This result implies that arriving transaction is not in-
cluded in the block under mining.

• M/Gb/1 with priority discipline
The average confirmation time of low-priority transac-
tions for measured data is significantly larger than that
for analysis. This implies that the queueing mechanism
of the Bitcoin system is not work conserving, suggest-
ing the existence of the miners that intentionally ex-
clude transactions with low fee.

• G/Mb/1 model
The discrepancy of the transaction-confirmation time
between analysis and data-driven simulation is large
when the block-size limit is small. This results from
the non Poisson arrival process for transactions. How-
ever, this discrepancy decreases with the increase of the
block size, and we confirmed that the proposed queue-
ing model provides good estimates of the traction-
confirmation time under the current block size of 1
Mbyte.

As we presented in Sect. 2.2, DSS trilemma is a diffi-
cult and important issue. In order to tackle the DSS trilemma
and to make public blockchains further scalable, we have
conducted several research projects under Grant-in-Aid for
Scientific Research (A) No.19H01103 “Informatics Study
on Ultra-Scalable Blockchain Technology” [28]. Here, we
consider performance modeling issues in blockchain sys-
tems, advanced data structure for blockchains, and applica-
tions of blockchain technologies to IoT systems. The read-
ers who are interested in the research products are referred
to [28].
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Appendix: Transaction-Confirmation Time under Low
Utilization

Assume that a transaction arrives at the system when the
n-th block is under mining. Let S n denote the n-th block
generation time. We define S̃ n as the remaining n-th block-
generation time, i.e., the time interval from the transaction
arriving point to the time epoch at which the n-th block
mining ends. Suppose the arriving transaction is included
in (n + j)-th block ( j = 1, 2, . . .). Then, the transaction-
confirmation time T is given by

T = S̃ n + S n+1 + · · · + S n+ j.

When the system utilization is low, the number of transac-
tions in the mining pool is likely to be small, and the arriving
transaction is included in (n + 1)-st block with a large prob-
ability. Roughly speaking, we can approximate T under low
utilization by

T ≈ S̃ n + S n+1.

Since block-generation times {S n}’s are i.i.d. and follow the
exponential distribution of G(x), S̃ n also follows the same
exponential distribution due to the memoryless property.
Since S n is equal to S in distribution, we have T ≈ 2S ,
which yields E[T ] ≈ 2E[S ].
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