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Machine Learning in 6G Wireless Communications

Tomoaki OHTSUKI†a), Fellow

SUMMARY Mobile communication systems are not only the core of the
Information and Communication Technology (ICT) infrastructure but also
that of our social infrastructure. The 5th generation mobile communication
system (5G) has already started and is in use. 5G is expected for various use
cases in industry and society. Thus, many companies and research institutes
are now trying to improve the performance of 5G, that is, 5G Enhancement
and the next generation of mobile communication systems (Beyond 5G
(6G)). 6G is expected to meet various highly demanding requirements even
compared with 5G, such as extremely high data rate, extremely large cover-
age, extremely low latency, extremely low energy, extremely high reliability,
extreme massive connectivity, and so on. Artificial intelligence (AI) and
machine learning (ML), AI/ML, will have more important roles than ever in
6G wireless communications with the above extreme high requirements for
a diversity of applications, including new combinations of the requirements
for new use cases. We can say that AI/ML will be essential for 6G wireless
communications. This paper introduces some ML techniques and appli-
cations in 6G wireless communications, mainly focusing on the physical
layer.
key words: artificial intelligence (AI), machine learning (ML), deep learn-
ing (DL), neural network (NN), deep neural network (DNN), 6G, deep
transfer learning (DTL)

1. Introduction

Digital Transformation (DX), which transforms society,
economy, and industry using digital technology represented
by rapidly developing AI (Artificial Intelligence), is attract-
ing much attention. Information and Communication Tech-
nology (ICT) infrastructure plays an important role in DX.
It is no exaggeration to say that mobile communication sys-
tems, represented by the 5th generation mobile communi-
cation system (5G), are the core of the ICT infrastructure.
5G is expected for various use cases in industry and soci-
ety. 5G has three functional requirements: enhancedMobile
Broadband (eMBB), Ultra-Reliable and Low Latency Com-
munications (URLLC), and Massive Machine Type Com-
munications (mMTC). In 5G (New Radio (NR) Release 15),
which is currently in service, best-effort services that empha-
size downlink speed are mainly realized as a result of stan-
dardization in 3GPP, focusing on eMBB and some URLLC
among them [1]. In the future, it is expected that services
that take advantage of large data uploads and services that
guarantee communication quality, particularly for industrial
applications, will be required. Therefore, 5G Enhancement
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is expected to improve the performance of the uplink and
realize communication quality assurance.

Mobile communication systems are evolving every 10
years, and by 2030, when the next generation of mobile com-
munication systems (Beyond 5G (6G)) is expected to be in
use, various social issues and use cases are expected to be
addressed. As shown above, 6G will be required to support
the data traffic that is expected to continuously increase as
mobile communication services become more sophisticated
and diverse. Also, 6G will be required to meet the extremely
high-performance requirements that will support the resolu-
tion of social issues and new use cases in the 2030s. The
Ministry of Internal Affairs and Communications (MIC) has
presented the following three social images for the 2030s
when 6G is expected to be used in “Beyond 5G Promotion
Strategy—Roadmap towards 6G—” [2]: “Inclusive soci-
ety,” “Sustainable society,” and “Dependable society.”

The year 2030 is also the target year for achieving
the Sustainable Development Goals (SDGs) adopted at the
United Nations Summit in 2015. 6G is expected to support
the realization of these goals as a social infrastructure. Ac-
cording to the “Beyond 5G Promotion Strategy,” in addition
to further upgrading of the characteristic functions of 5G,
such as eMBB, URLLC, and mMTC, 6G must be equipped
with four new functions: “ultra low power consumption,”
“autonomy,” “scalability,” and “ultra security and resiliency.”
In addition to the above functions, [1] also lists lower cost
(lower cost per bit) and sensing as requirements.

To meet those high requirements, various techniques
need to be developed and used in 6G. Several companies and
research institutes have issued white papers about B5G and
6G [1]–[8]. In those white papers, we can see many common
requirements as shown below such as in [1].

• Extreme high data rate/capacity

– Peak data rate > 100Gbps exploiting new spec-
trum bands

– > 100× capacity
– Extreme-high uplink capacity

• Extreme low latency

– E2E very low latency < 1ms
– Always low latency

• Extreme coverage extension

– Gbps coverage everywhere
– New coverage areas, e.g., sky (10000m), sea
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(200NM), space, etc.

• Extreme high reliability

– Guaranteed QoS for wide range of use cases (upto
99.99999% reliability)

– Secure, private, safe, resilient, · · ·

• Extreme low energy & cost

– Affordable mmW/THz NW & devices
– Devices free from battery charging

• Extreme massive connectivity

– Massive connected devices (10M/km2)
– Sensing capabilities & high-precision positioning
(< 1 cm)

To meet these high requirements, many key techniques
are mentioned in the white papers such as in [5].

• AI/ML-driven air interface design and optimization
• Expansion into new spectrum bands and new cognitive
spectrum sharing methods

• The integration of localization and sensing capabilities
into system definition

• The achievement of extreme performance requirements
on latency and reliability

• New network architecture paradigms involving sub-
networks and RAN-core convergence

• New security and privacy schemes

As mentioned above, AI/ML will be essential for 6G
wireless communications with the extremely high require-
ments for a diversity of applications, including new com-
binations of the requirements for new use cases. Note that
AI is a simulation of human intelligence or experience by
machines, while ML is an application of AI with the ability
to automatically learn and improve from experience without
being explicitly programmed. AI is a much broader concept
than ML. A white paper on ML in 6G wireless communi-
cation networks has been issued by University Oulu [8]. In
the white paper, several applications of ML in each layer
are presented, physical layer, medium access control (MAC)
layer, application layer, and also for the security of wireless
networks. As the application of ML at the physical layer, the
following areas are shown: channel coding, synchronization,
positioning, channel estimation, beamforming, and physical
layer optimization with ML. Also, in the application of ML
at the MAC layer, the following use cases are shown: Fed-
erated Learning (FL) for orientation and mobility prediction
in wireless virtual reality networks, predictive resource al-
location in machine-type communications, predictive power
management, and asymmetric traffic accommodation.

In [9] more applications of AI/ML in each layer are pre-
sented, physical layer, network layer, and application layer.
As the application of ML at the physical layer, the following
areas are shown: Channel tracking/equalization/decoding,
pathloss prediction/estimation, intelligent beamforming,
modulation mode selection, anti-jamming, channel access

control, spectrum sensing/management/allocation, physical-
layer security, and so on. Also, in the application of ML at
the network layer, the following areas are shown: Caching,
traffic classification, anomaly detection, throughput opti-
mization, latency minimization, attack detection, intelligent
routing, traffic prediction/control, access control, source en-
coding/decoding, and so on.

As shown above, there are ongoing standardization ef-
forts to exploit AI in cellular systems. The third generation
partnership project (3GPP) has standardized a network data
analytics function (NWDAF) for data collection and analyt-
ics in automated cellular networks [10]. In addition to 3GPP,
the O-RAN Alliance is targeting to realize an intelligent ra-
dio access network (RAN). Networks are now required to
support a wide variety of applications and becoming in-
creasingly complex. In such a case, it may become difficult
to optimize operations and networks manually as in the past.
It will become essential to realize more autonomous and
automated operations utilizing AI and ML. To realize such
a vision, the O-RAN Alliance is studying RAN configura-
tions (architectures) that can optimize network design and
operations while utilizing AI/ML, as well as open interfaces
are also being considered. The function called “RIC (RAN
Intelligent Controller)” specified by the O-RAN Alliance is
positioned at the center of the realization of this intelligent
RAN.

In this paper, we introduce some ML techniques and
their applications in 6G wireless communications, mainly
focusing on the physical layer. We first introduce end-
to-end learning of communication systems through neural
networked-based autoencoders [11]. We then introduce
some ML techniques for massive multiple-input multiple-
output (MIMO). We introduce a neural network-based belief
propagation (BP) algorithm for massiveMIMO signal detec-
tion [12], [13]. This algorithm is based on the idea of deep
unfolding that unfolds the iterations of an inference algorithm
into a layer-wise structure like a neural network [14]. We
also introduce a signal detection based on the BP algorithm
with a deep learning (DL)-based denoising technique based
on the deep image prior (DIP) [15]. In massive MIMO sys-
tems, as the name mentions, the number of antennas is large
so the number of channels that needs to be estimated is also
large. Due to the time-varying characteristics of the channel,
the length of pilot signals is limited so that that of orthog-
onal pilot signals is finite. Thus, the same pilot signals are
reused in neighboring cells, which deteriorates the channel
estimation performance. This defect is referred to as pi-
lot contamination. We introduce two neural network-based
schemes to reduce the effects of pilot contamination [16].
We also consider channel state information (CSI) feedback,
where the amount of feedback information is the issue in
massive MIMO.We introduce the neural network-based CSI
feedback scheme, where we explain the idea of deep transfer
learning (DTL) and present the DTL-based CSI feedback
scheme [17].

In B5G and 6G, it is also essential to utilize new spec-
trum bands such as mmWave bands and tera-hertz frequency
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bands to achieve an extremely high data rate. However, the
systems using high-frequency bands, such as the mmWave
systems, suffer from severe pathloss. Thus, it is essential to
use beamforming with large antenna array gains in mmWave
communications. Therefore, it needs to use a lot of antennas
in mmWave communications. Since the power consumption
and cost of radio-frequency (RF) chains are both high, the
current mmWave systems employ not full digital beamform-
ing, in which each antenna is attached to an RF chain, but hy-
brid beamforming in general. Hybrid beamforming is effec-
tive but requires a large overhead in a beam search/selection
phase. We introduce our proposed DL-based analog beam
selection scheme with low overhead [18]. Finally, we con-
clude this paper and discuss the future direction of ML in
6G wireless communications.

Note that some wireless scenarios mentioned in this
paper are also studied in 5G. However, as mentioned above,
there are new extremely high requirements for new use cases
in 6G. Also, there are new combinations of the requirements
for new use cases in 6G. Those are the differences between
5G and 6G even for the same wireless scenarios.

2. AI-Based Wireless Communications

2.1 End-to-End Learning of Communication Systems
Through Neural Networked-Based Autoencoders

In general, a communication system consists of a transmitter,
a channel, and a receiver, where a transmitter and a receiver
are split into multiple signal processing blocks. Conven-
tional signal processing tries to optimize each block sepa-
rately or sometimes jointly. The block-based optimization
provides a good performance in general. However, block-
based optimization does not always provide the best possi-
ble end-to-end performance. Joint optimization can provide
better performance than block-based optimization in gen-
eral. However, joint optimization of multiple signal blocks
is often computationally prohibitive. A learned end-to-end
optimization through deep learning can provide superior per-
formance.

The general communication systems mentioned above
can be seen as a kind of autoencoder [19]. Thus, an autoen-
coder has been used to model the communication system and
optimize the communication system in an end-to-end man-
ner as shown in Fig. 1 [11]. In general, an autoencoder is
used to find a lower-dimensional representation of its input
at an intermediate layer like compression, while it still can
reconstruct the input signal as the output of the decoder. On
the other hand, the autoencoder modeling the communica-
tion system tries to learn representations of the transmitted
signals x of the messages s that are robust to the channel
impairments, such as noise, fading, distortion, and so on, so
that the transmitted message can be recovered with a small
probability of error. This autoencoder is sometimes referred
to as the “channel autoencoder.” [11] presents a comparison
of the block error rate (BLER) performance between Ham-
ming (7,4) coded binary phase-shift keying (BPSK) with

Fig. 1 Modeling the communications system by autoencoder, where s is
the transmitted information, x is the transmitted signal, y is the received
signal, ŝ is the estimated transmitted information, f (·) is the transmitter
function, g(·) is the receiver function, and p(y |x) is the conditional proba-
bility density function of the channel.

maximum likelihood (ML) decoding and that of the trained
autoencoder (7,4). The autoencoder is shown to achieve the
same BLER performance as that of the Hamming (7,4) code
with ML decoding. Thus, it can be said that the autoencoder
has learned the encoder and decoder function without any
prior knowledge.

One of the drawbacks of the end-to-end learning of
communication systems through autoencoders is that the gra-
dient of the instantaneous channel transfer function must be
known, which is not practical. Moreover, the channel usually
comprises some processes of the transmitter and the receiver,
such as quantization, which are non-differentiable, and thus
the gradient-based training through backpropagation cannot
be used.

To overcome these drawbacks, [20] proposes a learn-
ing algorithm that enables the training of communication
systems with an unknown channel model or with non-
differentiable components. The proposed algorithm iterates
between the training of the receiver using the true gradient
of the loss, and that of the transmitter using an approxima-
tion of the loss function gradient. The proposed algorithm
is shown to achieve the performance identical to that of the
algorithm with training with a channel model using back-
propagation on additive white Gaussian noise (AWGN) and
Rayleigh block-fading (RBF) channels.

2.2 Deep Learning for Massive MIMO

2.2.1 Massive MIMO Detection

Massive MIMO that uses a massive number of antenna ele-
ments on the transmitter side is one of the key technologies
of 5G and 6G. Massive MIMO can achieve high spectral
efficiency and accommodate a large number of users. How-
ever, in a massive MIMO system, it is difficult to detect
signals from a large number of users. Also, the complexity
of signal detection becomes high. As simple signal de-
tection techniques, linear detection methods such as zero-
forcing (ZF) and minimum mean squared error (MMSE)
are known. However, those need the inverse matrix cal-
culation, which results in a large computational complexity
for massive MIMO systems. The signal detection technique
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based on the belief propagation (BP) algorithm, referred to as
BP detection, is one of the promising techniques [21]–[25].
The BP algorithm calculates a marginal probability of un-
observed variables by message passing in a factor graph. In
BP detection, symbol replicas are generated from the propa-
gated messages at each iteration, and the log-likelihood ratio
(LLR) of each symbol is updated as a message by removing
the interfering component of the received signals. BP de-
tection can achieve near-optimal detection performance with
lower complexity [21]–[25]. Moreover, BP detection does
not require the matrix-inversion calculation, which is attrac-
tive for massive MIMO systems. However, there are some
issues in BP detection. In BP detection errors occur in the
propagated messages due to residual interference and noise
in the received signals after interference removal. Also, due
to multiple loops included in the MIMO channel, a message
with error propagates throughout the factor graph, which re-
sults in the degradation of the convergence performance and
the detection performance. A damping factor is introduced
to control the message updates to improve the BP detec-
tion performance. The damping factors are used to average
two successive messages by expanding the BP iteration to
the neural network so that the detection performance and
convergence performance can be improved. In conventional
works, the damping factors are tuned heuristically in gen-
eral. However, a heuristic-based selection often results in
suboptimal performance.

Neural networks have the ability to learn the funda-
mental information of the model. Deep unfolding is a tech-
nique to unfold the iterations of an inference algorithm into a
layer-wise structure like neural networks [14]. Deep unfold-
ing capitalizes the well-known signal processing model and
the ability of DL. It can solve problems for which precise
modeling is not available. It can also approximate com-
putationally complex operations by a deep neural network
(DNN). In deep unfolding, model parameters are de-coupled
across layers that can be trained easily and discriminatively
using gradient-based methods. There are similarities be-
tween the message passing factor graph and DNN as shown
in Table 1 [12]. Thus, DNN is employed to improve the con-
vergence performance of BP, which is referred to as DNN-
based damped BP (DNN-dBP) [12]. DNN-dBP trains the
damping factors by unfolding the BP iteration to the neural
network. By using the trained damping factors, it is possible
to improve the convergence performance of BP. In [13], we
derived the damping factors that are robust to the channel
mismatches between training and testing using DNN-dBP.
Fig. 2 shows the structure of the proposed DNN-dBP with
node selection. In this method, observation nodes to be
updated in one iteration are selected so that the spatial cor-
relation becomes low. Thus, the channel correlation among
the selected nodes in BP detection is lowered and the con-
vergence performance of BP is improved. Therefore, the
dumping factors derived based on this method are robust to
the channel mismatches between training and testing.

In the context of image processing, deep image prior
(DIP) has been reported as a method to remove noise with-

Table 1 Similarities between BP FG and DNN.
BP FG DNN
Nodes Neurons

Transmitted signals Input data
Received signals Output data
l-th iteration l-th hidden layer

Belief messages Hidden signals
Message updating rules Mapping function between layers

Correction factor Parameters

Fig. 2 A structure of DNN-dBP with node selection [13].

Fig. 3 A heatmap of the received signal.

out the need for teacher data [15]. DIP learns a single input
image and optimizes the parameters of the convolutional neu-
ral network (CNN) by the gradient descent method to obtain
a reconstructed image in general. DIP can be said to exploit
the difference in the learning speed of neural networks for
images. It has been shown in [15] that DIP learns faster
for natural images than for random images such as noise.
DIP can use this difference in the learning speed to output
a clean image, i.e., an image with reduced noise, by stop-
ping learning before learning noise. In [26], a heatmap of
the received signal is generated as shown in Fig. 3 using the
“receive antenna index” and “time index” as dimensions. In
each heatmap, each receive antenna receives the same trans-
mitted symbols after interference removal, so the correlation
is high in the domain of the receive antenna. Suppose the
inter-frame channel is assumed to be constant. In that case,
each receive antenna receives a symbol pattern of transmit-
ted symbols at each time, resulting in high correlations in
the time domain. Based on these correlations, DIP can re-
duce residual interference and noise. In [26], weintroduced a
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massive MIMO BP detection using DIP with a DNN-trained
scaling factor. In BP detection, we create the heatmap of the
received signals after interference removal at each iteration
so that it correlates. By applying DIP to the heatmap of
the received signals, it is possible to reduce residual inter-
ference and noise. After applying DIP, the variance of the
interference and noise components changes. To bring the
variance closer to its true value, we scale it. Because it is
difficult to calculate the value of the variance after applying
DIP theoretically, we train the scaling factors offline using
DNN-BP. By scaling the variance, it is possible to improve
the reliability of the message. Figure 4 shows the BER per-
formance versus SNR in dB in the correlated channel (the
correlation factor ρ = 0.3) where the modulation scheme is
QPSK, 16×16 MIMO, and the number of BP iterations is 7.

Fig. 4 BER performance vs SNR (dB) per receive antenna in the cor-
related channel (ρ = 0.3) where the modulation scheme is QPSK, 16×16
MIMO, and the number of BP iterations is 7.

Fig. 5 A framework for the proposed methods [16]. The upper part and the lower part show the
structure in the neural network-based estimation using the fully connected layers and the CNN-based
estimation using the convolutional layers, respectively.

It can be seen that the BER performance is improved by ap-
plying DIP. It can be also seen that the BER performance of
the proposed method with the trained scaling factor is better
than that without the trained one.

2.2.2 Pilot Contamination

In massive MIMO, the number of channels that needs to
be estimated is large. Since the number of orthogonal pi-
lot signals is limited when we limit the length of those, the
same pilot signals need to be reused in neighboring cells.
The degradation of the channel estimation performance by
reusing the same pilot signals is referred to as pilot contam-
ination. In [27] a covariance-aided channel estimation is
proposed, in which the MMSE channel estimation is de-
rived. This scheme can remove the pilot contamination
completely when the covariance matrices satisfy a certain
non-overlapping condition. However, this assumption is not
so practical.

Recently, DL is expected to improve the channel estima-
tion performance inmassiveMIMO. In [28], DL is integrated
into direction-of-arrival (DoA) estimation and channel esti-
mation in massive MIMO systems. In [16] we propose two
methods of DL-aided channel estimation to reduce the ef-
fects of pilot contamination. One uses a neural network
consisting of fully connected layers, while the other uses
a CNN. Figure 5 shows the frameworks of the proposed
methods where the upper and lower parts show the struc-
ture in the neural network-based estimation using the fully
connected layers and the CNN-based estimation using the
convolutional layers, respectively. Neural networks, partic-
ularly CNN, can extract features of spatial information from
the contaminated signals. It is shown that the former method
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is better in terms of the training speed, while the latter one
can estimate the channel more accurately.

2.3 Deep Transfer Learning

Transfer learning (TL) is a machine learning method where
a model trained for a task is used as a starting point for a
model on a different related task. TL is a popular technique
in DL such as for computer vision and natural language
processing where a large amount of computation and time
resources are required to train a model from scratch. In TL,
a domain and a task are defined. A domain D is defined
as a pair D = {χ,P(X)}, which consists of a feature space
χ and a marginal distribution P(X) over the feature space,
where X = {x1, ..., xn} ∈ χ. A task is defined as a pair
T = {Y, f (·)}. Y is the label space, and given yi ∈ Y, f (·)
is a function that predicts yi corresponding to xi . Using the
definitions of a domain and a task, TL can be defined as
follows [29]:

Transfer learning : Given a source domain DS , a
source task TS , a target domain DT , and a target task TT ,
the aim of TL is to improve the learning of the target predic-
tion function fT (·) in DT using the knowledge in DS and TS ,
where DS , DT or TS , TT .

Deep transfer learning: DTL is a method that com-
bines deep learning with TL. Given that the TL task is de-
fined by 〈DS,TS,DT ,TT 〉, which is a DTL task when the
target prediction function fT (·) for TT is a non-linear func-
tion approximated by DNN.

DTL has been applied to wireless communications as
well, such as CSI feedback, beamforming, signal detection,
physical layer security, and so on. In [17], DTL is used to
generate the CSI feedback deep learning model for each tar-
get channel model whereas the Clustered Delay Line (CDL)
channel model [30] is used to simulate the wireless environ-
ments. Specifically, the DNN is trained as the source model
by using a large number of CDL-A samples as source data.
The source model is then fine-tuned with a small number of
CDL-B, CDL-C, CDL-D, and CDL-E samples, i.e., target
data, respectively. Based on this procedure, a target model
for each target channel can be obtained with a small number
of samples and a short training time. Figure 6 shows the sys-
tem model of the CSI feedback scheme based on DTL [17].
Figure 7 shows the NMSE performance of the DTL scheme
[17] in FDD massive MIMO systems where the target chan-
nel is CDL-A. The frequencies of the uplink and downlink
channels are set to 2.0 GHz and 2.1 GHz, respectively. The
numbers of antennas of UE and BS are 2 and 32, respec-
tively. The number of subcarriers is set to 72 with a spacing
of 15 kHz, and the number of OFDM symbols to 14. The es-
timated CSI of UE and feedback CSI of BS are assumed to be
error-free. The compression ratio is set to 1/8. The number
of source data samples used to train the source model is set to
50,000, and that of target data samples used for fine-tuning
is varied as 200, 500, 1000, 2000, and 4000. The red dotted
line with the label “CDL-A (NLOS)” represents the NMSE
performance of the sourcemodel trained using CDL-A as the

Fig. 6 The systemmodel of the CSI feedback scheme based on DTL [17].

Fig. 7 The NMSE performance versus the number of target data samples
where the target channel is CDL-A.

source data. We can see that there is a performance degrada-
tion, but the DTL scheme achieves goodNMSE performance
with the small number of target data samples. We can also
see that in the DTL scheme, different source models provide
different NMSE performances. In this environment where
the target channel is CDL-A (NLOS), the DTL scheme pro-
vides the best NMSE performance when the source model is
CDL-B (NLOS) and CDL-C (NLOS). As mentioned before,
the source model selection is important for the DTL scheme.
Some discussion about the source model selection criteria in
the DTL scheme can be found in [31].

2.4 mmWave Communications

In wireless communications, there have been continuous and
tremendous efforts to increase capacity by expanding spec-
trum and improving spectral efficiency and spatial reuse. It
is very important to utilize new spectrum bands such as
mmWave bands and tera-hertz frequency bands. A sig-
nificant amount of research has been ongoing to improve
and realize mmWave systems. However, mmWave systems
suffer from severe pathloss. Thus, it is essential to use
beamforming with large antenna array gains in mmWave
communications. In mmWave communications, the power
consumption and cost of RF chains are both high. Hybrid
beamforming is a promising technique to balance tradeoffs
between cost and performance. Since mmWave communi-
cations need to use a large number of antennas, the channel
estimation is also the challenging task. Against the chal-
lenge, a switched beamforming scheme has been proposed
[32] in which the best beams to steer are found within the
codebook. Among beam selection schemes, an exhaustive
search scheme achieves the best performance but requires a
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large overhead particularly when a large number of beams
are employed [33]. A hierarchical beam search proposed
in [34] can reduce the beam training overhead by two-stage
beam training. In the hierarchical beam search scheme, BS
andUE, equippedwithmultiple-tier codebooks, sweepwider
beams first and iteratively thin the search space for the best
narrow beam. The hierarchical beam search scheme can pro-
vide a good trade-off among the performance, the time, and
the large overhead. In [35] a beam selection scheme using
DL is proposed to reduce the overhead. The DL model es-
timates the qualities (received power) of all the beams from
a few beam measurements. The authors introduce the DL-
based image reconstruction approach to the beam selection
where the received power matrix is transformed into a power
map by assigning the received power to the corresponding
color. However, since the beams used for measurements are
selected randomly, the performance of the scheme can be
largely affected by the beam searching area [35].

In [18], we proposed a DL-based low overhead analog
beam selection scheme in which two different-width beams
are steered, wide beams for pilot signals and narrow beams
for data signals. To change the beam widths without los-
ing beamforming gain, a balance beam is implemented in
our proposed scheme, which concentrates a radiation pat-
tern over the target area. Based on the wide-beam measure-
ments, the proposed super-resolution-inspired DL predicts
the beam qualities (received powers) of narrow beams where
the spatial correlation in the beam qualities is utilized with
a CNN to improve the estimation accuracy. Moreover, the
proposed scheme predicts beam qualities to reduce the fre-
quency of beam training. The proposed scheme transmits
the pilot signal only every other channel coherence time to
reduce the training overhead. The current received pow-
ers with narrow beams are predicted based on the past pilot
signals. Thus, the training time can be reduced by half.
To capture spatiotemporal correlations, the proposed model
is designed with a convolutional long short-term memory
(LSTM) network. Figure 8 shows an idea of the proposed
super-resolution-inspired DL scheme. Here, the received
power matrix obtained by 4 × 4 DFT beams is transformed
into a power map by assigning the received power to the cor-
responding color. The low-resolution beam domain image
is input to the super-resolution-inspired DL network to out-
put the high-resolution beam domain image corresponding

Fig. 8 Estimation of received power of narrow beam from that of wide
beam based on super resolution [18].

to the power map obtained by such as 8 × 8 DFT beams. It
is shown in [18] that the proposed beam selection achieves
a performance comparable to that of the exhaustive search
scheme. Note that the number of beam measurements per
coherence time is 8 for the proposed scheme and 64 for the
exhaustive search scheme.

3. Conclusions

In this paper, I presented an overview of someML techniques
and applications in 6G wireless communications, mainly
focusing on the physical layer. One of the challenges in
applying ML to real systems is the dynamic environments.
The environments of wireless communications dynamically
change. ML makes inferences and predictions using data.
Therefore, if the statistical properties of the data change
over time, the performance of the system using ML may
degrade. To use ML in wireless communications, DTL that
I introduced its applications in wireless communications is
one of the promising solutions. Another solution is themeta-
learning that learns how to learn [17]. Another challenge is
that ML, particularly DL-based solutions, usually require a
large amount of training data and computational resources.
To apply DL-based solutions, we need to carefully consider
those requirements.

A common problem with AI is that the parameters ob-
tained as a result of training are difficult to interpret. That
is, it is difficult to interpret why the characteristics obtained
by AI are the way they are. This is called the interpretability
problem. However, to use AI in a real system, it is necessary
to be able to understand and explain why such characteristics
are obtained. Explainable AI (XAI), which is an ML model
whose results and processes leading to them are interpretable
by humans, has been actively studied in recent years. A typ-
ical technique to realize XAI is LIME [36], which is a local
approximation approach to represent AI’s decision logic for
specific input data in an interpretable form. XAI is also an
important technology for 6G.
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