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PAPER
Metadata-Based Quality-Estimation Model for Tile-Based
Omnidirectional Video Streaming

Yuichiro URATA†a), Masanori KOIKE†, Kazuhisa YAMAGISHI†, and Noritsugu EGI†, Members

SUMMARY In this paper, a metadata-based quality-estimation model
is proposed for tile-based omnidirectional video streaming services, aiming
to realize quality monitoring during service provision. In the tile-based
omnidirectional video (ODV) streaming services, the ODV is divided into
tiles, and the high-quality tiles and the low-quality tiles are distributed in
accordance with the user’s viewing direction. When the user changes the
viewing direction, the user temporarily watches video with the low-quality
tiles. In addition, the longer the time (delay time) until the high-quality
tile for the new viewing direction is downloaded, the longer the viewing
time of video with the low-quality tile, and thus the delay time affects
quality. From the above, the video quality of the low-quality tiles and
the delay time significantly impact quality, and these factors need to be
considered in the quality-estimation model. We develop quality-estimation
models by extending the conventional quality-estimation models for 2D
adaptive streaming. We also show that the quality-estimation model using
the bitrate, resolution, and frame rate of high- and low-quality tiles and that
the delay time has sufficient estimation accuracy based on the results of
subjective quality evaluation experiments.
key words: tile-based VR videos, quality monitoring, quality-estimation
models, QoE

1. Introduction

Omnidirectional video (ODV) streaming services have re-
ceived a lot of attention because they can provide highly im-
mersive viewing experiences. ODV streaming is expected to
provide a sense of presence in sports, music, etc. However,
the ODV has a much larger data volume than conventional
2D video. To reduce the amount of the data, tile-based ODV
streaming has been proposed [1], [2]. In tile-based ODV, the
entire video frame is divided into tiles, and tileswithmultiple
quality levels are distributed in accordance with the viewing
direction. When the user changes the viewing direction, the
low-quality tile is displayed. As a result, users might stop
watching video due to the degradation. Therefore, service
providers need to use a quality-estimation model to perform
in-service quality monitoring at clients.

Quality-estimation models are classified on the basis
of input parameters: signal-based, bitstream-based, and
metadata-based quality-estimation models. When the qual-
ity to be estimated is the quality of experience (QoE), even
if the input is any type, some researchers call the quality-
estimation model the “QoE model” or “QoE estimation
model.” To unify the terminology, the model is called
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the “quality-estimation model” in this paper. Signal-based
quality-estimation models [3]–[8] take video signal as input
and estimate quality. They are classified in full-reference
(FR) [3]–[7], reduced-reference (RR), and no-reference (NR)
[8], [9] quality-estimation models. FR signal-based quality-
estimation models [3]–[7] take source and degraded video
signals, RR signal-based models take degraded video sig-
nals and features derived from source video signals, and NR
signal-based models [8] take degraded video signals. In
general, these models can assess the impact of source and
codec on video quality. However, it is not feasible to use
a signal-based model at the clients because computational
resources are needed to calculate quality on the basis of
video signals. Bitstream-based quality-estimation models
[10], [11] take bitstream as input and estimate quality using
parameters such as the quantization parameter parsed from
bitstream. These models can assess the impact of source on
video quality, where to take into account the impact of codec
on video quality, model coefficients are generally switched
depending on codec. However, bitstream-based quality-
estimation models are not used for monitoring quality at
the clients because bitstream is encrypted just after encoding
video. Metadata-based quality-estimation models [12]–[15]
take metadata such as bitrate, resolution, and framerate as
input and estimate quality using these parameters. These
models cannot assess the impact of source on video quality,
where to take into account the impact of codec on video
quality, model coefficients are generally switched depend-
ing on codec. Metadata-based quality-estimation models
can be used for monitoring quality at the clients because
metadata is not encrypted and high performance computa-
tional resources are not needed. Therefore, metadata-based
quality-estimationmodels are suitable for monitoring quality
at the clients.

An example of tile-based ODV streaming [1], [2] is
shown in Fig. 1. In [1], [2], two kinds of tile are used:
the entire video (blue rectangle in Fig. 1) is encoded at a low
bitrate as a low-quality tile (omnidirectional tile) and divided
tiles (red rectangle in Fig. 1) are encoded at high bitrates as
high-quality tiles. High-quality tiles for a viewing direction
and low-quality tiles are distributed to clients. Awide variety
of tiles can be represented by the Omnidirectional MediA
Format (OMAF) [16], which is developed by the Moving
Picture Experts Group (MPEG) to facilitate interoperability
between devices and media system components by different
vendors. In [17], Fuente et al. evaluated the case where
the ODV is divided into 24 (6×4) tiles, encoded in two
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Fig. 1 Image of tile-based streaming.

different resolutions, and delivered with 1/3 (8 tiles) in high
resolution and the remaining 2/3 (16 tiles) in low resolution.
Schatz et al. [18] divided ODVs into 24 (6×4) tiles, encoded
them in three qualities (i.e., quantization parameter (QP) =
46, 32, 22), and investigated the case where the outside of
the viewing area was delivered as low-quality tiles or not
(represented as grey). Li et al. divided ODVs into 4×4, 6×6
and 8×8 tiles and encoded them into four levels of resolution
[13]. They applied pyramid scheme to choose qualities with
a gradually decreasing quality in accordance with the user’s
viewing direction.

In these tile-based ODV streaming, the client requests
high-quality tiles in accordance with the viewing area, so
users basically watch only high-quality tiles. However, when
users change the viewing direction, the received high-quality
tiles and the viewing area may differ. Thus, there is a case
where high-quality tiles and low-quality tiles coexist as tiles
presented to the user at the same time, and there is also a case
where only low-quality tiles are presented. Furthermore, as
in [18], there is a case where gray is presented instead of
low-quality tiles. The quality of each high- and low-quality
tile is affected by resolution, framerate and bitrate, like con-
ventional 2D video streaming. In addition, the time required
for switching from low- to high-quality tiles (hereafter, the
delay time) also affects the perceived quality. Next, the client
buffer depletes the video data depending on the throughput
fluctuation. As a result, users perceive the stalling event. It
is well-known that perceived quality is affected by stalling
length and frequency [19]. Duan et al. [20] showed the effect
of the combination of bitrate, framerate, and resolution on
ODV quality. Fuente et al. [17] showed the effect of the delay

time (display time of the low-resolution tiles) on tile-based
ODV quality. Schatz et al. [19] showed the effect of stalling
length and frequency on ODV quality. From these inves-
tigations, a quality-estimation model needs to evaluate the
impact of these quality factors (i.e., resolution, framerate,
and bitrate of both tiles, the delay time and stalling events).

Urata et al. [15] showed the effect of stalling events
in tile-based OVDs can be estimated using the quality-
estimation model for conventional 2D videos (2Dmodel). In
[15], the proposed model exhibited high quality-estimation
accuracy even when there was stalling but low accuracy
when there was only quality changes without stalling. Under
the conditions with stalling, the quality of tile-based ODV
could be estimated with relatively high accuracy because the
effect of stalling events can be evaluated by using the 2D
model. Therefore, this study focuses on the effect of short
term quality factors (i.e., resolution, framerate, bitrate and
the delay time) excluding the effect of stalling events.

In this paper, a metadata-based quality-estimation
model is proposed for monitoring quality at clients for ODVs
such as music and sports. We extended the 2D models
in three different ways to evaluate the improvement of the
quality-estimation accuracy by taking into account the qual-
ity factors (i.e., resolution, framerate, bitrate and the delay
time). The difference between the three extended models is
the influence of the quality factors taken into account. In
the first model (Model A) and second model (Model B), the
weighted sum of the quality of both tiles is used to estimate
the overall video quality. The weight is calculated from the
delay time and resolution in Model A, and the weight is
a fixed value derived from experimental results in Model
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B. The simplest third model (Model C) does not estimate
the quality of both tiles, but estimates the overall quality
by 2D model using total bitrate, which is the sum of the
bitrates of both tiles, instead of each bitrate. To verify the
estimation accuracy of these models, we conducted three
subjective quality assessment experiments with [1], [2] and
compared the outputs of thesemodels with subjective scores.
The P.1203 model [21] is a quality-estimation model for 2D
video streaming, including sports and music, which is the
target of ODV streaming, and its accuracy was targeted. The
overall accuracy of quality-estimation was checked, and it
was higher than the accuracy described in Recommendation
P.1203. In addition, the accuracy of quality estimation for
each quality factor was also checked.

First, related work is described in Sect. 2. The proposed
quality-estimation models for tile-based ODV streaming are
presented in Sect. 3. Subjective quality assessment exper-
iments are described in Sect. 4. Section 5 shows that the
proposed model (Model A) has sufficient estimation accu-
racy based on the results of these experiments. Finally, a
summary and potential future work are presented in Sect. 6.

2. Related Work

As described in Sect. 1, metadata-based quality-estimation
models are suitable because high performance computational
power is not needed and they can be applied even when the
bitstream is encrypted. Therefore, this section describes
metadata-based quality-estimation models.

2.1 Conventional Metadata-Based Quality-Estimation
Models for ODVs

Conventional metadata-based quality-estimation models for
ODVs are proposed [12]–[15], [22], [23]. In [12], quality is
estimated using the bitrate and stalling information. How-
ever, the model cannot be applied to the tile-based streaming
because multiple tiles are not used in this experiment. The
model in [13] estimates quality by using the tiling, quality
levels, and stalling. For each tiling, a Gaussian function
with latitude as a parameter is fitted to the subjective quality
assessment results. However, since the relationship between
the coefficients of eachGaussian function and bitrate, resolu-
tion, etc. has not been clarified, the model cannot be adapted
to the case of different bitrate ladders. In addition, the de-
lay of quality switching is not taken into account. Costa
et al. proposed a model on the basis of the bitrate for tile-
based streaming in [14], but the quality-estimation accuracy
is unclear because it is not compared with the results of sub-
jective quality assessment experiments. In addition, the size
of high-quality tiles and the delay time of quality switching
are not taken into account. Zhang et al. [22] proposed a
deep reinforcement learning based ODV streaming system,
with a focus on efficiently utilizing the limited bandwidth
resources to improve the QoE of users when watching the
viewport-and tile-based ODVs. The proposed system opti-
mizes various QoE objectives that are based on the bitrate,

stalling time, and viewport temporal variations. However,
the delay time of quality switching is not taken into account.
Kan et al. [23] designed a new QoE metric by introducing
a penalty term for the large buffer occupancy to reduce the
possible delay time of quality switching. The QoE metric
is based on the bitrate, the buffer occupancy, and predicted
viewport. The metric takes into account the delay time of
quality switching but not the size of high-quality tiles.

Urata et al. [15], proposed extending quality-estimation
models for 2D adaptive streaming to tile-based ODV stream-
ing using the P.1203model [21]. Themodels can estimate the
impact of stalling events on tile-based ODV quality. How-
ever, the number of coding conditions and source contents
were limited in the test of the quality-estimation accuracy.
Since a single size of high-quality tiles was used, the impact
of the size on quality is not taken into account.

From these investigations, the above models did not
take some quality factors into account, and none can account
for all of the impact of quality factors (high- and low-quality
tiles, the delay time of quality switching, and the size of
high-quality tiles) on quality comprehensively. Therefore, a
model needs to be created that can take them all their impacts
into account.

2.2 Extendable Conventional Metadata-Based Quality-
Estimation Models to ODV

This subsection explains metadata-based quality-estimation
models for conventional 2D videos.

2.2.1 P.1203 Model

The P.1203 model, which is used to estimate quality of 2D
adaptive streaming, has been standardized in ITU-T. The
model contains threemodules (i.e., video-quality-estimation,
audio-quality-estimation, and integration modules) and four
modes (i.e., Modes 0 to 3). As mentioned above, this pa-
per targets developing a video-quality-estimation module.
Therefore, the details of the video-quality-estimation mod-
ule are described.

The module is classified into four modes in accordance
with the type of input information. However, as described
in Sect. 1, since the metadata-based model is suitable for
monitoring purposes, only Mode 0 is described. The Mode
0 model takes metadata such as codec, resolution, framerate,
and bitrate as input and outputs video quality per second.
The video quality O.22 in Mode 0 is estimated as follows.

O.22 = MOS f romR(100 −min(D,100)), (1)
D = Dq + Du + Dt, (2)
Dq = 100 − R f romMOS(MOSq), (3)
MOSq = q1 + q2 · exp(q3 · quant), (4)
quant = a1 + a2 · ln(a3

+ ln(br) + ln(br · bpp + a4)), (5)
Du = u1 · log10(u2

· (scaleFactor − 1) + 1), (6)
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scaleFactor = max
(

disRes
codRes

,1
)
, (7)

Dt =

{
0 ( f r ≥ 24)
(100−Dq−Du)·(t1v−t2v · f r)

t3v+ f r
( f r < 24)

(8)

MOS f romR and R f romMOS convert the mean opinion
score (MOS) from/to the psychological value R of 0 − 100.
The details of these two functions are described in Annex
E of ITU-T Recommendation P.1203.1. The variable Dq is
the amount of quality degradation related to the quantiza-
tion calculated from quant, which is a variable related to the
quantization as (3), (4). The parameter quant is calculated
from the bit amount per pixel bpp and bitrate br in Mode
0 as (5). The variable Du is the amount of quality degra-
dation related to upscaling. The parameter scaleFactor is
calculated by dividing display resolution disRes by coding
resolution codRes. These resolutions mean the number of
pixels. The variable Dt is the amount of degradation related
to the frame rate f r . The coefficients q1−3, a1−4, u1−2, and
t1v−3v are constant for each codec.

2.2.2 Y-Model

The Y-model [24], [25] also has modules to calculate audio
quality, video quality, andmedia session quality for 2D video
streaming, like the P.1203 model. The input of Y-model is
the same as that of the P.1203 Mode 0 model.

The video-quality-estimation module calculates video
quality O.22 by using video bitrate br , coding resolution
codRes, and frame rate f r as follows.

O.22 = X +
1 − X

1 + (br/Y )v1
, (9)

X = 1 +
4 · (1 − exp(−v3 · f r) · codRes)

v2 + codRes
, (10)

Y =
v4 · codRes + v6 · log10(v7 · f r + 1)

1 − exp(−v5 · codRes)
(11)

The coefficients v1 − v7 are constant.

3. Proposed Models

The proposed models for tile-based ODV streaming are de-
scribed. Especially, how to extend conventional 2D video
quality-estimation models to tile-based ODV streaming is
described. The two base models are used to check if the
extension method can be applied independently of the base
models.

3.1 Extended Model for Tile-Based ODVs

The P.1203model and theY-model are extended to tile-based
ODV streaming [1], [2]. The overall video quality for tile-
based ODV is affected by the quality of the omnidirectional
tile (lower quality tile) and divided tile (higher quality tile)
for the tile-based ODV. Therefore, the overall video quality is
integrated by the quality of both tiles, which can be estimated

by using either the P.1203 model or the Y-model. Since the
impacts of omnidirectional tiles on the overall video quality
depend on the delay time and the size of divided tiles as
mentioned above, the delay time and the size of the area
need to be taken into account to estimate the overall video
quality.

To evaluate the improvement of the quality-estimation
accuracy by taking into account these quality factors, the
P.1203 model and the Y-model are extended in three dif-
ferent ways. In the first model (Model A), the quality of
omnidirectional and divided tiles is estimated using either
the P.1203 model or the Y-model, and the weighted sum is
used to estimate the overall video quality. The weight ratio
between the quality of the omnidirectional and divided tiles
is calculated from the delay time and the size of the area in
(12)–(14). The weightω is limited to the range 0 to 1 in (13).
In (14), the parameter codRes is the resolution (number of
pixels) of the divided tiles and overallRes is the resolution
of the entire sphere surface, so the ratio means the share of
divided tiles on the sphere surface. The weight is calculated
taking into account the share of the divided tile, since the
divided tile will continue to be displayed when it is large
enough and the change in viewing area is small. In addition,
because a shorter delay time results in the prompt display
of divided tile, the effect of the delay time is evaluated as
a power of the delay time in (14). In the second model
(Model B), the overall video quality is the weighted sum of
the quality of omnidirectional and divided tiles as in Model
A. In Model B, it can be considered that the impacts of the
delay time and the size are ignored and the weight ratio (ωc)
is set to a fixed value derived from the results of subjective
quality assessment experiments. The simplest third model
(Model C) does not estimate the quality of both tiles, but
estimates the overall quality by 2D model using the common
resolution, common framerate and total bitrate, which is the
sum of the bitrate of both tiles. Model C does not take into
account the difference in quality between omnidirectional
and divided tiles.

A) Based on the delay and the resolution

O.22 = ω · O.22H + (1 − ω) · O.22L, (12)
ω = min(max(ω′,0),1), (13)

ω′ =

(
ω1 · log

(
codRes

overallRes

)
+ ω2

)
· delay−ω3 (14)

B) Weighted sum

O.22 = ωc · O.22H + (1 − ωc) · O.22L (15)

C) Total bitrate

O.22 = O.22T (16)

where O.22H and O.22L are the video quality of the divided
tile and the omnidirectional tile calculated on the basis of
either the P.1203 model or the Y-model, and O.22T is the
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Fig. 2 SRCs in Experiment 1.

video quality calculated using the total bitrate instead of each
bitrate. The coefficientsω1−3 are derived using the results of
the subjective quality assessment experiments shown in the
next section.

4. Subjective Experiment

To investigate the quality-estimation accuracy of the ex-
tended quality-estimation models for tile-based ODV, three
subjective quality assessment experiments were conducted.
Experiments 1 and 2 are used for deriving the models’ co-
efficients (training), and Experiment 3 is used to investigate
the quality-estimation accuracy (testing). The experiments
were conducted using the tile-based ODV streaming system
explained in Fig. 1.

4.1 Source Reference Circuits

As shown in Figs. 2, 3, and 4, six source reference circuits
(SRCs) for Experiments 1 and 2 and 27 SRCs for Experiment
3 were selected. Since we aim to monitor the quality of mu-
sic, sports, etc. content, we have prepared SRCs that include
such content. The duration of the SRCs is 20 seconds, the
resolution is 7680×3840, and the frame rate is 30 fps. SRCs
were characterized in terms of their Spatial Information (SI)
and Temporal Information (TI) [26]. SI and TI are indices of
spatial and temporal complexity of SRCs, respectively. Since
the quality after encoding differs depending on SI/TI even at
the same encoding bitrate, this needs to be confirmed with
experimental data that has those variations. For ODVs, it is
necessary to consider that planar representations (equirect-
angular, cube-map, etc.) change the characterization of the
content because of warping, discontinuities, etc. To deter-
mine the average feature of SRCs, the average SI and TI of all
frames in SRCs are calculated in the spherical domain [27].
Figure 5 shows the averaged spherical SI and TI in the exper-
iments, and the SRCs are found to have different motions and
edge features. In particular, SRCs in Experiment 3, which is
used to test the accuracy of quality-estimation, have low to
high SI and TI, indicating that there is variation in spatial and
temporal characteristics. To compare the evaluation results
between these experiments, six SRCs for Experiment 1 were
also used as common videos in Experiments 2 and 3. For
watching ODV naturally, the stereo channel audio was used
in these experiments.

Fig. 3 SRCs in Experiment 2.

Fig. 4 SRCs in Experiment 3.

4.2 Experimental Conditions and Processed Video Se-
quence

In these experiments, divided (high-quality) and omnidi-
rectional (low-quality) tiles were encoded by FFmpeg en-
coder v3.0 with H.265/high-efficiency video coding (HEVC)
(Main Profile/Level 5, GOP:M = 3, N = 15, preset: medium,
format: yuv420p). The segment size was set to 0.5 seconds.

The resolutions of the divided and omnidirectional tiles
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Fig. 5 Averaged SI and TI for the SRCs.

were set to five levels: 3840×3840, 2560×2560, 1920×1920,
1280×1280, and 960×960. The resolutions of both tiles
were the same, and the divided tiles were encoded by being
cropped from each SRC with 7680×3840, while the omnidi-
rectional tiles were encoded by downscaling the entire sphere
surface for each SRC. When playing back the omnidirec-
tional tiles, the video was upscaled from the resolution given
as the condition to the original resolution of 7680×3840.
The viewable sphere surface is created by overlaying up-
scaled omnidirectional tile with divided unscaled tile, and
the user can freely move around the viewing area, including
the area where both tiles coexist. All divided tiles are over-
lapped to avoid quality degradation due to small changes in
the user’s viewing direction. All divided tiles are arranged
at equal intervals over the entire horizontal or vertical space,
and the degree of overlap depends on the resolution. Twelve
divided tiles were placed at equal intervals in the horizon-
tal direction. Since the resolution of the entire sphere is
7680×3840, the interval (the difference of x-coordinates of
horizontally adjacent tiles) is 7680/12. The number of pixels
of horizontal direction overlap is side_o f _tile− (7680/12),
where side_o f _tile represents the length of the side of the
square divided tiles, i.e., 3840, 2560, 1920, 1280, or 960
in the experiments. Five divided tiles were placed at equal
intervals in the vertical direction except for 3840×3840. The
3840×3840 divided tiles are the same size as the entire sphere
in the vertical direction, so they are not divided in the ver-
tical direction. Since the vertical top and bottom are not
connected, the interval is (3840 − side_o f _tile)/(5 − 1),
so the number of pixels of vertical direction overlap is
side_o f _tile − (3840− side_o f _tile)/(5− 1). The number
of divided tiles per framewas set to 12×1when the resolution
was 3840×3840, and 60 (=12×5) for the other resolutions.

The delay time was set in the range of 1 to 10 seconds.
The client sends a request for the next divided and omnidi-
rectional tiles on the basis of buffer remaining. When the
divided tile to be downloaded changes due to a user’s change
of view direction, the next request will reflect the new posi-
tion. In other words, tiles that have already been requested
at that time are downloaded at the old position. Therefore,

Table 1 HRCs in Experiment 1.
Side of tile Bitrate Delay
(Resolution) divided/omnidirectional

3840 40Mbps / 40Mbps 5 s
3840 40Mbps / 20Mbps 1 s
3840 40Mbps / 10Mbps 3 s
3840 10Mbps / 5Mbps 10 s
1920 40Mbps / 40Mbps 1 s
1920 40Mbps / 20Mbps 1 s, 3 s, 5 s, 10 s
1920 40Mbps / 10Mbps 1 s, 5 s
1920 10Mbps / 10Mbps 1 s
1920 10Mbps / 5Mbps 1 s, 5 s
1920 10Mbps / 2.5Mbps 1 s, 10 s
1920 2Mbps / 2Mbps 1 s, 10 s
1920 2Mbps / 1Mbps 1 s
1920 2Mbps / 500kbps 1 s, 3 s
1280 40Mbps / 20Mbps 1 s, 5 s
1280 40Mbps / 10Mbps 10 s
1280 10Mbps / 10Mbps 3 s
1280 2Mbps / 2Mbps 5 s
1280 2Mbps / 1Mbps 3 s, 10 s
960 40Mbps / 20Mbps 1 s, 10 s
960 10Mbps / 2.5Mbps 5 s
960 2Mbps / 1Mbps 3 s

the delay time of quality switching is approximately equal
to the buffer length when bandwidth is sufficient. In the ex-
periments, the delay time is controlled by the buffer length
setting. A minimum buffer of at least one second is required
for stable playback, even when bandwidth is sufficient, and
the minimum delay is set to one second.

The encoding bitrate and delay time are shown in Ta-
bles 1 and 2 in Experiments 1 and 2. The experimental
conditions, which are called hypothesis reference circuits
(HRCs), were designed to investigate the impact of the res-
olution, quality of divided tiles, quality of omnidirectional
tiles, and the delay time. In addition, to check the impact
of SRCs, three SRCs are assigned to each HRC in Experi-
ment 1, and two source videos were assigned to each HRC
in Experiment 2. The ranges of encoding bitrate are shown
in Tables 1 and 2 in Experiments 1 and 2. In Experiment 3,
for testing, lots of HRCs (113 HRCs) were set up and only
one SRC was assigned to each HRC. The encoding bitrate
and delay time are shown in Fig. 6.

The common PVSs (C1-C9), which are used for com-
paring the evaluation results of the experiments, are shown
in Table 3. The total number of processed video sequences
(PVSs) was 96 in Experiment 1, 99 in Experiment 2, and
113 in Experiment 3 (including the common PVSs).

Audio was encoded by AAC-LC. Bitrate and sampling
rate were 128 kbps and 48 kHz, respectively. The audio
conditions and the audio quality are the same for all PVS so
that they do not affect the video quality.

4.3 Experimental Environment and Assessment Method

The experiments were conducted using a panoramic super-
engine developed on the basis of the technologies [1], [2].
The participants wore a head-mounted display (HMD),
which is HTC Vive Pro, and watched the tile-based ODVs in
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Table 2 HRCs in Experiment 2.
Side of tile Bitrate Delay
(Resolution) divided/omnidirectional

3840 40Mbps / 5Mbps 1 s
3840 30Mbps / 3Mbps 1 s
3840 20Mbps / 10Mbps 6 s
3840 10Mbps / 10Mbps 6 s
3840 8Mbps / 8Mbps 1 s
3840 3Mbps / 6Mbps 2 s
3840 2Mbps / 2Mbps 6 s
3840 2Mbps / 1Mbps 1 s
2560 8Mbps / 6Mbps 10 s
2560 8Mbps / 4Mbps 4 s
2560 8Mbps / 1Mbps 1 s
2560 5Mbps / 5Mbps 4 s
2560 4Mbps / 4Mbps 2 s
2560 4Mbps / 1Mbps 6 s
2560 2Mbps / 1Mbps 1 s
1920 30Mbps / 30Mbps 10 s
1920 30Mbps / 5Mbps 10 s
1920 16Mbps / 16Mbps 1 s
1920 16Mbps / 8Mbps 2 s
1920 10Mbps / 20Mbps 4 s
1920 10Mbps / 8Mbps 8 s
1920 10Mbps / 6Mbps 1 s
1920 10Mbps / 2Mbps 1 s
1920 8Mbps / 12Mbps 8 s
1920 8Mbps / 8Mbps 6 s
1920 6Mbps / 1Mbps 8 s
1920 5Mbps / 10Mbps 2 s
1920 5Mbps / 2Mbps 6 s
1920 4Mbps / 2Mbps 4 s
1920 4Mbps / 1Mbps 1 s
1920 4Mbps / 500 kbps 6 s
1280 40Mbps / 10Mbps 8 s
1280 20Mbps / 20Mbps 6 s
1280 16Mbps / 16Mbps 6 s
1280 8Mbps / 4Mbps 1 s
1280 8Mbps / 2Mbps 2 s
1280 6Mbps / 6Mbps 4 s
1280 6Mbps / 3Mbps 10 s
1280 4Mbps / 3Mbps 4 s
1280 2Mbps / 500 kbps 10 s
960 20Mbps / 2Mbps 8 s
960 10Mbps / 4Mbps 10 s
960 6Mbps / 4Mbps 2 s
960 6Mbps / 2Mbps 1 s
960 2Mbps / 2Mbps 8 s

Fig. 6 Bitrates and delay in Experiment 3.

Table 3 Common PVSs.
Side of Bitrate Delay

PVS SRC tile divided / omnidirectional
C1 1-01 1280 2Mbps / 1Mbps 10 s
C2 1-01 1920 40Mbps / 40Mbps 1 s
C3 1-02 3840 10Mbps / 5Mbps 10 s
C4 1-02 1920 2Mbps / 2Mbps 1 s
C5 1-03 1920 10Mbps / 2.5Mbps 10 s
C6 1-04 1920 40Mbps / 20Mbps 10 s
C7 1-05 1920 10Mbps / 10Mbps 1 s
C8 1-05 3840 40Mbps / 10Mbps 3 s
C9 1-06 1920 2Mbps / 0.5Mbps 3 s

Table 4 Sessions and playlists.
Experiment 1 2 3

#Sessions 5 5 4
#Playlists 18 18 10

#Playlists per session 3 or 4 3 or 4 2 or 3
#PVSs per playlist 6 6 12
Duration per playlist 3.5min 3.5min 6.5min
Short break time 2min 2min 2min

Break time 5 or 10min 5 or 10min 10 or 15 min

a room in accordance with the voice instructions of the op-
erator, and evaluated the quality. The display device showed
both eyes with pseudo-parallax. Since the participants could
freely change the viewing area of the ODVs, the area to be
viewed differed for each participant.

The participants were explained the instructions to un-
derstand the procedure and the object of the subjective ex-
periment and took visual acuity and color vision tests. After
these tests, participants took a practice session in which they
learned how to wear the HMD and the method to evaluate
the quality of the watched video. Participants watched 20-
second practice videos 6 times in Experiments 1 and 2 and 12
times in Experiment 3. For each video, participants gave a
score with a 5-point absolute category rating (ACR) method
[26] using a controller. Three seconds after scoring, the next
video in the practice session started playing.

After the practice session, themain sessions for evaluat-
ing all PVSs started. All PVSs consisted ofmultiple playlists.
In Experiments 1 and 2, the playlists had 6 PVSs, and 3 or
4 playlists were evaluated in one session. In Experiment 3,
the playlists had 12 PVSs and 2 or 3 playlists were evaluated
in one session. The evaluated playlists took about 3.5 min-
utes in Experiments 1 and 2 and 6.5 minutes in Experiment
3. Participants had breaks for about 2 minutes after every
playlist and about 5–15minutes after every session. For each
experiment, the number of sessions, the number of playlists,
and the number of PVSs in a playlist are shown in Table 4.
The total time from the explanation to the end of the eval-
uation was about 150 minutes, including visual acuity and
color vision tests, instruction, practice, main sessions, and
breaks. The presentation order of the PVSs was randomized.

4.4 Participants

In each experiment, 36 participants took part: 18 males and
18 females with visual acuity of 1.0 or more with contact
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lenses or the naked eye. All the participants passed the
visual acuity and color tests. They were naive participants
who had not participated in subjective quality assessment
experiments of ODV streaming in the previous six months.
The ages of participants were 18 to 31 years old (average
21.0) in Experiment 1, 18 to 25 years old (average 20.9) in
Experiment 2, and 19 to 27 (average 21.4) in Experiment 3.

5. Results

In this section, results of subjective quality assessment are
first described to show the stability and the bias in MOS
among experiments. Then, quality-estimation accuracies of
models are described.

5.1 Statistics of the Scores and Common PVSs Analysis

The stability of subjective quality assessment experiments
are shown in terms of the 95% confidence intervals (CI)
for MOS. Table 5 shows the mean, standard deviation, mini-
mum, andmaximumofCI. The stability in these experiments
can be said to be high enough because these mean CIs were
almost the same as the mean CI (0.23) for 2D videos in
Tominaga et al. [28].

To check for bias inMOS among experiments, MOSs of
nine common PVSs are compared, as shown in Fig. 7, where
the error bars show the CIs. TheMOSs of the common PVSs
in each experiment are almost the same, so the bias in MOS
among experiments is small.

5.2 Quality-Estimation Accuracy

To investigate the quality-estimation accuracy of the pro-
posed models (extending Model A on the basis of two con-
ventional models: the P.1203 model and the Y-model), the
coefficients were optimized by using Experiments 1 and 2 re-
sults and Microsoft Excel Solver. In addition, to investigate

Table 5 Summary statistics of the confidence intervals.
Experiment Mean Std. Min. Max.

1 0.244 0.039 0.143 0.345
2 0.261 0.035 0.178 0.363
3 0.255 0.049 0.056 0.372

Fig. 7 MOSs of common PVSs.

how much the accuracy of quality-estimation improved by
addition of low-quality terms, the resolution, and the delay
time, the remaining four models (two base models × two ex-
tensions: Models B and C), the coefficients were optimized
as in the proposed models. Table 6 shows the Root Mean
Squared Errors (RMSEs) and Pearson Correlation Coeffi-
cients (PCCs) for training data (Experiments 1 and 2) and
test data (Experiment 3). In both proposed models, the
quality-estimation accuracy for the test data is better than the
quality-estimation accuracy described in Recommendations
P.1203 (RMSE: 0.465, PCC: 0.814 in mode 0) and P.1204
(RMSEs: 0.421 in bitstream-based model and 0.444 in FR
signal-based† model) [29]. Therefore, the proposed mod-
els achieve the target quality-accuracy and have sufficiently
useful performance. By comparing extended models A, B,
and C in Table 6, quality-estimation accuracy of model A is
highest. Figures 8(a)–9(b) show scatter plots of the MOSs
obtained from the experiments for training and test, and the
†The “signal-based” term in this paper is “pixel-based” in the

Recommendation P.1204.

Table 6 RMSEs and PCCs.
Training Test

(Experiment 1 & 2) (Experiment 3)
Base model Extending RMSE PCC RMSE PCC

P.1203
A 0.352 0.915 0.412 0.902
B 0.399 0.889 0.419 0.900
C 0.443 0.864 0.430 0.897

Y-model
A 0.321 0.930 0.408 0.904
B 0.398 0.891 0.423 0.898
C 0.407 0.884 0.428 0.895

Fig. 8 Estimated MOS by using Model A for training data.

Fig. 9 Estimated MOS by using Model A for test data.
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Table 7 RMSEs for conditions in training data (Experiments 1 and 2).
P.1203 Y-model

Resolution A B C A B C
960 0.294 0.317 0.383 0.259 0.361 0.323
1280 0.288 0.305 0.313 0.274 0.304 0.312
1920 0.315 0.379 0.442 0.302 0.380 0.437
2560 0.562 0.604 0.629 0.557 0.629 0.652
3840 0.437 0.491 0.422 0.322 0.442 0.329

P.1203 Y-model
BR ratio A B C A B C
< 0.4 0.306 0.398 0.458 0.299 0.420 0.455
≥ 0.4 0.369 0.400 0.412 0.329 0.388 0.385

P.1203 Y-model
Delay time A B C A B C

< 3 0.376 0.447 0.450 0.327 0.451 0.432
≥ 3 0.327 0.352 0.392 0.309 0.348 0.378

Table 8 RMSEs for conditions in test data (Experiment 3).
P.1203 Y-model

Resolution A B C A B C
960 0.339 0.320 0.359 0.236 0.256 0.257
1280 0.353 0.378 0.378 0.331 0.354 0.378
1920 0.403 0.417 0.434 0.410 0.417 0.434
2560 0.498 0.466 0.493 0.447 0.480 0.505
3840 0.450 0.487 0.468 0.531 0.537 0.502

P.1203 Y-model
BR ratio A B C A B C
< 0.4 0.428 0.451 0.462 0.446 0.500 0.517
≥ 0.4 0.405 0.407 0.418 0.394 0.392 0.391

P.1203 Y-model
Delay time A B C A B C

< 3 0.392 0.398 0.413 0.391 0.406 0.419
≥ 3 0.416 0.418 0.432 0.401 0.410 0.415

MOSs estimated by the extended Model A based on P.1203
and Y-model. As shown in Figs. 8(a)–9(b), the shapes of
scattered plots for both models are almost the same. From
these results, it is shown that quality-estimation accuracy is
improved by adding low-quality terms, the resolution, and
the delay time. It is also shown that the proposed extension
method can be effectively extended from either base model,
so the proposed extension method is versatile.

To clarify the impacts to take into account the size of
divided tiles (resolution), the quality of both tiles, and the
delay time of quality switching, we investigated the impact
of the resolution, the bitrate ratio (omnidirectional tile bi-
trate/divided tile bitrate), and the delay time on estimation
accuracy. Tables 7 and 8 show the RMSEs of each extended
model for the conditions in the training data and the test data.
In all aspects of the resolution, the bitrate ratio, and the delay
time, Model A achieved better quality-estimation accuracy
than Models B and C for training data. The improvement of
quality-estimation accuracy by using Model A is especially
large when the bitrate ratio is less than 0.4 for training data
and test data. When the bitrate ratio is low, the difference
in quality between divided and omnidirectional tiles is large,
and the influence of resolution and delay time is strong, so
Model A, which calculates the weights based on resolution
and delay time, is more accurate than Model B, which is
extended by a simple weighted sum.

Table 9 Mean errors for SRCs in Experiments 1 and 2.
P.1203 Y-model

SRC A B C A B C
1-01 0.184 0.166 0.207 0.141 0.124 0.152
1-02 0.039 0.016 0.064 −0.01 −0.02 0.031
1-03 0.237 0.263 0.247 0.22 0.23 0.209
1-04 −0.098 −0.068 −0.075 −0.125 −0.094 −0.116
1-05 0.006 0.052 0.052 −0.026 0.021 −0.0
1-06 −0.08 −0.104 −0.071 −0.123 −0.144 −0.12
2-01 −0.24 −0.168 −0.157 −0.216 −0.124 −0.162
2-02 0.55 0.521 0.505 0.537 0.549 0.52
2-03 −0.113 −0.142 −0.158 −0.126 −0.114 −0.143
2-04 −0.071 −0.166 −0.156 −0.005 −0.133 −0.087
2-05 0.099 0.171 0.182 0.122 0.215 0.177
2-06 −0.503 −0.598 −0.588 −0.436 −0.564 −0.518

Fig. 10 Estimated MOS by using Model A of Y-model for the two SRCs.

Next, to examine the possibility of improving the
quality-estimation accuracy of the proposed model, we
investigated the quality factors that increase the quality-
estimation error of the proposed model. Even if the
HRCs are the same, the impact of coding degradation
differs among SRC. Table 9 shows the average of errors
(measuredMOS − estimatedMOS) for each SRC in Exper-
iments 1 and 2 whose SRCs have lots of HRCs. All models
have different error values, but the trends are consistent. For
example, there is a tendency to estimate lower for SRC2-02
and higher for SRC2-06. Figure 10 shows the estimation
results for ‘SRC:2-02’ and ‘SRC:2-06’ by using Model A of
Y-model. The values of coordinates on the horizontal axis
and the vertical axis are the estimated MOS and the mea-
sured MOS, respectively. The proposed model is a metadata
layer, so it cannot take into account the feature of SRCs the
same way as 2D models [24]. As a result, there is a dis-
crepancy between the two contents. To address this issue,
signal-based or bitstream-based models need to be studied.
In general, these models can assess the impact of source on
video quality. However, as described in Section 1, these
models cannot feasibly be used at the clients because com-
putational resource is needed to calculate and bitstream is
encrypted just after encoding video. Therefore, to solve the
problem, we have to study methods such as calculating the
content features at the headend and sending them to the client
for further computation.

6. Conclusion

Tomonitor the normality of tile-based omnidirectional video
(ODV) services that provide music, sports, etc., we pro-
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posed extension methods of the two conventional 2Dmodels
(P.1203.1mode 0model and amodel proposed byYamagishi
et al.) to tile-based ODV streaming services. To evaluate
its quality-estimation accuracy, we conducted three subjec-
tive quality assessment experiments for training and testing.
The verification results based on these experiments show the
quality-estimation accuracy can be improved by taking into
account the quality of divided (higher quality) and omnidi-
rectional (lower quality) tiles, the resolution, (the size of the
area of the divided tiles), and the delay time. In particular,
where the bitrate ratio (i.e., the bitrate of divided tile/the bi-
trate of omnidirectional tile) is low, the difference in quality
between divided and omnidirectional tiles is large, and the
effects of resolution and the delay are significant, so account-
ing for these factors improves the estimation accuracy. Due
to the limitations of the metadata layer models, the accuracy
of quality estimation is degraded depending on the source
contents.

In this paper, quality-estimationmodels ofODVstream-
ing services were studied. There are also interactive services
that use virtual reality (VR) technology, such as video that
enables movement within the VR space (i.e., 6DoF video)
and VR chat, and the proposed models cannot be applied to
these services because their quality factors are not limited to
video quality. In the future, we will study methods such as
calculating the content features at the headend and sending
them to the client for further computation to take into account
the impact of SRCs. We will also study quality-estimation
technologies for VR services with such interactivity.
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