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PAPER
UE Set Selection for RR Scheduling in Distributed Antenna
Transmission with Reinforcement Learning

Go OTSURU†a), Member and Yukitoshi SANADA†b), Fellow

SUMMARY In this paper, user set selection in the allocation sequences
of round-robin (RR) scheduling for distributed antenna transmission with
block diagonalization (BD) pre-coding is proposed. In prior research,
the initial phase selection of user equipment allocation sequences in RR
scheduling has been investigated. The performance of the proposed RR
scheduling is inferior to that of proportional fair (PF) scheduling under
severe intra-cell interference. In this paper, the multi-input multi-output
technology with BD pre-coding is applied. Furthermore, the user equip-
ment (UE) sets in the allocation sequences are eliminatedwith reinforcement
learning. After the modification of a RR allocation sequence, no estimated
throughput calculation for UE set selection is required. Numerical results
obtained through computer simulation show that the maximum selection,
one of the criteria for initial phase selection, outperforms the weighted PF
scheduling in a restricted realm in terms of the computational complexity,
fairness, and throughput.
key words: distributed antenna transmission, round-robin scheduling,
resource allocation, reinforcement learning

1. Introduction

Recently, many Internet of Things (IoT) applications have
been launched and the amount of mobile traffic has increased
explosively [1]. Distributed antenna transmission (DAT) has
been studied as one form of fifth-generation (5G) mobile
communication deployment and can resolve the problem of
larger path loss in high-frequency bands. Radio-resource
scheduling inDATamongmultiple transmission points (TPs)
with lower computational complexity is a challenge to solve
under a trade-off relationship between system throughput
and fairness among users [2].

To achieve higher system throughput and mitigate co-
channel interference (CCI), especially for cell-edge users,
cooperative DAT (CDAT) with multi-user spatial multi-
plexing has been proposed [3]–[7]. The combination of
CDAT, user equipment (UE) classification, UE clustering,
and cluster-antenna association has been investigated as an
evolved CDAT in [4]. Fractional frequency reuse (FFR) has
been adopted in [4] to mitigate the inter-cell interference of
cell edge UEs. In [5], Max C/I scheduling, proportional
fair (PF) scheduling, and round-robin (RR) scheduling in
CDAT are compared. In spite of the low complexity of RR
scheduling, the system throughput and the fairness are close
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to those of PF scheduling. On the other hand, coordinated
radio-resource scheduling with a global scheduler has been
introduced in [6], [7]. The global scheduler computes a PF
metric for each combination of UEs while local schedulers
determine the association between TPs and UEs.

However, the above mentioned research studies for UE
allocation apply no scheduling criterion for RR scheduling in
DAT. The authors have investigated RR scheduling in DAT
and proposed the initial phase selection of UE allocation se-
quences [8], [9]. The problem of the scheme in [8], [9] is that
no fairness among UEs was taken into account even through
the system throughput was improved. It is necessary that
the system throughput is increased and user fairness is main-
tained. The authors have introduced the user set elimination
in allocation sequences of RR scheduling [10]. However, the
proposed scheme in [10] does not include multi-user multi-
input multi-output (MIMO) technology in order to mitigate
the CCI. Therefore, the fairness of the proposed RR schedul-
ing is inferior to that of PF scheduling.

The research on resource allocation with reinforcement
learning has been flourishing because it can be applied to
a system that is difficult to model. For example, in [11],
to utilize the limited backhaul capacity of millimeter-wave
communication, the blockage patterns of channel states can
be captured and predicted with deep reinforcement learn-
ing (DRL). In [12], [13], the authors have applied DRL to
high mobility transport systems, such as trains or unmanned
aerial vehicles (UAVs), whereby unpredicted and fluctuating
links are generated. They support the time division duplex
(TDD) configuration in real time and adaptively change the
TDD uplink/downlink ratio. As the integrated access and the
backhaul architecture can be huge and time-varying, DRL
has been introduced [14] to the problem in which the optimal
solution that maximizes the sum rate of all UEs is intractable
to find. In [15], the aggregate network capacity employing
beamforming and non-orthogonal multiple access (NOMA)
have been maximized by utilizing three reinforcement learn-
ing (RL) methods. The RL on resource allocation is promis-
ing and has the possibility of spectrum efficiency improve-
ment. However, to the best of our knowledge, the RL has
not been adapted to the RR scheduling in DAT. In this paper,
RR scheduling with RL is proposed to realize the efficient
UE allocation sequence of the RR scheduling for DAT with
a block diagonalization (BD) algorithm [16]. The proposed
RR scheduling is compared to the weighted PF scheduling
in terms of computational complexity, fairness, and system
throughput [17].
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This paper is organized as follows. Section 2 describes
a system model and scheduling schemes. Section 3 explains
simulation conditions. Numerical results obtained through
computer simulation are then presented. Section 4 gives our
conclusions.

2. System Description

2.1 Cell Model

The cell model shown in Fig. 1 is assumed. One macro
cell consists of seven hexagonal micro cells. A distributed
antenna called a TP is located at the center of each micro
cell. The number of TPs in each macro cell is NA = 7. All
TPs are controlled by the same central unit (CU). CCI is
caused by reusing the same frequency channel in the other
macro cells. The colored macro cells in Fig. 1 exchange UE
allocation information, as shown in Fig. 2, and the system
throughput is evaluated over the seven colored macro cells
in this paper. Moreover, radio-resource scheduling for the
allocation of UEs over resource blocks (RBs) is adopted for
orthogonal frequency division multiplexing (OFDM) signal
transmission. Multiple UEs can be assigned to each RB and
served by TPs within a macro cell. The number of UEs in a
macro cell is NU and the maximum number of UEs allocated
to each RB is NS .

2.2 Antenna Selection

In the assumed systemmodel, multi-userMIMOwith the BD
algorithm is introduced to the DAT [16]. As shown in Fig. 3,
NS TPs are selected from NA TPs and signals for NS single
antenna UEs are spatially multiplexed. The TPs should be
selected at the initial stage of radio-resource scheduling so
as to maximize the estimated throughput of those UEs. The
estimated throughput takes no inter-cell interference into ac-
count because which TPs in adjacent macro cells cause CCI
to UEs may change all the time. The TP is selected exclu-
sively so that NS TPs are connected to NS UEs. Suppose that
mrc is the TP set index of the TPs associated in the r-th RB
at the c-th macro cell as shown in Fig. 3. The number of TP
set indexes is NACNS . The signals for the n-th UE in the r-th
RB are transmitted only from the TPs of the mrc-th TP. The
transmit signals are pre-coded with the BD algorithm so that
only the desired signal reaches a specific UE. The transmit
signal to the n-th UE on the l-th subcarrier in the r-th RB is
represented by xrln . The received signal for the n-th UE at
the c-th macro cell is given by

yrlcn = Hrlc
nmr cWrlc

nmr c xrlcn

+
∑

ν∈{µr c }

Hrlc
nmr cWrlc

νmr c xrlcν + zrlcn (1)

where Hrlc
nmr c is the channel response vector with a size of

1 × NS between the TPs of the mrc-th TP set and the n-th
UE, Wrlc

nmr c is the pre-coding vector with a size of NS × 1
between the TPs in the mrc-th TP set index and the n-th UE,

Fig. 1 Cell model.

Fig. 2 Overview of cell model.

Fig. 3 Multi-user MIMO systems in DAT (NS = 2).

ν is the index of a UE that causes interference to the n-th
UE, zrlcn is the additive white Gaussian noise (AWGN) with
a mean of zero and a variance of σ2 on the l-th subcarrier in
the r-th RB, and {µrc} is the set of NS UE indexes allocated
to the r-th RB at the c-th macro cell. The number of UE
index sets, {µr }, is NU CNS .

The tentative throughput for the n-th UE on the l-th
subcarrier in the r-th RB at the c-th macro cell is calculated
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as

T̂rlc
n (m

rlc) = log2

(
1 +

Prlc
nmr c∑

ν∈{µr c }P
rlc
νmr c +σ2

)
(2)

where the received signal power is represented as Prlc
nmrl c

=��Hrlc
nmr cWrlc

nmr c

��2 for the ν-th UE from the TPs of the mrc-th
TP set on the l-th subcarrier in the r-th RB at the c-th macro
cell. This is the tentative throughput for TP association
without taking inter-cell interference into account as it is
determined after the association of TPs toUEs in the adjacent
cells.

2.3 PF Scheduling

In this paper, one subframe consists of multiple timeslots
and one timeslot consists of 14 OFDM symbols. Because of
TDD, half of the symbols are allocated to downlink commu-
nication.

The total sum of the tentative throughputs to the n-th
UE over the subcarriers in the r-th RB in the t-th timeslot at
the c-th macro cell, T̂rc , is given by

T̂rc(n, t) =
∑

l∈{lr }

T̂rlc
n (m

rlc). (3)

Weighted PF scheduling is applied in this paper as a reference
[17]–[19]. In the r-th RB at the c-th macro cell, it calculates
the following metric for the set of NS UE indexes:

f rc(µrc) =
∏

n∈{µr }

(
1 +
(T̂rc(n, t))β−γ

(Cn(t))γ

)
(4)

where T̂rc(n, t) is the tentative throughput derived from
Eq. (3) for the n-th UE set over the subcarriers in the r-
th RB in the t-th timeslot at the c-th macro cell and β and
γ are the weights for the weighted PF scheduling. A larger
weight, β, as well as a smaller weight, γ, tends to allocate
a RB to UEs with larger tentative throughputs. Cn(t) is the
average user throughput for the n-th UE at the t-th timeslot.
The interference from outer macro cells is not taken into
account because the resource allocation in the macro cells
controlled by the same CU is simultaneously conducted in
the PF scheduling. The PF scheduling selects the NS UEs
with the largest PF metric. The PF metric is calculated at
every subframe. The throughput estimation is conducted
NRB · NU CNS times at each RB allocation.

2.4 Proposed RR Scheduling

Unlike the tentative throughput of the PF scheduling, the
interference from the other macro cells is included in the es-
timated throughput calculation of the proposed RR schedul-
ing. That is because the resource allocation in the macro
cells controlled by the same CU is sequentially conducted
with initial phase selection [8]–[10] so that the TPs in the
outer macro cells can be identified. The RR scheduling takes
no fairness among UEs into account. However, the fairness

among UEs may be maintained when the RR scheduling is
applied to the DAT [5].

In the proposed RR scheduling, a Q-table is updated in
accordance with the current action art and the UE set with the
lowest Q-value is eliminated from the RR sequence. On the
other hand, the Q-value for each UE set varies in accordance
with the frequency selectivity of a multipath channel. Thus,
the fairness is not greatly deteriorated even though it is not
counted in the scheduling algorithm directly.

2.4.1 Throughput Estimation

Suppose that the estimated throughput for the n-th UE set on
the l-th subcarrier in the r-th RB corresponding to the initial
phase δc for the c-th macro cell is represented as T̄rlc

nδc
(mrc)

and it is given by

T̄rlc
nδc
(mrlc)= log2

(
1 +

Prlc
nδcm

rl c∑
ν∈{µr c}P

rlc
νmrl c

+ηrlcnδc

2

)
(5)

where ηrlcnδc
is the sum of the noise and the interference from

the outer macro cells to the nδc -th UE on the l-th subcarrier
in the r-th RB when the initial phase for the c-th macro cell,
δc , is selected.

The total sum of the estimated throughput over all the
UEs and the subcarriers of the RBs for the c-th macro cell is
calculated from Eq. (5) and is given by

T̄c(δc) =
∑
r

∑
l∈{lr }

∑
nδc ∈{µδc }

T̄rlc
nδc
(mrlc). (6)

The expected system throughput corresponding to the set of
initial phases, {δc}, over the macro cells is then given by

T̄(δ1, · · · , δ7) =

7∑
c=1

T̄c(δc). (7)

2.4.2 Algorithms for Initial Phase Selection

In this paper, two different initial phase selection algorithms
based on the estimated throughputs are applied in the initial
phase selection [8], [9]. The initial phases in the macro
cells controlled by the same CU are sequentially optimized
with a maximum selection scheme to reduce the inter-cell
interference.

(1) Random Selection

Random selection selects the initial phases in all the macro
cells randomly and sequentially. Therefore, no throughput
estimation is carried out over the entire RB allocation.

(2) Maximum Selection

Maximum selection selects the initial phases of the UE allo-
cation sequences sequentially over multiple macro cells and
it is repeated iteratively. Suppose that t is the time index and
δ̂
(t)
c is the candidate of the initial phase selected in the c-th
macro cell at the t-th time index, the sum of the tentative
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throughputs given by the selected initial phases at the c-th
macro cell, T̄(δ̂(t)1 , · · · , δ̂

(t)
c−1, δ̂c, δ̂

(t−1)
c+1 , · · · , δ̂

(t−1)
7 ), is calcu-

lated from Eq. (7) for all of δc(0 ≤ δc ≤ (1− x)NU CNS − 1).
The maximum selection selects the phase with the largest
estimated throughput. The maximum selection is presented
as

δ̂
(t)
c = arg max

δ̂c

T̄(δ̂(t)1 , · · · , δ̂
(t)
c−1, δ̂c, δ̂

(t−1)
c+1 , · · · , δ̂

(t−1)
7 ).

(8)

Since this criterion selects the initial phases sequentially,
the system throughput may fall into a local optimum. The
throughput estimation is conducted NRB · (1 − x) · NU CNS

times at each RB allocation.

2.4.3 Effective UE Set Selection in RR Allocation Se-
quence with RL

In the proposed scheduling, the RR allocation sequence is
modified for each RB because the channel response in each
RB differs depending on the frequency selectivity of a fading
channel. The estimated throughput for each UE set in each
RB is calculated from Eq. (5) with the maximum selection
because the initial phases are exhaustively searched in the
maximum selection. In the proposed RR scheduling, the RL
is applied to the RR allocation sequence in order to eliminate
UE sets that suffer from CCI. The CUs select the action art
with the largest Q-value in the r-th RB. In other words, the
CUs eliminate the UE sets under severe interference at every
timeslot after the initial phase selection.

The RR allocation sequence in the r-th RB at the t-th
timeslot is expressed as the state srt . The elimination of
the specific UE set in the r-th RB at the t-th timeslot is
the possible action of the CU, and it is denoted as art . The
predicted Q-value for the next timeslot in the r-th RB at the
t-th timeslot is given as Qt (srt+1,a

r
t ). The Q-value of the

action art for the state srt is renewed as

Qt (srt ,a
r
t ) ←(1 − α)Qt (srt ,a

r
t )

+ α[Rr
t+1 + εmax

ar
Qt+1(srt+1,a

r )]
(9)

where α is the learning rate that indicates the impact of the
current and past learning, ε is the discount rate, and Rr

t+1 is
the reward value for the transition to the state sr

t+1. Rr
t+1 is

calculated from the estimation throughput averaged over UE
sets in the allocation sequence except for the UE set that is
eliminated in the action art .

The possible transition state at the t-th timeslot is shown
in Fig. 4. Suppose that the length of the allocation sequence
for the initial state srt is L, the CU takes an action art which
is the elimination of a UE set. The next state after the
initial action is expressed as sr

t+1, in which the length of an
allocation sequence is L − 1 and the reward for the initial
action, Rr

t+1, is calculated from the remaining UE sets.
The UE set that results in the smallest system through-

put is excluded by the action art and the reward Rr
t+1 is derived

Fig. 4 UE set elimination with RL.

Table 1 Simulation conditions.
Inter-antenna distance 50, 100, 150, 200m
Minimum distance
between UE and TP 5m
Height of TP 10m
Height of UE 1.5m
Carrier frequency 4.65GHz
System bandwidth 72MHz
RB bandwidth 720 kHz
No. of RBs 100
No. of subcarriers
per RB 12
Transmit power 30 dBm
LOS probability PLOS = min ( 18

d , 1){1 − exp(− d
dLOS

)}

+ exp(− d
dLOS

)

d: distance from UE to TP
Path loss LLOS = 22.0 log10(d) + 28.0

+20 log10( fc ) dB
LNLOS = 36.7 log10(d) + 22.7

+26 log10( fc ) dB
fc : carrier frequency

Shadowing
standard deviation 4 dB
Channel model LOS: Rician path +

15-path uniform Rayleigh
(K-factor:10)

NLOS: 16-path uniform Rayleigh
Receiver noise density −174 dB/Hz
Noise figure 9 dB
Allocation 2-user allocation
No. of UEs
per macro cell 5, 10
Learning rate 0.1
Weight for PF β − γ 0 ≤ β − γ ≤ 1.0
Weight for PF γ 1.0

from the state as sr
t+1, where Rr

t+1 is the reward for the tran-
sition to the state as sr

t+1 at the t-th timeslot and corresponds
to the average estimation throughput when the UE set that
realizes the smallest system throughput is excluded. The CU
then takes the action with the largest Q-value.

It is necessary to halt the UE set selection because the
excessive elimination of UE sets leads to the deterioration of
the fairness among UEs. It is determined from the minimum
fairness targeted by the CU.

3. Numerical Results

3.1 Simulation Conditions

The inter-antenna distance is selected from 50, 100, 150, and
200 meters. The height of the TPs is 10 meters and that of
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the UEs is 1.5 meters. The carrier frequency is 4.65GHz,
the system bandwidth is 72 MHz, and the RB bandwidth is
720 kHz. The number of RBs is 100 and the number of sub-
acarriers per RB is 12. The transmit power per antenna is set
to 30 dBm. The amounts of average propagation loss, LLOS

and LNLOS , are different between line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions. The LOS probability
and path loss models are the same as those in [20], [21]. The
shadowing deviation is 4 dB. The first Rician fading path
and the following 15 uniform Rayleigh paths are assumed in
the LOS condition while a 16-path uniform Rayleigh fading
channel is assumed in the NLOS condition. The K-factor in
the LOS model is 10. The receiver noise density is set to
−174 dB/Hz and the noise figure is 9 dB. Two user allocation
(NS = 2) is assumed. The number of UEs per macro cell is 5
or 10 and the uniform user distribution is applied. The aver-
age system throughput per subcarrier per cell is evaluated for
different phase selection criteria unless it is specified. The
number of timeslots in which UE sets are selected with RL
is set from 0 to 21 when the number of UEs is 5, while that is
set from 0 to 140 when the number of UEs is 10. The weight
for PF scheduling, γ, is set to 1.0 while the weight β − γ are
varied from 0.0 to 1.0.

The throughput for the n-th UE on the l-th subcarrier in
the r-th RB at the c-th macro cell, Trlc

n (mrlc), is given by

Trlc
n (m

rlc)= log2

(
1 +

Prlc
nmrl c∑

ν∈{µr c}P
rlc
νmrl c

+ηrlcn
2

)
(10)

where ηrlcn is the sum of the noise and the interference from
the outer macro cells to the n-th UE on the l-th subcarrier
in the r-th RB. The total sum of the throughputs to the n-th
UE over the subcarriers in the r-th RB at the c-th macro cell,
Trc , is given by

Trc(n) =
∑

l∈{lr }

Trlc
n (m

rlc). (11)

The system throughput over seven macro cells, RBs,
and allocated UEs normalized by the number of the macro
cells is given as

T =
1
7

7∑
c=1

∑
r

∑
n∈{µr c }

Trc(n) (12)

where {µrc} is the set of UE indexes on the l-th subcarrier
in the r-th RB.

The total sum of the throughputs for the n-th UE in the
t-th timeslot at the c-th macro cell over the subcarriers and
RBs, Tc(n, t), is calculated from Eq. (11) and given by

Tc(n, t) =
NRB∑
r=1

∑
l∈{lr }

Trlc
n (m

rlc). (13)

To evaluate the fairness among UEs, the fairness index (FI)
is calculated as [18]

FI =

∑7
c=1

(∑NU

n=1
1

Tave

∑Tave
t=1 Tc(n, t)

)2

7
∑7

c=1 NU
∑NU

n=1

(
1

Tave

∑Tave
t=1 Tc(n, t)

)2 (14)

where Tave is the period for averaging the radio-resource
scheduling.

The system throughput given in Eq. (12) and the FI
given in Eq. (14) are used for the evaluation of the conven-
tional and proposed schemes.

3.2 Parameter Dependence of Proposed Scheme

The system throughput versus the learning rate α is shown in
Fig. 5. The number of UEs is 5, the inter-antenna distance is
100 meters, and the number of timeslots in UE selection is 7.
The highest system throughput is achieved when the learning
rate is 0.1. The Q-value is less affected by the reward, as
given in Eq. (9), when the learning rate α is small. Thus,
the reward is underestimated and the UE set that achieves
a lower throughput on average tends to survive. Moreover,
the Q-value is strongly affected by the reward, as given in
Eq. (9), when the learning rate α is large. Thus, the reward
is overestimated and the UE set that suffers from the instan-
taneous inter-cell interference is tends to be eliminated. We
apply the learning rate α of 0.1 in the following numerical
results.

The transient response of the algorithm is shown in
Fig. 6. The number of UEs is 5 and the number of timeslots
inwhichUE sets are selectedwithRL is 21. The convergence
of the system throughput is delayed until theRL is completed.

Fig. 5 System throughput vs. learning rate (NU=5, inter-antenna dis-
tance 100m, timeslot in UE selection 7).

Fig. 6 System throughput vs. timeslot (NU=5, inter-antenna distance
100m, no. of timeslots for RL=21).
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Fig. 7 System throughput vs. FI (NU=5, inter-antenna distance 100 m).

Fig. 8 System throughput vs. FI (NU=10, inter-antenna distance 100 m).

3.3 Effect of Number of UEs

The system throughput versus FI is shown in Figs. 7 and 8.
The numbers of UEs are 5 and 10. The inter-antenna distance
is 100 meters.

As the number of timeslots in which UE sets are se-
lected with RL increases, the system throughput improves
and the fairness among UEs deteriorates in the proposed
RR scheduling as shown in Figs. 7 and 8. The CU selects
an action with the maximum Q-value to modify the RR se-
quences and the system throughput increases as the reward
is given by the average system throughput after the action.
This leads to the deterioration of the fairness among UEs
because the UE sets with lower throughputs are eliminated.
In the proposed RR scheduling, the performance of the ran-
dom selection is inferior to that of the maximum selection
because the maximum selection chooses UE sets with the
highest estimated throughput. The curves in Fig. 7 show
that the fairness among UEs with the weighted PF becomes
the highest when the weight β − γ is set to 1.0. How-
ever, the computational complexity of the PF scheduling is
much larger than that of the propped RR scheduling after UE
sets are selected with RL. The computational complexity of

Fig. 9 CDF of user throughputs (NU=5).

the weighted PF scheduling exponentially increases with the
number of UEs. On the other hand, in a steady state after RL,
no estimated throughput calculation is required, except for
the initial phase selection [8]. Moreover, the fairness among
UEs and the system throughput for the maximum selection
in the proposed RR scheduling are superior to those for the
weighted PF when the weighted PF scheduling puts more
weight on the system throughput (i.e., the weight for the PF
scheduling, β − γ, is from 0.1 to 0.4). The performance for
the maximum selection in the proposed RR scheduling is
equivalent to that for the weighted PF scheduling when the
number of UEs is 10 as shown in Fig. 8.

The numerical results in Figs. 7 and 8 indicate that the
range of the system throughput increases with the number of
UEs. This is because the number of candidates of UE sets
increases and the UE sets with lower inter-cell interference
can be allocated.

The cumulative distribution function (CDF) of user
throughputs for NU = 5 is shown in Fig. 9, in which the
points surrounded by the red circle in Fig. 7 are compared.
The inter-antenna distance is 100 meters. The number of
timeslots in which UE sets are selected with RL is 21 and
the weight for PF scheduling, β − γ, is 0.1. The CDF curves
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Fig. 10 System throughput vs. FI (NU=10, inter-antenna distance 50m).

Fig. 11 System throughput vs. FI (NU=10, inter-antenna distance
100m).

of the worst and best user throughputs are shown in Fig. 9(a)
and those of the 2nd best and 2nd worst user throughputs
are shown in Fig. 9(b). It is shown in Fig. 9(a) that the user
throughput for theworst user of themaximum selection in the
proposed RR scheduling is larger than that in the weighted
PF scheduling while the user throughput for the best user
of the maximum selection in the proposed RR scheduling is
less than that in the weighted PF scheduling. It is also shown
in Fig. 9(b) that the user throughput for the 2nd worst user
of the maximum selection in the proposed RR scheduling is
larger than that in the weighted PF scheduling. In addition,
the same tendency as that of the best user can be observed
for the 2nd best user. The range of throughput values with
the maximum selection in the proposed RR scheduling is
smaller than that in the weighted PF scheduling. This is
the reason why the maximum selection shows better fairness
for the same system throughput as indicated by the plots
surrounded by the red circle in Fig. 7.

3.4 Effect of Inter-Antenna Distance

The system throughputs versus FI for different inter-antenna
distances are shown in Figs. 10, 11, 12, and 13. The inter-
antenna distances are 50, 100, 150, and 200 meters, respec-

Fig. 12 System throughput vs. FI (NU=10, inter-antenna distance
150m).

Fig. 13 System throughput vs. FI (NU=10, inter-antenna distance
200m).

tively. The number of UEs is 10 and the number of timeslots
in which UE sets are selected with RL is set from 0 to 140.
Regardless of the inter-antenna distance, as UE set selection
with RL progresses, the system throughput improves and the
fairness deteriorates. Larger inter-antenna distance leads to
longer distance from TPs to cell-edge UEs. It is then dif-
ficult to balance the fairness among UEs because the larger
inter-antenna distance leads to a larger range of throughput
among UEs. The performance of the weighted PF schedul-
ing is superior to that of the proposed RR scheduling when
the inter-antenna distance is 50 meters as shown in Fig. 10.
The performance for the maximum selection of the proposed
RR scheduling is comparable to that for the weighted PF
scheduling in terms of both the fairness and the throughput
when the weight β−γ is from 0.4 to 0.1 and the inter-antenna
distance is 100 meters as shown in Fig. 11. The performance
for the random selection of the proposed RR scheduling is
also closer to that of the weighted PF scheduling when the
inter-antenna distance increases to 150 and 200 meters as
shown in Figs. 12 and 13. This is because the weighted PF
scheduling tends to allocate the worse throughput users in
order to improve the fairness among UEs while the proposed
RR scheduling allocates the selected UE sets with the bet-
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ter system throughput. In the proposed RR scheduling, the
estimated throughput which is calculated for the reward val-
ues takes no inter-cell interference into account and is not
accurate if the inter-antenna distance is small. This is why
the weighted PF scheduling is superior to the proposed RR
scheduling in Fig. 10.

4. Conclusions

In this paper, UE set selection in the allocation sequences
of RR for DAT with BD pre-coding is proposed. In prior
research, the initial phase selection of user equipment allo-
cation sequences in RR scheduling has been proposed and
the computational complexity has been indicated. In the
proposed RR scheduling, the CU takes an action with the
highest Q-value calculated from the estimated throughput
and the UE sets in the allocation sequences are selected. No
throughput estimation calculation is required except for the
initial phase selection in the RR scheduling in the steady state
after RL. Numerical results obtained through computer sim-
ulation show that the maximum selection, one of the criteria
for initial phase selection, is comparable to or outperforms
the weighted PF scheduling in terms of the computational
complexity, fairness, and throughput when the weight β − γ
is from 0.4 to 0.1.
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