
IEICE TRANS. COMMUN., VOL.E106–B, NO.7 JULY 2023
547

PAPER
Toward Predictive Modeling of Solar Power Generation for Multiple
Power Plants
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and Hajimu IIDA†, Nonmembers

SUMMARY Solar power is the most widely used renewable energy
source, which reduces pollution consequences from using conventional
fossil fuels. However, supplying stable power from solar power generation
remains challenging because it is difficult to forecast power generation.
Accurate prediction of solar power generation would allow effective control
of the amount of electricity stored in batteries, leading in a stable supply of
electricity. Although the number of power plants is increasing, building a
solar power prediction model for a newly constructed power plant usually
requires collecting a new training dataset for the new power plant, which
takes time to collect a sufficient amount of data. This paper aims to develop
a highly accurate solar power prediction model for multiple power plants
available for both new and existing power plants. The proposed method
trains the model on existing multiple power plants to generate a general
prediction model, and then uses it for a new power plant while waiting for
the data to be collected. In addition, the proposed method tunes the general
prediction model on the newly collected dataset and improves the accuracy
for the new power plant. We evaluated the proposed method on 55 power
plants in Japan with the dataset collected for two and a half years. As a
result, the pre-trained models of our proposed method significantly reduces
the average RMSEof the baselinemethod by 73.19%. This indicates that the
model can generalize over multiple power plants, and training using datasets
from other power plants is effective in reducing the RMSE. Fine-tuning the
pre-trained model further reduces the RMSE by 8.12%.
key words: fine-tuning, long short-term memory, solar power generation,
time-series forecasting

1. Introduction

Solar power is a prominent renewable energy source that
transforms sunlight into electricity [1], emitting less pollu-
tion than traditional fossil fuels [2]. However, solar power
generation faces challenges in energy efficiency, long-term
adoption, cost reduction, and efficient battery utilization.
Producing stable electricity using solar cells requires batter-
ies to store and combine the electricity from the solar cells
and the traditional fossil fuels, since the amount of solar
power generated depends on the amount of solar radiation
and does not always satisfy the electricity demand. There
are several existing approaches to improve the power adjust-
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ment of the electricity stored in the batteries for producing
a stable power supply, such as increasing the capacity of the
batteries [3], designing battery controllers [4], and building
prediction models for the solar power generation [5]. How-
ever, improving battery capacity requires a large investment
compared to developing prediction models. Therefore, there
has been a considerable emphasis on the development of
highly accurate prediction models. However, an acceptable
prediction accuracy is not exactly defined, because it depends
on the target facilities and the investment. Nevertheless, it is
possible to evaluate howmuch the cost of battery systems can
be saved from the improvement of the prediction accuracy.

Due to the limited amount of available datasets and the
nature of large seasonal variations of the solar power gener-
ation, it remains difficult to develop models that accurately
predict solar power generation [6]. Generally, training an ac-
curate prediction model requires a large training dataset [7].
Scientists thus have to spend time in collecting and prepro-
cessing datasets. In addition, predicting the solar power
generation of multiple solar power plants is more challeng-
ing than a single power plant since each power plant has a
different amount of power generation capacity.

In our previous work, we have developed a single model
for predicting solar power generation [8]. This article ex-
tends our previous work from building a prediction model
for a single power plant to multiple power plants. Pre-
viously, a prediction model was trained and tested on the
dataset of a single power plant. However, this model is not
directly available for other power plants. Therefore, we can-
not immediately build prediction models for power plants
that have recently started operation as collecting available
training datasets is still insufficient.

In this article, we propose a method to train a general
model for predicting the power generation of multiple solar
power plants. The proposed model also supports predict-
ing the solar power generation for newly constructed power
plants of which there is little training data available. To
achieve high model accuracy with small training dataset, the
general prediction model trained on multiple power plant
datasets is fine-tuned using the limited data from newly con-
structed power plants.

The remainder of this article is structured as follows.
Section 2 reviews related literature on existing techniques for
predicting solar power generation using machine learning.
Section 3 explains the dataset used in this study. Section 4
describes our proposed methodology to develop a prediction

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers



548
IEICE TRANS. COMMUN., VOL.E106–B, NO.7 JULY 2023

model of solar power generation for multiple power plants.
Section 5 evaluates the proposed methodology. Section 6
concludes this article and discusses future work.

2. Related Work

This section gives a brief overview of existingmachine learn-
ing approaches for predicting solar power generation, and
also fine-tuning prediction models for enhancing the model
accuracy.

2.1 Prediction of Solar Power Generation

Predicting solar power generation is an efficient approach
to improve stability of solar power generation with less in-
vestment. Machine learning is commonly adopted to predict
solar power generation [9].

Sharma et al. applied simple machine learning mod-
els including linear regression and kernel Support Vector
Machine (SVM) to estimate solar power generation from
weather forecasts [10]. The result indicated that an SVM-
based prediction model outperformed linear regression by
27% in terms of RootMean Square Error (RMSE). However,
feature engineering is still required when employing these
machine learning techniques. Feature engineering refers to
the process of leveraging domain experts into feature extrac-
tor development [11]. By reducing the complexity of the
input, the feature extractors make the patterns of input more
visible to machine learning algorithms.

Deep learning has been introduced to eliminate the fea-
ture engineering process in building a prediction model, and
also to increase the model accuracy. To forecast solar power
generation, Rodriguez et al. developed amodel based on arti-
ficial neural networks [12]. Simple artificial neural networks,
however, are not ideal for predicting solar power generation
since it is a type of time-series forecasting.

Long Short-Term Memory (LSTM) is a form of recur-
rent neural network (RNN) that can store historical data over
a long period of time for time-series prediction. LSTM was
developed to deal with the vanishing gradient problem that
is often encountered when training traditional RNNs. Fig-
ure 1 illustrates the architecture of an LSTM block. An
LSTM block has a memory cell, input gate, output gate, and
a forget gate in addition to the hidden state in conventional
RNNs [13]. The memory cell is the portion of the hidden
unit that is only modified by addition or subtraction and scal-
ing, and thus tends to preserve information for a relatively
long time [14]. Because of its architecture, LSTMs can
learn contexts from long-term time-series data and predict
patterns in the future [15]. Zhang et al. presented an LSTM
model to predict solar power generation [16]. Their results
indicated that LSTM outperforms RNN in predicting solar
power generation.

Accordingly, we develop a neural network model based
on LSTM since our dataset consists of hourly solar power
generation and weather forecast data as time-series data for
two and a half years. Our dataset is not large enough and

Fig. 1 A Long Short-Term Memory block.

has a lot of seasonal fluctuation, making it difficult to simply
employ LSTM. Stratified k-fold cross-validation is therefore
used throughout the training process to avoid the problems
of overfitting and seasonal fluctuation [17].

2.2 Fine-Tuning of Prediction Models

Fine-tuning improves the accuracy of a pre-trained model by
making small adjustments to the weights of the pre-trained
model on a specific dataset [18]. While fine-tuning improves
the accuracy of prediction models, it can only be applied
when the datasets used for pre-training and fine-tuning pro-
cesses are similar [19]. When fine-tuning a model, each
layer in the model is treated as either trainable or frozen.
The parameters in the trainable layers are updated during
fine-tuning, whereas the parameters in the frozen layers are
fixed. Tuning hyperparameters such as the learning rate
and the design of the trainable layers is required for effective
fine-tuning [20]. The learning rate determines howmuch the
model changes in response to the loss each time the model
weights are updated [21].

Wu et al. highlighted that choosing the optimal learn-
ing rate is challenging since using a too small value results
in a long training time, while using a too large value re-
sults in skipping some significant weight adjustments that
improves the model accuracy [22]. Thus, the appropriate
learning rate depends on the model architecture and the
training dataset. During the fine-tuning process, reducing
the number of trainable layers with freezing some layers can
shorten the training time since the number of parameters to
be updated is reduced [23]. Xiao et al. demonstrated that
freezing some layers during training process might improve
the model accuracy if the less updated layers are frozen [24].

There are several existing works that train models using
general datasets and then fine-tune the pre-trained models
for specific datasets. For example, in the case of time-series
prediction, Oyeleye et al. developed a prediction model for
heart rates to prevent the risk of cardiovascular disease when
a high heart rate was predicted [25]. They built a pre-trained
model to predict heart rates, and then fine-tuned it for each
person. Dhar et al. investigated the impact of adjusting
learning rate on the model accuracy for predicting stock
prices for each stock index [26]. A naive method to find the
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optimal learning rate is to try with a few different learning
rates and determinewhich one provides the highest accuracy.
Konar et al. suggested starting with a large value, such as
0.1, and then trying with exponentially smaller values when
adjusting the learning rate [27]. In this paper, we applied
LSTM to build a pre-trainedmodel of solar power generation
on all available existing power plants. The pre-trained model
is then fine-tuned for newly constructed plants to enhance
its model accuracy. Furthermore, we studied on finding
the suitable trainable layers and the learning rate during the
fine-tuning process.

3. Dataset

This section describes the dataset used in this study. We
built our dataset from two data sources: (1) weather forecasts
provided by the Japan Meteorological Agency (JMA) [28],
and (2) historical solar power generation at power plants
maintained by NTT Facilities. We use the weather forecasts
computed using the Meso-Scale Model (MSM), which pro-
vides 51- and 39-hour weather forecasts every 3 hours. NTT
Facilities maintains 71 power plants across Japan as shown
in Fig. 2†. Out of the 71 power plants, we excluded 10 power
plants located in the Kyushu island. This is because the
Kyushu island is located in the southern part of Japan where
sunlight is intense, and power generation at power plants is
sometimes capped due to over-generation.

Although each power plant has collected data on solar
power generation over different periods, we have chosen to
use the data collected from January 1, 2018, 00:00 AM to
June 11, 2020, 00:00 AM. This is because solar radiation
forecasts by JMA are only available from January 1, 2018,
00:00 AM, and most power plants had data on power genera-
tion between January 1, 2018, 00:00 AM and June 11, 2020,
00:00 AM. However, only 6 power plants had collected very
little data during this period, so we excluded these 6 plants
and use data from a total of 55 plants.

We acquire data from both sources every hour. Thus,
24 records are produced for each day. The dataset of each
power plant has 24,960 records with 13 features is shown in
Table 1. The first column is the timestamp, the second to
twelfth columns are the weather forecast data, and the last
column is the solar power generation. Due to errors in data
collection, some rows contain values that exceed the capacity
of the power plant, or that are less than zero. These rows are
removed during the preprocessing process.

In this study, we aim to build a machine learning model
to predict the amount of solar power generation for multiple
power plants. Figure 3 shows the variability of hourly solar
power generation at each power plant. It suggests that solar
power generation is strongly skewed toward 0.0 kWh, be-
cause solar power cannot be generated if the solar radiation
falls below a particular threshold. It is indeed difficult to cre-
ate an accurate prediction model with such an imbalanced
dataset. Furthermore, since each power plant has a different

†https://goo.gl/maps/1UkygW7yCpgvzm7QA

Fig. 2 Location of NTT facilities’ solar power plants in Japan.

Table 1 List of features in the dataset.

# Feature Data format

1 Time YYYY/MM/DD hh:mm:ss
2 Atmospheric pressure Pa
3 Wind speed (E-W) m s−1

4 Wind speed (N-S) m s−1

5 Temperature K
6 Humidity %
7 Low cloudage %
8 Middle cloudage %
9 High cloudage %
10 Total cloudage %
11 Precipitation kg m−2

12 Solar radiation W m−2

13 Solar power generation kWh

generation capacity, training a prediction model for multiple
power plants is challenging.

Figure 4 plots the average daily solar power generation
in each month. It depicts how solar power generation fluc-
tuates depending on the season throughout the year. The
considerable seasonal variation of the dataset also makes
developing a highly accurate prediction model difficult.

4. Methodology

This section explains the proposed methodology to build
an accurate prediction model of solar power generation for
multiple power plants. We first split the dataset of each
power plant into training and testing datasets using stratified
k-fold cross-validation. Next, we develop a model to predict
solar power generation. Themodel is trained using the power
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Fig. 3 Variability of hourly solar power generation at each power plant.

Fig. 4 Average daily solar power generation in each month.

generation data of all power plants except for a target power
plant which is assumed as a newly deployed power plant.
Subsequently, the model is fine-tuned for the target power
plant used for evaluation.

4.1 Preparation of Training and Testing Datasets

Our model predicts the next 24 hours of solar power gener-
ation using (1) the last 48 hours of solar power generation,
and (2) the weather forecasts for the last 24 hours and next
24 hours. Hence, the length of input and output sequences
are 48 and 24, respectively.

The large imbalances and seasonal changes in the
dataset could lead to learning problem including overfitting
and underfitting problems. Hold-out is a common splitting
method in which a dataset is split into two portions, one for
training and the other for testing. Basic splitting approaches
such as hold-out is not suitable because the training or test-
ing datasetmight have large imbalance and seasonal changes.
Such a simple split causes an overfitting problem since the
training dataset may only include data for a single season.

Fig. 5 Stratified 5-fold cross-validation.

The k-fold cross-validation is a cross-validation ap-
proach frequently used to enhance the generalization perfor-
mance of prediction models for imbalanced datasets. Simple
k-fold cross-validation is still insufficient for our dataset due
to the small size and seasonal variation of the dataset. We
may use k-fold cross-validation with a large k to enhance the
generalization performance our model, but this would con-
siderably increase the training time. As a consequence, we
use a multi-level cross-validation approach called stratified
k-fold cross-validation.

In stratified k-fold cross-validation, the dataset is split
into equal-sized chunks, and each chunk is subject to k-fold
cross-validation. To put it another way, each chunk is divided
into k folds, with one k fold serving as the testing dataset and
the other k−1 serving as the training dataset. This procedure
is performed k times more until each fold is utilized to test
the model. Afterwards, the error is averaged over all k
iterations to calculate the final accuracy of prediction model.
The generalization performance of the model will increase
compared to k-fold cross-validation because the training and
testing datasets are dispersed over thewhole dataset. Figure 5
illustrates an example of 5-fold stratified cross-validation.

Since the generation capacity of each power plant is
different, we normalize the dataset of each power plant into
the same scale for training and testing a prediction model.
Normalizing the dataset into the same scale for the different
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Fig. 6 Architecture of the proposed LSTM-based prediction model.

power plants to prevent distorting differences in the ranges
of values. In this work, all features in the dataset of each
power plant are normalized within the range between zero
and one.

4.2 Pre-Training

The proposed prediction model is based on LSTM because
LSTM is able to hold long-term context. This makes LSTM
suitable for predicting time-series data like solar power gen-
eration. Since our preliminary experiment indicated that
using multiple LSTM layers does not improve the prediction
accuracy, we build a neural network model with a single
LSTM layer.

Our prediction model is illustrated in Fig. 6. The model
consists of an LSTM layer and a fully connected (FCN) layer.
The LSTM layer has M hidden units. The size of the input
layer is 48 × N where N is the number of features and 48
is the length of the input sequence. Additionally, the size
of the output layer is 24 since the proposed model predicts
the next 24 time steps. In this work, we set the number of
hidden units M to 100, and the number of features N to 100.
The output layer is a FCN layer with ReLU as the activation
function. ReLU is used since the predicted value (i.e., power
generation) should always be positive. The model is pre-
trained over the training dataset of every power plant except
the training dataset of target power plant.

4.3 Fine-Tuning

After the model is pre-trained, it is fine-tuned for the target
power plant. Since the proposed prediction model has two
layers (i.e., an LSTM layer and a FCN layer), there are three
options in choosing which layers to freeze: (1) freezing only
the LSTM layer, (2) freezing only the FCN layer, and (3) not
freezing any layer.

5. Evaluation

This section evaluates the proposed method to build a pre-
diction model of solar power generation for multiple power
plants. We measured the prediction accuracy of pre-trained

Table 2 Hardware specifications.

Hardware Specification

CPU Intel Xeon E5-2650 v2 (2.20GHz, 12 cores) ×2
Main Memory 256GB
GPU NVIDIA Tesla P100
GPU Memory 16GB

and fine-tuned models with stratified k-fold cross-validation
to find the learning configuration that achieves the best ac-
curacy. We then compared the accuracy of the proposed
method against a baseline method.

5.1 Experimental Environment

Table 2 shows the specifications of the hardware we used in
our evaluation. Keras 2.4.3 was used to build the prediction
model. The MinMaxScaler class in scikit-learn 0.24 was
used to normalize the input data.

We used stratified 5-fold cross-validation and set the
training batch size to 32. The numbers of training and test-
ing samples were 19,968 and 4,992 for each power plant,
respectively. Nesterov-accelerated Adaptive Moment Esti-
mation (Nadam) was used as the optimizer for training, and
the training was stopped when the validation loss did not de-
crease for five epochs. The accuracy of the prediction model
was evaluated using the Root Mean Square Error (RMSE).
The Normalized Root Mean Square Root Error (NRMSE)
was used to evaluate the prediction model over the testing
datasets of every power plant since each power plant has a
different generation capacity. RMSE was used to compare
different methods. On the other hand, NRMSE was used
to compare different training configurations for the same
method.

5.2 Pre-Training Results

In this evaluation, we find the suitable learning rate for pre-
training considering both accuracy and training time. The
model was trained on the training datasets of all power plants
except for the target power plant, and then validated on the
testing dataset of the target power plant. The learning rate
was varied from 10−1 to 10−8.

Figure 7 presents the NRMSE of the pre-trained models
with different learning rates. Here, we compute the NRMSE
for each power plant and show the variability using a box
plot. The NRMSE was high and exhibited a large variance
when the the learning rate was larger than 10−2 or smaller
than 10−5. Pre-training with the learning rate of 10−3 and
10−4 produced very low NRMSE.

Figure 8 shows the runtime for pre-training with differ-
ent learning rates. Evidently, training with a large learning
rate converged faster than with a small learning rate. The
training time increased with the learning rate when the learn-
ing rate was between 10−1 to 10−4, but remained almost con-
stant when the learning rate was smaller than 10−4 since the
training is not able to be fully converged when the learning
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Fig. 7 NRMSE of pre-trained models (varying learning rate).

Fig. 8 Runtime for pre-training (varying learning rate).

rate is too small. Therefore, we chose 10−4 as the learning
rate for pre-training because it produces the lowest NRMSE.

5.3 Fine-Tuning Results

In this evaluation, we find the suitable learning rate and layers
to train for fine-tuning. In addition, we quantify the impact
of the size of the fine-tuning dataset on the fine-tuned model
accuracy. The fine-tuning dataset of the target was split into
12 months where each month is considered 30 days.

We first investigate which layers should be fine-tuned to
produce the lowest NRMSE. Here, a pre-trained model was
fine-tuned with the learning rate of 10−3. Figure 9 shows
the average NRMSE of the fine-tuned models with different
set of fine-tuned layers. Although the figure indicates that
the choice of the fine-tuned layers did not have a significant
impact on the NRMSE, we chose to retrain both the LSTM
and FCN layers because it produced the lowest NRMSE
when the size of fine-tuning dataset was 12 months. Since
solar power generation shows large seasonal variations as
described in Sect. 3, the fine-tuning dataset should cover all

Fig. 9 NRMSE of fine-tuned models (varying fine-tuning dataset size).

Fig. 10 NRMSE of fine-tuned models (varying learning rate and fine-
tuning dataset size).

seasons throughout a year to capture the seasonal variations.
We thus focus on the performance when using 12 months of
data for fine-tuning.

Nevertheless, the model fine-tuned with a learning rate
of 10−3 produced higher NRMSE than the original pre-
trained model. Thus, we varied the learning rate from 10−4

to 10−8 to find the suitable learning rate for fine-tuning. The
result is shown in Fig. 10. The result indicates that the model
accuracy increased with the fine-tuning dataset size. When
the learning rate is less than or equal to 10−5, the NRMSE
after fine-tuning was consistently lower than the pre-trained
model for all dataset sizes.

In addition, we measured the training time for fine-
tuning using 12 months of training data. The result is shown
in Fig. 11. The training time for fine-tuning does not sig-
nificantly change depending on the learning rate when the
learning rate is in a range between 10−1 and 10−6. We there-
fore chose 10−6 as the learning rate for fine-tuning because
it produced the lowest NRMSE.
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5.4 Comparison to Baseline

We compared our proposed method with a baseline method,
where the prediction model is trained only on the dataset
of the target power plant. We used 12 months of training
data for fine-tuning, and used the hyperparameters chosen
in Sects. 5.2 and 5.3 for pre-training and fine-tuning. That
is, we set the learning rate to 10−4 and 10−6 for pre-training
and fine-tuning, respectively, and fine-tune both the LSTM
and FCN layers. The proposed and baseline methods were

Fig. 11 Runtime for fine-tuning (varying learning rate).

evaluated on the testing dataset of the target power plant.
The RMSE was used to compare the prediction errors of
each method.

The result is shown in Fig. 12. The pre-trained models
of our proposed method significantly reduced the average
RMSE of the baseline method by 73.19%. This indicates
that the model can generalize over multiple power plants,
and that training with datasets from multiple power plants is
effective in reducing the RMSE. Fine-tuning the pre-trained
models further reduced the RMSE by 8.12%. Moreover,
the variance of RMSEs of the proposed method was smaller

Fig. 12 RMSE of the proposed and baseline methods.

Fig. 13 RMSE of the proposed and baseline methods.
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Fig. 14 Differences in RMSE of baseline and pre-trained models.

than that of the baseline method, indicating that our method
generated more robust models than the baseline method.

To examine in more detail which power plants benefit
from the proposed method, we compared the RMSEs of the
proposed and baseline methods for individual power plants.
Figure 13 presents the average daily maximum power gener-
ation and RMSEs of each method. The average daily maxi-
mum power generation is used to represent the scale of the
power generation for each power plant. The RMSEs of the
baseline models were essentially proportional to the scale of
the power plants. As already shown in Fig. 12, the accuracy
of the pre-trained and fine-tuned models was significantly
improved over the baseline models. However, the improve-
ment rates were not the same across all power plants. In
some power plants, the pre-trained model already provided
high accuracy, and the accuracy did not improve after file-
tuning. On the other hand, in some other power plants, the
fine-tuned models showed significant improvements over the
pre-trained models. On average, the proposed method saves
28.7 kWh for every power plant. According to a report [29],
the cost of a utility-scale Li-ion energy storage system ranges
from $379/kWh to $907/kWh as of Q1 2021, depending on
the duration of energy discharge. The proposed method can
therefore reduce the cost of battery systems by approximately
$10,877 to $26,031.

We further investigate the differences in accuracy im-
provement between power plants. Figure 14 plots the differ-
ence in RMSE between the baseline and pre-trained models
for each power plant along with the geographical locations
of the power plants. The plants plotted as darker-colored
points indicate that the improvements by the pre-trained
models are greater than the plants plotted as lighter-colored
points. Similarly, Fig. 15 plots the difference in RMSE be-
tween the pre-trained and fine-tuned models for each power
plant. The pre-trained model provided high accuracy for
power plants where many other power plants are located

Fig. 15 Differences in RMSE of pre-trained and fine-tuned models

nearby. Since the pre-trained model is a generalized model
trained on the datasets of all power plants, the pre-trained
model provided high accuracy for groups of plants sharing
similar characteristics. Therefore, it is expected to perform
better for power plants deployed in the same geographical
region. The fine-tuned models showed large improvements
over the pre-trained models for power plants where there are
no other power plants nearby. Since the generalized model
does not capture the characteristics of those isolated power
plants, fine-tuning using the dataset of each plant seems to
improve the accuracy.

6. Conclusion

In this article, we studied how to build a model to predict
future solar power generation using past solar power gener-
ation and weather forecasts for multiple power plants. We
designed a neural network model based on LSTM to pre-
dict solar power generation. In addition, we fine-tune the
pre-trained model on the new training dataset to improve ac-
curacy. As a result, the pre-trained models of our proposed
method significantly reduced the average RMSE of the base-
line method by 73.19%. This indicates that the model can
generalize over multiple power plants, and training using
datasets from other power plants is effective in reducing the
RMSE. Fine-tuning the pre-trained model further reduced
the RMSE by 8.12%.

One direction for future work is to investigate other time
series forecasting techniques to further improve the predic-
tion accuracy. To validate the generality of the proposed
prediction method, solar power generation data and weather
forecasts from other sources should be used. Also, clustering
the power plants based on some features and then fine-tuning
the pre-trained model using data from plants within the same
cluster might increase the model accuracy.
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