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SUMMARY This paper proposes two full-digital receive beamforming
(BF) methods for low-complexity and high-accuracy uplink signal detec-
tion via Gaussian belief propagation (GaBP) at base stations (BSs) adopting
massive multi-input multi-output (MIMO) for open radio access network
(O-RAN). In addition, beyond fifth generation mobile communication (be-
yond 5G) systems will increase uplink capacity. In the scenarios such as
O-RAN and beyond 5G, it is vital to reduce the cost of the BSs by limiting
the bandwidth of fronthaul (FH) links, and the dimensionality reduction
of the received signal based on the receive BF at a radio unit is a well-
known strategy to reduce the amount of data transported via the FH links.
In this paper, we clarify appropriate criteria for designing a BF weight
considering the subsequent GaBP signal detection with the proposed meth-
ods: singular-value-decomposition-based BF andQR-decomposition-based
BF with the aid of discrete-Fourier-transformation-based spreading. Both
methods achieve the dimensionality reduction without compromising the
desired signal power by taking advantage of a null space of channels. The
proposed receive BF methods reduce correlations between the received sig-
nals in the BF domain, which improves the robustness of GaBP against
spatial correlation among fading coefficients. Simulation results assum-
ing realistic BS and user equipment arrangement show that the proposed
methods improve detection capability while significantly reducing the com-
putational cost.
key words: massive MIMO, receive beamforming, O-RAN, belief propaga-
tion, deep unfolding

1. Introduction

Beyond fifth generation mobile communication (beyond 5G)
systems are expected to be a platform to realize cyber phys-
ical systems (CPSs). In CPSs, uplink wireless communica-
tions will play a vital role to upload massive sensing data
from a physical world to a cyber world, leading to explo-
sive increase in uplink traffic. To increase the capacity of
the uplink communications, massive multi-user multi-input
multi-output (MU-MIMO) techniques [1], which spatially
multiplex transmitted signals from multiple users, have been
investigated. The number of multiplexing signals is expected
to increase to meet the uplink capacity demand in beyond 5G
era.
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In the MU-MIMO, multi-user detection (MUD) is pro-
cessed to detect transmitted signals frommultiple users in the
base stations (BSs). As typical low complexity MUDs, lin-
ear spatial filterings, such as matched filter (MF), zero forc-
ing (ZF) filter, and minimum mean square error (MMSE)
filter, are low-accurate methods in terms of bit error rate
(BER) performance. In contrast, maximum likelihood (ML)
detection is the optimal MUD, but its computational cost
is prohibitively high. In order to achieve a reasonable
complexity-accuracy trade-off, belief propagation (BP) algo-
rithms have been proposed, such as Gaussian BP (GaBP) [2],
approximate message passing (AMP) [3], generalized ap-
proximate message passing (GAMP) [4], and expectation
propagation (EP) [5]. These BP algorithms provide iterative
MUD schemes which gradually improve detection accuracy
by exchanging beliefs, i.e., likelihood information reflecting
detection reliability, across iterations. Considering the po-
tential of the BP algorithms in massive MIMO assumed in
beyond 5G systems, this paper adopts low-complexity MUD
based on GaBP.

Another trend of mobile communication systems gain-
ing attention is an open radio access network (O-RAN) [6]–
[8]. The O-RAN enables the flexible configuration of BSs.
In O-RAN-compliant BSs, the physical layer functions are
split into the low physical layer in a radio unit (RU) and
the high physical layer in a distributed unit (DU), which
are connected via fronthaul (FH) links [9]. While the RU
performs analog and/or digital beamforming (BF), the DU
performs baseband signal processing, such as MUD, map-
ping/demapping, and channel coding/decoding. The stan-
dardization of the FH interface, for example enhanced com-
mon public radio interface (eCPRI) [10], enables mobile
network operators to flexibly combine the RUs and the DUs
from different vendors to build BSs satisfying various wire-
less communication service requirements.

As a significant part of the cost of an O-RAN-compliant
BS is the optical devices in the FH links, using narrower
bandwidth FH should contribute to reducing the cost of
the BS. In the uplink, the required bandwidth of the FH
links depends on the amount of data traffic transported from
the RU to the DU. When adopting the massive MU-MIMO
techniques [1] to improve the end-to-end uplink capacity,
a significant increase in the capacity of the FH links is in-
evitable to transport the high-dimensional received signals.
One promising approach to solve this issue is full-digital
receive BF at the RU, which reduces the dimension of the re-
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ceived signals from the number of receive antenna elements
equipped on the RU to the number of spatial multiplexed
transmitted streams. Note that one of disadvantages of the
full-digital receive BF is high hardware complexity, because
theRU requires asmany analog-to-digital converters (ADCs)
and digital-to-analog converters (DACs) as receive antenna
elements.

In [11] and [12], the receive BF, which is constructed
on the basis of QR decomposition of channel matrices, is ap-
plied to iterative signal detectors based onBP. Thesemethods
enable to improve the detection performance by reducing the
number of short loops on the factor graph, which represents
the MUD problem using a linear transformation by the BF
methods. However, the classical BP [11] requires marginal-
ization operations based on the factor graph structure, re-
sulting in high computational burden. To reduce the compu-
tational cost, GaBP in [2] takes advantage of the Gaussian
approximation (GA) of residual interference signals based
on the central limit theorem in parallel interference can-
cellation (PIC). However, when an effective channel matrix
after the receive BF is not suitable for GA in the subsequent
GaBP-based signal detection, the performance severely dete-
riorates. This is true for an upper triangular effective channel
matrix obtained by the receive BF based on QR decompo-
sition. To address this issue, the authors of [12] modified
the message-passing rule of GaBP to use successive inter-
ference cancellation (SIC) instead of PIC to effectively deal
with the upper triangular channel matrix. However, the SIC
algorithm generally takes longer processing time than PIC
due to successive processing [13]. From a practical point of
view, the original GaBP with PIC is still desirable in terms
of short processing time and low computational complexity.

In light of the above, our aim is to design an appropriate
full-digital receive BF so that the original PIC-based GaBP
operates properly. To the best of our knowledge, this study
is the first to combine the PIC-based GaBP with receive BF.
First, we present the following three criteria for the full-
digital receive BF weights: (i) maintain the whiteness of
the noise, (ii) maintain the desired signal power, and (iii)
improve the GA accuracy of residual interference signals.
While the first two criteria are the primary criteria for the
subsequent stochastic signal processing to work well, the
third criterion is specialized for PIC-basedGaBP. In addition,
it is desirable to design a receive BF which can suppresses
spatial correlation among fading coefficients, because the
spatial correlation severely degrades the detection accuracy
of GaBP.

In this paper, we propose two receive BF construc-
tion methods to satisfy the three criteria: singular value
decomposition-based BF (SVD-BF) andQR decomposition-
based BF with the aid of discrete Fourier transformation
(DFT) matrix-based spreading (QR-DFT-BF). SVD-BF can
greatly improve detection capability by making the beam-
formed received signals uncorrelated with each other. QR-
DFT-BF with lower computational cost can also improve
detection capability while suppressing the correlation. To
overcome the vulnerability of GaBP to the spatial correla-

tion, we instead use trainable GaBP (T-GaBP) [14], the inter-
nal parameters embedded in the iterative process of which
are trained using deep learning techniques; this technique
is referred to as deep unfolding [15]. By training T-GaBP,
including the proposed receive BF methods, we can opti-
mize the structure of T-GaBP to be fully consistent with the
proposed BF methods. It is also worth noting here that the
dimensionality reduction contributes to reducing the compu-
tational cost of GaBP. Finally, simulation results demonstrate
the efficacy of the proposed methods with the receive BF in
terms of the detection capability and the computational cost.

This paper is an extension of [16], including a more
detailed description of the algorithm and more realistic sce-
narios in the computer simulations. More specifically, an
arrangement of a BS and user equipment (UE) devices is
more realistic than the arrangement in [16]. The BS is set
at higher position than UEs in this paper, while the BS and
UEs were set at the same height in [16]. The number of
spatially multiplexed streams is increased to 24 consider-
ing the beyond 5G system. In addition, low-density parity
check (LDPC) code [17] is used as a forward error correction
(FEC) code, whereas no FEC code is assumed in [16]. The
rest of this paper is organized as follows. In Sect. 2, we show
configurations of the system and signal model. Section 3
describes the detailed algorithm of multi-user detection via
GaBP and T-GaBP, respectively. In Sect. 4, we propose two
receiveBFmethods suitable forGaBP andT-GaBP. Section 5
provides numerical results about the detection accuracy of
T-GaBP with the proposed receive BF. Finally, in Sect. 6, we
conclude this paper.

2. System Model

2.1 Configuration of Base Station and System

Consider an uplink massive MU-MIMO system composed
of a BS and several synchronized UE devices. The BS has
N receive antennas in a uniform planar array pattern. Each
UE device has MT transmit antennas, and the number of UE
devices is MUE, i.e., the total number of transmit antennas
is M = MT × MUE, where M is less than N . The number
of multiplexing signals is usually much smaller than that of
antenna elements mounted on the receiver at a BS to reduce
the number of reference signals from UE devices. Thus, M
transmit signals are spatially multiplexed. Note that transmit
BF is not applied in each UE for simplicity of analysis.

Figure 1 shows an example of a block diagram of the
BS that consists of an RU and a DU in consideration of
the O-RAN specifications. The RU executes digitization
of receive signals, cyclic prefix (CP) removal, fast Fourier
transformation (FFT), and receive digital BF, whereas the
DU executes channel estimation, BF weight generation, and
MUD. Signals are transported using orthogonal frequency
division multiplexing (OFDM) and are transformed from the
time domain to the frequency domain in the RU. The UE de-
vices transmit sounding reference signals (SRS), which are
received at the RU. The received SRS without receive BF
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Fig. 1 BS processing consisting of RU and DU for uplink.

are transported from the RU to DU. Using the SRS, the DU
estimates channels between every UE device and the RU
then generates receive BF weights using the knowledge of
the estimated channels. The generated weights are trans-
ported to the RU and set at the beamformer. The UE devices
transmit data signals with demodulation reference signals
(DMRS) to the RU. The RU executes receive beamforming
for both the received data signals and DMRS, which can
reduce the dimension of the received signals from the num-
ber of receive antenna elements to the number of spatially
multiplexed streams, then the reduced beamformed received
signals are transported to the DU. The DU executes channel
estimation using the DMRS, which results in an estimation
of the beamformed effective channel matrix. The DU ex-
ecutes MUD using signal detectors such as T-GaBP with
the beamformed received signals and the estimated chan-
nel matrix. Finally, the DU demaps the detected signals to
log-likelihood ratio (LLR) and decodes the LLR to data bit
sequence. The SRS, BF weights, DMRS, and data signals
are transported between the RU and the DU via the FH.

2.2 Signal Model

Throughout this paper, following notations are used. Vectors
and matrices are denoted by lower- and upper-case bold-face
letter, respectively. ·T and ·H are the transpose and Hermitian
transpose operator, respectively. Ia is an a×a identitymatrix
and Oa×b is an a × b zero matrix. ‖ · ‖ represents a L2 norm
of a vector. Furthermore, (·)i and (·)i, j are the i-th vector
element and the i-th row and the j-th columnmatrix element,
respectively. R and C are denote real and complex fields,
respectively. <{·} and ={·} denote the real and imaginary
parts of a complex value, respectively. CN(a, b) indicates
a complex-valued Gaussian process with a mean a and a
variance b. Ea{·} is the expected value of random variable
a.

In this paper, OFDM is assumed as the transmission
scheme. Nevertheless, we omit the subcarrier index of vari-
ables because we focus on one of the subcarriers hereafters.
We use quadrature amplitude modulation (QAM) whose
modulation order is Q, with the m-th transmit antenna con-
veying a modulated symbol xm. A transmitted signal vector
x ∈ CM×1 and received signal vector y ∈ CN×1 of a subcar-
rier are represented as

x =
[

x1 . . . xm . . . xM
]T , (1)

y =
[
y1 . . . yn . . . yN

]T
= Hx + z, (2)

where H ∈ CN×M and z ∈ CN×1 are a MIMO channel
matrix and a noise vector of the subcarrier, respectively.
The noise vector z = [z1 . . . zn . . . zN ]T is a complex
additive white Gaussian noise vector with entries zn obeying
CN(0,N0), where Ez{z zH} = N0IN and N0 is noise power
density. At the RU, the receive BF is applied to Eq. (2). The
beamformed effective received signal vector y ′ ∈ CM×1 is
given by

y ′ = WH y = H ′x + z ′, (3)

where WH ∈ CM×N is a receive BF weight. The beam-
formed effective channel matrix and the beamformed noise
vector are respectively represented as

H ′ = WHH ∈ CM×M , (4)
z ′ = WH z ∈ CM×1, (5)

As shown in Eq. (3), the receive BF reduces the dimension
of the received signals from N to M , which can reduce the
required bandwidth of the FH links.

3. Multi-User Detection via Trainable Gaussian Belief
Propagation

This paper adopts T-GaBP for a MUD method, which iter-
atively estimates a transmitted signal using GaBP with the
internal parameters trained by deep unfolding [15]. The
structure of T-GaBP encompasses techniques for BP-based
iterative detection to improve the convergence property, i.e.,
belief damping [18], node selection [19], and belief scal-
ing [20]. GaBP and T-GaBP are respectively explained in
the following subsections.

3.1 Gaussian Belief Propagation (GaBP)

GaBP is one of MF based BP algorithms. Figure 2 shows a
block diagram of GaBP that consists of three modules: soft
interference canceller (Soft IC), belief generator (BG), and
soft replica generator (Soft RG). Table 1 presents the pseudo-
code of the GaBP, where ·(k) for each variable indicates the
corresponding variable at the k-th iteration. Alg-s indicates
the s-th step in Table 1. For ease of algebraic manipulations,
the complex-valued signal model of Eq. (3) can be converted
to a double-size real valued signal model on the basis of
pulse amplitude modulation (PAM) symbols as follows:

y ′r = H ′rxr + z ′r, (6)

y ′r =

[
<{ y ′}
={ y ′}

]
=



yr
1
...
yr
m
...

yr
2M


∈ R2M×1, (7)

H ′r =

[
<{H ′} −={H ′}
={H ′} <{H ′}

]
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Fig. 2 Block diagram of GaBP.

Table 1 Pseudo-code of Gaussian belief propagation.

Input: y′r ,H′r , K , C = {ζn ,k , µk , ∀n, k }
Output: x̂ = [x̂1, · · · , x̂m , · · · , x̂2M ]

T

// Initializeation
1: N = {1, . . . , 2N },M = {1, . . . , 2M }
2: GQ =

{
2l · c |l = 0, ±1, . . . , ±

( √
Q
2 − 1

)}
3: ∀n,m:x̌(0)n ,m = 0, ě(0)n ,m , θn ,m = h′rn ,m

2

4: ∀n,m:u′(0)n ,m = 0, v′(0)n ,m = 0
5: for k = 1 to K do

// Soft interference canceller (Soft IC)
6: ∀n,m:ỹ(k)n ,m = y

′r
n −

∑
i,m h′rn ,i x̌

(k−1)
n ,i

7: ∀n,m:δ(k)n ,m = ě
(k−1)
n ,m −

(
x̌
(k−1)
n ,m

)2

// Belief generator (BG)
8: ∀n,m:ψ (k)n ,m =

∑
i,m θn ,iδ

(k)
n ,i +

N0
2

9: ∀n,m:u(k)n ,m =
h′rn ,m ỹ

(k)
n ,m

ψ
(k)
n ,m

, v
(k)
n ,m =

θn ,m

ψ
(k)
n ,m

10: ∀n,m:u′(k)n ,m = ζn ,k · u
(k)
n ,m + (1 − ζn ,k ) · u′

(k−1)
n ,m

11: ∀n,m:v′(k)n ,m = ζn ,k · v
(k)
n ,m + (1 − ζn ,k ) · v′

(k−1)
n ,m

12: ∀n,m:s′(k)n ,m =
∑

i,n u′
(k)
i ,m , ω

′(k)
n ,m =

∑
i,n v

′(k)
i ,m

13: ∀n,m:γ(k)n ,m =
s′
(k)
n ,m

ω′
(k)
n ,m

// Soft replica generator (Soft RG)
14: ∀n,m:x̌(k)n ,m = c

∑
γ′∈GQ

tanh
[
µk
c ·

(
γ
(k)
n ,m − γ

′
)]

15: ∀n,m:ě(k)n ,m =
(√

Q − 1
)2

c2

+2c
∑
γ′∈GQ

γ′ · tanh
[
µk
c ·

(
γ
(k)
n ,m − γ

′
)]

16: end for k

=


h′r1,1 · · · h′r1,2M
... h′rn,m

...
h′r2M ,1 · · · h′r2M ,2M

 ∈ R
2M×2M , (8)

xr =

[
<{x}
={x}

]
=



xr
1
...

xr
m
...

xr
2M


∈ R2M×1, (9)

z ′r =

[
<{z ′}
={z ′}

]
=



z′r1
...

z′rm
...

z′r2M


∈ R2M×1, (10)

where the m-th PAM symbol xr
m in xr represents one of

the Q′(=
√

Q) PAM constellation points in X = {±(2i −
1)c |i = 1,2, · · · ,Q′/2} [21]. Let us define a coefficient c =√

3Es/2(Q − 1) for normalizing the average power density
of X to Es/2. For example, we have X = {±c,±3c} and
c =

√
Es/10, when 16QAM (Q = 16) is used.
Soft IC subtracts the inter-user interference from each

received signal by using the soft replicas generated in the pre-
vious iteration as shown in Alg-6. Note that the soft replicas
are initialized by 0 at the first iteration step. BG generates
the beliefs as described in Alg-8–Alg-12 by approximating
the residual interference-plus-noise in the output of Soft IC
as independent and identically distributed (i.i.d.) Gaussian
noise following the central limit theorem. This behavior
is referred to as scalar Gaussian approximation (SGA). Af-
ter computing the beliefs under SGA, Soft RG approximately
calculates the conditional expectation of the transmitted sym-
bol in Alg-14 and Alg-15. GaBP processes these modules
iteratively. When the number of iterations reaches the prede-
termined value K , BG outputs beliefs to demapper in Fig. 1
to generate the LLR. Although GaBP shows excellent per-
formance under spatially uncorrelated MIMO channels, the
spatial correlation among fading coefficients occurring in
real environment degrades the performance.

To improve the accuracy of detection, belief damping,
node selection and belief scaling are applied to GaBP. Belief
damping [18] gives the current belief by a weighted aver-
age of the belief at the current iteration step and the belief
obtained in the previous iteration step. Node selection [19]
determines a subset of beliefs to be updated at each itera-
tion on the basis of the BS antenna pattern to improve the
robustness against correlated MIMO channels. This node
selection is generalized by introducing a weighting param-
eter, ζn,k , for the n-th antenna and the k-th iteration, where
0 ≤ ζn,k ≤ 1. The weighting include character of both the
belief damping and the node selection. This weighting pa-
rameter at each iteration enables the dynamic change in the
subset, which can reduce correlation among beliefs and ac-
celerate convergence speed. Belief scaling [20] adjusts the
reliability of beliefs at each iteration to prevent degradation
caused by low-precision beliefs. Parameter µk is a scaling
parameter at the k-th iteration for belief scaling.

3.2 Trainable GaBP (T-GaBP)

Figure 3 shows the structure of T-GaBP which unfolds the
iterative structure of GaBP and optimizes the parameters
with data-driven training technique of deep learning [22].
T-GaBP trains the internal parameters of GaBP, such as ζn,k
and µk . One iteration of GaBP corresponds to one layer of
deep neural network. Training data consists of many pairs
of received signals and transmitted signals. In the training
phase of T-GaBP, a mean-square-error (MSE) loss function
L is calculated by the following equation:

L =
1
D

D∑
d=1
‖xr[d] − x̌(K)[d]‖2, (11)
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Fig. 3 Structure of T-GaBP.

where D is the number of training data, xr[d] ∈ R2M×1

is the transmitted signal of the d-th training data, and
x̌(K)[d] ∈ R2M×1 is the soft replica vector generated at the
K-th iteration for the d-th training data. The parameters ζn,k
and µk are optimized to minimize the loss L. After training
the parameters of T-GaBP, MUD is processed with GaBP
in Fig. 2 whose parameters are set to trained parameters. It
would be realistic for the trainable parameters to be learned
in advance by computer simulations in several different set-
tings and then tabulated and incorporated at the time of BS
installation. In this case, the learned parameters must be
robust to various radio environments that vary depending
on the BS location and surrounding situations. Therefore,
we recognize that the learning method to obtain such robust
parameters is vital for future work. However, in the deep
unfolding technology [15] used in this study, the most part
of the algorithm is constructed using a model-based design
approach that can take environmental information, e.g., in-
stantaneous CSI, into account, and the number of learning
parameters ismuch smaller than that of conventional learning
models. Based on the above, we believe that even at present
the proposed algorithm has some robustness to changes in
the statistical properties of the data handled, and in fact, we
have obtained some data showing such initial results. In
this study, these parameters were trained using beamformed
received signals to optimize the parameters for MUD with
receive BF.

4. Receive Beamforming

Since the analytical derivation of the optimal receive BF
weight for GaBP is difficult, we design the receive BFweight
considering the feature of GaBP. The following three criteria
are considered for the design of the receive BF weight WH.

(i) ReceiveBFmaintains thewhiteness of the noisewithout
enhancing the intensity of noise.

(ii) Receive BF does not lose the desired signal power.
(iii) Receive BF converts the receive signals so that inter-

user interference in the beam domain can be approxi-
mated as Gaussian distribution with high accuracy.

Criteria (i) and (ii) are aimed at maintaining signal-detection
accuracy after receive BF. Criterion (iii) is specialized for
the subsequent GaBP.

Criterion (i) is satisfied when a WH consists of M or-

thonormal vectors. If the following equation:

WHW = IM , (12)

holds, the beamformed noise can maintain the whiteness as

Ez

{
z ′z ′H

}
= N0IM . (13)

Criterion (ii) requires that the desired signal power before
receive BF, i.e., tr(HHH), is equal to that after receive BF,
i.e., tr(H ′HH ′), represented as

tr(HHH) = tr(H ′HH ′). (14)

Criterion (iii) is approximately satisfiedwhen elements of the
beamformed effective channel matrix WHH are unbiased,
which is explained in more detail later.

4.1 Receive Beamforming Using Singular Value Decom-
position (SVD-BF)

We developed SVD-BF as a receive BF method satisfying
criteria (i), (ii), and (iii), which uses a partial left singular
matrix, i.e., the BF weight matrix is given by

WH = UH
0 , (15)

where UH
0 ∈ C

M×N is the partial left singular matrix, which
is derived from SVD as

H =
[
U0 U1

] [
Γ

O(N−M)×N

]
VH, (16)

where [U0 U1] ∈ C
N×N is a left singular matrix, Γ ∈ RM×M

is a singular value matrix which is a diagonal matrix, and
V ∈ CM×M is a right singular matrix. The i-th diagonal
element of Γ is γi ∈ R. The beamformed effective channel
matrix of SVD-BF is given by

H ′ = ΓVH. (17)

Since U0 is a submatrix of a unitary matrix, U0 satisfies
criterion (i) as

UH
0 U0 = IM . (18)

From Eq. (18), we can obtain the following relationship:

HHH = (U0ΓVH)HU0ΓVH

= (ΓVH)HUH
0 U0ΓVH

= (ΓVH)HΓVH = H ′HH ′. (19)

Thus, criterion (ii) is satisfied as

tr(HHH) = tr(H ′HH ′). (20)

SVD-BF can be interpreted as the utilization of a part of a
unitary-transformed channel [U0 U1]

HH . The space of the
channel reduced by SVD-BF corresponds to

UH
1 H = O(N−M)×N . (21)
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This means no power is included in the reduced spaceUH
1 H ,

and all the power of the channel is concentrated in UH
0 H .

Therefore, using SVD-BF enables dimensionality reduction
without compromising the desired signal power by taking
advantage of a null space of the channels. Moreover, cri-
terion (iii) is satisfied because the elements of the effective
channel matrix of Eq. (17) are generated via spreading using
the unitary matrix.

As shown in Eq. (19), a transmitting Gram matrix of
the beamformed effective channel matrix H ′HH ′ does not
change from a transmittingGrammatrix of the original chan-
nel matrix HHH . On the other hand, a receiving Gram ma-
trix after receive BF changes to a diagonal matrix as follows:

H ′H ′H = ΓVH(ΓVH)H

= Γ2 =


γ2

1 0 . . . 0
0 γ2

2 . . . 0
...

...
. . .

...
0 0 . . . γ2

M


. (22)

The off-diagonal elements contribute to correlations between
different beamformed signals. FromEq. (22), we can say that
different beamformed signals are uncorrelated for SVD-BF.
This stochastic property helps improving the performance of
GaBP and T-GaBP by reducing correlations between beliefs.

4.2 Receive Beamforming Using QR Decomposition and
DFT Matrix (QR-DFT-BF)

The receive BF introduced by the authors of [11] and [12]
uses the submatrix of the unitary matrix created by QR de-
composition of the channel matrix as

WH = QH
0 , (23)

H =
[
Q0 Q1

] [
R

O(N−M)×M

]
, (24)

where [Q0 Q1] ∈ C
N×N is a unitary matrix, and R ∈ CM×M

is an upper triangular matrix. We refer to Eq. (23) as QR-BF.
The beamformed effective channel matrix of QR-BF is given
by

H ′ = R. (25)

Since Q0 ∈ C
N×M is a submatrix of a unitary matrix, Q0

satisfies criterion (i) as

QH
0 Q0 = IM . (26)

From Eq. (24), we can confirm that criterion (ii) is satisfied
as

tr
(
HHH

)
= tr

(
RHQH

0 Q0R
)

= tr
(
RHR

)
= tr

(
H ′HH ′

)
. (27)

However, criterion (iii) is not satisfied for QR-BF because
the effective channel matrix of QR-BF is an upper triangular

Fig. 4 Examples of effective channel matrix.

Table 2 Number of real multiplications of each processing.

Method Number of real multiplication

BF SVD-BF
32
3 TM3 + 8NM2

+ (20T + 6)M2 − ( 92T
3 + 2)M

QR-DFT-BF 6NM2 − 2NM + 4M2

MUD
T-GaBP without BF 4

( (√
Q + 18

)
K −
√
Q − 3

)
NM + 6M

T-GaBP with BF 4
( (√

Q + 18
)
K −
√
Q − 3

)
M2 + 6M

MMSE 4M3 + 8NM2 + 4NM

matrix, i.e., highly biased. Figure 4(a) shows an example of
the effective channel matrix of QR-BF, which is generated
using the clustered delay line (CDL) A model [23], where
the intensity of each element is depicted. This highly biased
structure severely degrades the SGA accuracy of inter-user
interference, resulting in ill-convergence behavior of GaBP
iterative detection.

To reduce the bias of the effective channel matrix, we
introduce spreading operations using the DFT matrix WDFT
to QR-BF as

WH = WH
DFTQ

H
0 , (28)

which is referred to as QR-DFT-BF. The effective channel
matrix for QR-DFT-BF is given by

H ′ = WDFTR, (29)

where the DFT matrix disperses non-zero elements over the
effective channel matrix of Eq. (29), as shown in Fig. 4(b),
to satisfy criterion (iii). Since the DFT matrix is a unitary
matrix, criteria (i) and (ii) are also satisfied. It is worth
mentioning that the spreading matrix does not necessarily
have to be a DFT matrix; thus, another unitary matrix can
be used in Eq. (28) as an alternative.

4.3 Comparison of Complexity to Generate BF Weight

Table 2 shows the number of real multiplications required
for SVD-BF, QR-DFT-BF, T-GaBP, and MMSE. The Jacobi
method is used for calculating SVD, whereas Gram-Schmidt
orthonormalization is used for QR decomposition. The T
is the number of iterations of the Jacobi method for SVD,
and is about 10 when M = 24. The dominant terms in each
method are the first and the second terms ( 32

3 T M3 + 8N M2)
in SVD-BF, the first term (6N M2) in QR-DFT-BF, the first
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and the second terms (4(
√

Q+18)KN M) in T-GaBP without
BF, the first and the second terms (4(

√
Q + 18)K M2) in T-

GaBPwith BF, and the first and second terms (4M3+8N M2)
in MMSE. For example, let us assume M , N , and T are 24,
64, and 10, respectively. In this case QR-DFT-BF requires
about 1/7 of multiplications than SVD-BF does, because QR
decomposition requires fewer real multiplications than SVD.

5. Numerical Results

Computer simulations were conducted to validate the perfor-
mance of the T-GaBPwith the proposed receive BFmethods.
Table 3 lists the simulation conditions. The transmission
scheme is OFDM, where each subcarrier is modulated by
Gray-coded 16QAM. LDPC [17] code, whose code rate is
about 2/3, is used as a FECcode. The center frequency, band-
width, and subcarrier spacing are set to 4GHz, 100MHz and
30 kHz, respectively. The number of subcarrier is 3276 that
consists of 273 resource blocks and 12 subcarriers per re-
source block. For the channelmodel, the CDL-Amodel [23],
which is a non-line-of-sight (NLOS) model, is used with
100-ns delay spread.

Figure 5 shows the configuration of a BS and UE de-
vices. The BS and UE devices have cross polarization an-
tennas. The BS has a uniform planar array pattern antenna
with four rows and eight columns, where each element has
a pair of polarization antennas. Thus, the total number at
the BS antennas is 64. The antenna spacing is set to a half
wavelength. The BS antenna is set at 10m high position
from UE’s height that is 1.5m. The UE devices have a pair
of polarization antennas. We assume 12UE devices, so the
total number of UE antennas is 24. The total number of
multiplexing is 24, where the number of the spatial multi-
plexing and that of the polarization-divisionmultiplexing are
12 and 2, respectively. The 12 UE devices are arranged in
a rectangle pattern which has three rows and four columns
with 20-m interval. The center of UEs is 50m away from
the BS. Although the distances between each UE and the BS
are different, we assume the average signal-to-noise power
ratios (SNRs) at the BS of different UE devices are the same
in uplink communication. This assumption is true when the
differences in the path loss due to the different distances from
the BS to each UE are compensated by uplink transmission
power control. Both the channel estimation using SRS and
that using DMRS are assumed to be ideal. Thus, perfect
channel knowledge is assumed on the BS side. Trainable
parameters in T-GaBP are optimized for each of the pro-
posed methods, the number of transmit and receive antenna
elements, and the number iterations of T-GaBP respectively.
The SNR of the training data is 15 dB. The initial values of
the trainable parameters of T-GaBP are set as follows:

µk = 2 ·
k
K

, (30)

ζn,k =

{
sigmoid(2) if k − n ≡ 0 (mod 4)
sigmoid(−2) otherwise

, (31)

Table 3 Simulation conditions.

Item Value

Transmission scheme OFDM
Center frequency 4GHz

Bandwidth 100MHz
Subcarrier spacing 30 kHz

Number of subcarriers 3276 (= 273 × 12)
Modulation scheme Gray-coded 16QAM

Forward error correction LDPC [17]
Coding rate 2/3

Number of antennas at the BS 64
Number of antennas mounted on one UE 2

Number of UEs 12
Number of multiplexing 24
Speed of user equipment Static

Channel model CDL-A (NLOS) [23]
Channel estimation Ideal
Optimizer of T-GaBP Adam [24]
SNR of training data 15 dB

Fig. 5 Configuration of BS and UE devices.

where n, k, and K are the index of the received signal, the
index of the iteration, and the number of iterations, respec-
tively.

5.1 BER Performance

Figure 6 shows the BER performance of different detectors
in (N,M) = (64,24) MIMO systems, where the number
of iterations of T-GaBP is 40. For comparison, curves of
a MMSE filter and T-GaBP without receive BF are also
drawn. MMSE is a typical linear filter and is considered a
baseline performance. The performance of T-GaBP without
BF has a high-level error floor at BER > 10−2 because of the
strong spatial correlation among receive antenna elements.
In contrast, T-GaBPwith QR-DFT-BF has a lower error floor
and exhibits better performance than MMSE when SNR ≤
16 dB. However, due to the error floor around BER of 10−3,
T-GaBP with QR-DFT-BF is worse than MMSE in the high
SNR region. When SNR > 12 dB, T-GaBP with SVD-BF
achieves the best performance where an error floor does not
appear, at least above BER of 10−5. The gain of T-GaBP
with SVD-BF from MMSE at BER of 10−3 is about 4 dB.
To confirm the necessity of criterion (iii), we also evaluated
T-GaBP with QR-BF. As expected, a high error floor above
BER of 10−1 is shown for T-GaBP with QR-BF because
QR-BF does not satisfy criterion (iii).

The reason for the improvement of BER performance
in T-GaBP with the receive BF is that it reduces correlations
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Fig. 6 Bit error rate performance of T-GaBP with BF, T-GaBP without
BF, and MMSE.

Fig. 7 Probabilitymass function of correlations between received signals.

between beamformed signals compared with those between
received signals before the receive BF. Figure 7 illustrates the
probability mass function of the correlation between two re-
ceived signals at high SNR, where the correlation coefficient
between the i-th beamformed signal and j-th beamformed
signal is calculated as

ρi j =
Ey′

{
y′i y
′∗
j

}
√
Ey′

{��y′i ��2} Ey′ {���y′j ���2}

≈

EH′

{(
H ′H ′H

)
i, j

}
√
EH′

{(
H ′H ′H

)
i,i

}
EH′

{(
H ′H ′H

)
j , j

} . (32)

(N0 � |(H
′x)i |

2 ,∀i)

Remarkably, some pairs of received signals before receive
BF are highly correlated with the correlation coefficient of
about 0.95. By contrast, the correlations after receive BF
are reduced to smaller than 0.5. More specifically, the
received signals beamformed using SVD-BF are uncorre-
lated, as shown in Eq. (22). Some pairs are correlated after
QR-DFT-BF with a larger value than SVD-BF, but they are

Fig. 8 BER v.s. the number of iterations in (N ,M) = (64, 24)MIMO at
SNR = 14 dB.

greatly reduced compared with the correlation, as in the case
without receive BF.

Figure 8 shows the BER versus the number of iterations
of T-GaBP with SVD-BF and QR-DFT-BF at SNR of 14 dB.
The BER performance of both the BF methods improves as
the number of iterations increases. However, each method
has different convergence properties. The BER of T-GaBP
with QR-DFT-BF converges when the number of iterations
is 64. The BER of T-GaBP with SVD-BF rapidly decreases
and reaches the bottom with 24 iterations. The reason that
T-GaBP with SVD-BF has rapid decrease of BER is due to
the no correlation of the beamformed received signals, which
makes it possible to generate high-precision beliefs at early
iterations. On the other hand, BER of T-GaBP with SVD-
BF gets worse when the number of iterations increases from
24. This is because the parameters of T-GaBP with SVD-
BF having a large number of iterations are not sufficiently
trained. As it corresponds to a deep neural network with
many layers, vanishing gradients in the neural network make
the training difficult. However, this problem was not ob-
served in T-GaBP with QR-DFT-BF. This difference comes
from the fact that the precision of beliefs of T-GaBP with
SVD-BF is higher than that of T-GaBP with QR-DFT-BF
because of lower BERs. In other words, signal replicas gen-
erated at Soft RG in T-GaBP with SVD-BF are almost hard
decisions, which result in risk causing vanishing gradients.
This training of the parameters of T-GaBP with SVD-BF for
a large number of iterations becomes our future work.

5.2 Comparison of Computational Complexity of MUD

Figure 9 shows the number of real multiplications for MUD
with receive BF in accordance with the number of receive
antennas. M , Q, andT are set to 24, 16, and 10, respectively.
K is set to 24 in T-GaBP with SVD-BF and is set to 64 in
T-GaBP with QR-DFT-BF based on Fig. 8. K in T-GaBP
without BF is assumed to be the same number of iterations
in T-GaBP with QR-DFT-BF, because T-GaBP without BF
cannot improve detection capability no matter how much the
number of iterations is increased. Therefore, no argument
for its convergence can be made. MMSE has the lowest
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Fig. 9 Number of real multiplications in M = 24.

complexity, which is less than 1/10 of the complexity of
T-GaBP (K=24) with SVD-BF, although signal detection
performance of MMSE is worse than T-GaBP with SVD-
BF, as shown in Fig. 6. The number of real multiplications
of T-GaBP without BF increases as the number of received
antennas increases. However, the increase in the complexity
of T-GaBP with BF is small even if the number of receive
antennas increases. The complexity of T-GaBP is much
larger than those of SVD-BF and QR-DFT-BF when the
number of iterations K is large. When the receive BF is not
applied, the complexity of T-GaBP depends on the number of
dimensions of receive antennas. In contrast, when the receive
BF is applied, the complexity of T-GaBP depends on the
number of dimensions of the beamformed signal that is equal
to the number of transmit antennas, and does not depend on
the number of receive antennas. As a result, the increase
in the complexity of T-GaBP with BF is small even if the
number of receive antennas increases. Regarding calculation
of the BFweight, SVD-BF requiresmore realmultiplications
than QR-DFT-BF does. However, the total number of real
multiplications of T-GaBP (K=24) with SVD-BF is almost
the same as that of T-GaBP (K=64) with QR-DFT-BF, since
T-GaBPwith SVD-BF requires fewer iterations than T-GaBP
with QR-DFT-BF as illustrated in Fig. 8.

6. Conclusion

We proposed two receive BF methods (SVD-BF and QR-
DFT-BF) for improving T-GaBP-based detection capability
for massive MU-MIMO. These BF methods were designed
considering three criteria suitable for GaBP and can reduce
correlations between two received signals. Numerical results
indicate that T-GaBP with the proposed methods is superior
to both MMSE and T-GaBP without receive BF because
of the reduced correlations. In particular, T-GaBP with
SVD-BF shows large improvements in the high SNR region,
where an error floor does not appear owing to uncorrelated
beamformed signals. In addition, generating the SVD-BF
requires more real multiplications than generating the QR-
DFT-BF does; however, since the T-GaBP with SVD-BF
can converge to the solution within fewer iterations than T-

GaBP with QR-DFT-BF, and therefore the total number of
real multiplications of T-GaBP with SVD-BF is almost the
same as that of T-GaBP with QR-DFT-BF. These methods
pave the way to reducing FH bandwidth and cost reductions
for BSs.
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