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SUMMARY Recently, there has been a surge of interest in Artificial
Intelligence (AI) and its applications have been considered in various fields.
Mobile networks are becoming an indispensable part of our society, and
are considered as one of the promising applications of AI. In the Beyond
5G/6G era, AI will continue to penetrate networks and AI will become
an integral part of mobile networks. This paper provides an overview
of the collaborations between networks and AI from two categories, “AI
for Network” and “Network for AI,” and predicts mobile networks in the
B5G/6G era. It is expected that the future mobile network will be an
integrated infrastructure, which will not only be a mere application of AI,
but also provide as the process infrastructure for AI applications. This
integration requires a driving application, and the network operation is
one of the leading candidates. Furthermore, the paper describes the latest
research and standardization trends in the autonomous networks, which aims
to fully automate network operation, as a future network operation concept
with AI, and discusses research issues in the future mobile networks.
key words: autonomous network, artificial intelligence, beyond 5G, 6G,
3GPP, O-RAN

1. Introduction

The mobile communication systems grow from a mere com-
munication infrastructure to a livelihood infrastructure and,
in the 5th generation mobile communication system (5G)
era, a social infrastructure [1]. For sustainable growth, the
research and development on beyond 5G (B5G) and the 6th
generation mobile communication system (6G) has already
begun [2]. The projections of lifestyle in the 2030s lead
to the B5G/6G requirements; the reliable communication
for mission-critical industrial and lifeline applications [3],
the 3D connectivity for drones and flying vehicles [4], the
sustainable transformation for impact society and enable en-
vironmental footprint reduction [5], and so on. Tomeet these
challenging requirements, while artificial intelligence (AI) is
expected as a key technology, its leverage in the networks is
identified as an issue to be considered.

AI has recently experienced a surge of interest, and
is permeating our lives in areas, such as healthcare, agri-
culture, finance, transportation, manufacturing, government
and public services. The cyber physical system (CPS), a
core component of technology concepts such as Industry
4.0 [6] and Society 5.0 [7], accumulates a huge amount of
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information in physical-space and analyzes this big data in
cyber-space to create new value. AI will become an essen-
tial component of social infrastructure, and the networks,
including B5G/6G networks, must natively support AI, such
as high-precision sensing to understand the physical world,
transmission of massive big data for training, and optimal
distributed computing in networks. In other words, network
should be the most efficient platform for AI, driving the evo-
lution from centralized intelligence in the cloud to ubiquitous
intelligence at the edge.

Meanwhile, networks become more complex to design,
build, optimize, and manage, and it is difficult to do them
manually. AI is expected to solve these problems. TM Fo-
rum reported that communication service providers would
like to introduce new services that require faster and more
complex responses from operations than manual processes
can provide [8]. ITU-T mentioned that it would be difficult
for humans to process it quickly and make a timely deci-
sion in controlling networks, and specified the architectural
framework with the use of AI [9]. AI is being studied and
developed as an aid to both resource and fault management
in networks, and will be an essential technology for network
control in B5G/6G era.

As mentioned above, collaborations between networks
and AI can be broadly classified into two categories: net-
work topology, functionality, and extension for AI-enabled
applications, and the use of AI for network analysis, control,
and management [10]. The former is referred to as Network
for AI and the latter as AI for Network. These collaborations
will not proceed independently, but simultaneously, and it is
predicts that AI and networks will eventually be integrated
to provide a new integrated infrastructure in the B5G/6G era.
Currently standardized AI functionalities in the network cite
both user applications and network operations as the use case
scenario, and the integration is promised as a future vision.
It is natural to integrate two key technology of the social
infrastructure, but there is still room for study to make it
practical and better. This paper presents recent researches
including our activities on the both type collaborations, and
discuss challenges for the future networks in the B5G/6G
era.

This paper is organized as follows. Section 2 reviews
the related works with AI and network collaboration and
forecasts the integrated network infrastructure. Section 3
describes autonomous networks as an example of an appli-
cation that drives this integration and introduces our studies.
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In Sect. 4, the standardization trends related with AI func-
tionality in networks, and Sect. 5 concludes this paper.

2. Network and AI Collaboration

AI is a research area that has received particular attention
in recent years, and as shown in Table 1, many studies have
been given to collaboration and cooperation with networks.
These studies can be broadly categorized as Network for
AI, which uses the network as the basis for AI, and AI for
Network, which usesAI to enhance the network. This section
provides an overview of existingworks in each of these areas.

2.1 Network for AI

There is a great deal of interest in using AI to support a range
of applications. However, performing AI is challenging be-
cause it requires an efficient learning model, a sufficient
amount of data, powerful computing environments, and AI
expertise [19]. AI as a Service (AIaaS) is increasingly be-
ing offered by cloud providers to provide the AI building
blocks to support customer applications. These services are
intended to be provided on Software Defined Infrastructure
(SDI), and it is natural to provide AIaaS on B5G/6G net-
work, as the softwareization and virtualization is a basic
trend of network architecture [20]. Multi-access Edge Com-
puting (MEC) is used to offload computing resources and
efficiently transport large amounts of data [11]. Processing
AI models at the edge, closer to their target, is more effective
when combined with fine tuning and transfer learning, which
are techniques for adapting AI models to the local environ-
ment. Federated learning is a framework for training a deep
learning model from decentralized data, and be used inMEC
to ensure privacy and security of personal information [21].

Joint Sensing andCommunication is technology that in-
tegrates sensing and communication using radio waves [22].
It explores radio wave transmission, reflection, and scatter-

ing in order to retrieve of interest in the environment sur-
rounding the radio transceivers. These analyses of radio
wave are complex and AI-assisted sensing is expected using
in-network computing [10].

2.2 AI for Network

It has become difficult to rely solely on the experience and
work of operators as networks are used for various applica-
tions and permeate society, making them larger and more
complex. The study of AI for network design, construction,
operation, and management is actively discussed.

AI has shown superior performance to traditional com-
munication theory approaches at the physical layer of wire-
less communications, and several optimization problems are
being considered for application, including non-orthogonal
multiple access [13], spectrum sharing [14], and cognitive
radios [23]. Since B5G/6G is proposed to use more fre-
quency bands and a large number of base stations, such as
massive MIMO, AI optimization of these difficult problem
is expected to be used.

As networks become a critical part of social infrastruc-
ture, network security is becoming a critical component of
maintaining network reliability and resilience. AI is used to
identify, mitigate, prevent attacks against networks, e.g., Dis-
tributed Denial of Service (DDoS) [15] and malware [24].
The security demand is expected to grow, so the use of AI
will become more widespread.

IT systems, including networks, are becoming larger
and more complex, making it more difficult for human be-
ings to operate them to perfection. Artificial Intelligence for
IT Operations (AIOps) has been proposed to address modern
IT management challenges thanks to AI and big data [25].
AIOps is broadly categorized into the failure management,
which includes a failure prevention, a failure detection, a
root cause analysis, and so on, and the resource provision-
ing, which includes a resource consolidation, a scheduling, a

Table 1 Studies of network-assisted AI applications and AI-enabled network applications.
Application Description Ref.

Network for AI
Vehicles Reduce the latency of transferring collected big data through edge computing to provide real-time services

to the vehicle.
[11]

Distributed AI TrainingAImodels on compute nodes distributed across the network for load balancing and cost reduction. [12]
Sensing Reduce the Integrated sensing and communication to leverage the large-scale cooperation between widely

deployed base stations and user devices for improved sensing performance.
[10]

AI for Network
Intelligent radio control Improvement of delay and reliability in radio access network by constellation shaping and interference

cancellation.
[13]

Spectrum sharing Avoiding collision of shared spectrum usage among different operators with a limited amount of informa-
tion exchanged.

[14]

Network security Applying artificial intelligence and statistical techniques in the defense methods has been conducted in
order to identify, mitigate, and prevent Distributed Denial of Service (DDoS) attacks.

[15]

Fault recovery and analysis Those networks capable of troubleshooting in an automatic way, making the network more reliable and
reducing costs.

[16]

Network operation and maintenance A low-cost environment that can produce the same data as the actual production environment and use
tools such as chaos engineering to generate training models for fault data for network operations and
maintenance.

[17]

Data center Post-mortem diagnosis and proactive prediction of switch failures in a data center network based on syslog
messages.

[18]
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workload estimation, and so on, each of which is the subject
of much research and development. For network operations,
AIOps is considered for application to various networks, in-
cluding mobile networks and data center networks, and the
autonomous network that aims to fully automate operations
has also been proposed as an all-encompassing concept. For
network operations, AIOps is considered for application to
a variety of networks, including mobile and data center net-
works [16]–[18].

2.3 Integration of AI and Network

As mentioned above, much research has been done on the
collaboration of networks and AI, and it is expected that
the collaboration will be realize in the B5G/6G mobile net-
work on the two aspects, i.e., “Network for AI” and “AI
for Network.” These two aspects are not independent at
all, but have the same requirement that the computing re-
source for processing AI is contained within networks. This
means that B5G/6Gmobile networkswill evolve from a com-
munications infrastructure to a cloud-like infrastructure that
provides communications, computing and storage resources.
While the current 5G mobile networks also provide comput-
ing resources on MECs, with the advancement of network
virtualization, these resource infrastructures will be more
tightly integrated.

Since network operation is a critical task for commu-
nication service providers and is necessary for the deploy-
ment of entire networks, it also seems to be a good appli-
cation to drive the integration of AI and network infras-
tructure. Recently, the autonomous network, which aims to
fully automate network operation, has been proposed as a
future overarching concept. The next section will describe
the autonomous network in detail as an example of the AI-
empowered application in the B5G/6G era.

3. Autonomous Network

3.1 General Concept of Autonomous Network

The fundamental role of the network is to provide connec-
tivity for communication services and applications. Further-
more, to achieve high quality of service, the network must
meet the quality requirements of the services and applica-
tions. In traditional network operations, human operators
have played this role. Operators install the network equip-
ments, such asWDM systems and IP routers, that constitutes
the network, configure them appropriately, and replace them
in the event of failures. These critical tasks enable the net-
work to meet these quality requirements around the clock,
twenty-four hours a day, seven days a week.

In recent years, there has been a lot of standardiza-
tion, research and development activities [26]–[29] on Au-
tonomous Networks, where the network autonomously per-
forms these tasks traditionally performed by human oper-
ators. As showen in Fig. 1, in the autonomous network,

Fig. 1 General concept of autonomous network.

the network’s configuration and control are managed au-
tonomously based on Intent information, which represents
the requirements of services and applications for the network.

Intent is more abstract information than policy, rules,
and logic regarding the network and represents an intention
and expectation of the network’s user [30], [31]. In the ex-
ample in Fig. 1, the operational system, which consists of the
business support system and the operation support system,
receives an Intent from a user who wants to launch a 4K
streaming service in Tokyo, translates it into an actual net-
work control policy, and requests it to each network domain.
In some cases, Intent may also be sent directly to a domain
controller that controls each network domain without being
translated into a policy in the operational system. Since the
domain controller has a more detailed understanding of the
operational data of each network domain, a more detailed
and accurate policy translation can be expected. Each do-
main controller implements control of the relevant network
to ensure the quality specified in the policy.

In this manner, the autonomous network models the
tasks previously performed by humans and aims to build,
operate, and manage networks autonomously.

3.2 AIOps for Autonomous Network

The realization of autonomous networks requires AIOps for
several tasks [25], [28]. As described in the above section,
in an autonomous network, it is necessary to translate ab-
stract Intent received from users, e.g., “I want to launch a
4K streaming service in Tokyo”, into concrete policies and
rules, e.g., “Creating MPLS-TE paths with 30Mbps trans-
fer capability”. Intent allows different users to author the
network services in a form that a particular constituency of
users understands, without having to use a language that they
do not normally use, such as a programming language [32].
However, user Intent varies widely, making fixed, traditional
rule-based translation difficult. The remarkable advances in
the natural language processing AI model are establishing to
extract Intent from natural language and conversation [33].
The interaction between a user and AI are useful not only for
understanding the user’s needs, but also for negotiating with
the user, for example negotiatingwhen network resources are
insufficient. As described in Sect. 2.2, AIOps is expected to
be applied to critical elements of network operations such as
resource provisioning and failure management [25]. There-
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fore, with AIOps and Intent, new networks can be created,
and network failures can be handled automatically without
human operators, which realizes autonomous networks.

Networkmanagement is another taskwhereAIOps need
to be applied. Each domain controller manages the network
to meet the key performance indicators (KPIs) or the key
quality indicators (KQIs) specified in the policy. KPIs in-
clude the available bandwidth, packet loss rate, latency, de-
vice availability, and so on, andwhen the network falls below
the KPIs, which is defined as a “network failure”, the domain
controller will take appropriate action. Fault recovery must
be carefully considered for both humans and AI, as incorrect
actions may exacerbate the network failure. Closed loops
consisting of observation, analysis and control help to vali-
date recovery workflows, i.e., monitoring KPI/KQI changes
due to the recovery actions, not only in thewhole network but
also in the each domain, can quickly detect incorrect actions
and prevent them from becoming critical failures. Network
virtualization or softwareization, which is a essential trend
of modern and future network, is also useful for realizing the
autonomous network, enabling software-based actions such
as rebooting the failed device and building new instances of
network equipment. This feature not only simplifies recov-
ery actions, but also makes it possible to revert to the state
before the action was applied.

3.3 Network Failure Management by AIOps

Within the expected areas of AIOps, we have proposed an
integrated framework, illustrated in Fig. 2, for network fail-
ure management, including anomaly detection [34] and fault
recovery functions [35]. The framework has two phases:
the AI model training phase for AIOps and the AI model
inference phase from actual operational data.

Firstly, in the AI model training phase, AI models are
trained from operational data, such as CPU utilization rate
and trouble tickets, obtained in the target network. Since net-
work failures are infrequent events in production networks,
sufficient operational data for AI models may not be ob-
tained. Therefore, to train precise AI models, a test network
simulating the production network can be created, and oper-
ational data obtained from pseudo network failure generated

Fig. 2 AIOps framework for network failure management.

in the test network can be utilized as input data for the AI
model.

Secondly, in the AI model inference phase, the trained
AI model detects a root cause of network failure from the
latest operational dataset and suggests an optimal recovery
workflow from the network failure, with anomaly detection
and fault recovery function. The fault analysis function de-
tects network failures and determines their root causes.

Within this framework, we have evaluated a compara-
tive experiment that involved measuring the performance of
the fault analysis function using three AI algorithms, multi-
layer perceptron (MLP), random forest (RF), and support
vector machine (SVM), on the testbed network built by the
virtualized network functions (VNFs) [34]. RF showed the
highest accuracy, and F1 scores for three network failures:
compute node down, network interface down and CPU over-
load were 1.00, 0.96, and 0.95, respectively. This difference
in accuracy by AI algorithms is likely due to the dataset gen-
erated from the performance management (PM) data, and
the increase in training data, feature reduction, or balance
adjustment of normal/abnormal samples effected the accu-
racy.

Furthermore, we have proposed a scheme for fault re-
covery using reinforcement learning (RL) [35]. The scheme
can adapt to changes in network topology and configuration,
and has a data representation procedure to prepare a data
set for RL, which is formed as a matrix of network topol-
ogy and fault state. The simulation results showed that it
requires a tremendous amount of failure injection and recov-
ery operation trials to prepare enough training data. The test
network simulating the production network has a potential to
shorten the time for trials in the training process, but it was
clear that showed that the behavior between the test network
and the production network infrastructures should be 87%
coincident for application to the proposed scheme.

While AI is expected to be utilized in various tasks of
network operation in the autonomous network, there is still
room for research on AI algorithms and schemes for each
task.

4. Specifications of AI Functionality in Network

AI promises to assist network operations, and frameworks for
AI-empowered network operations have been standardized.
This section introduces standardizations ofAI functionalities
in the 3GPP [36] and the O-RAN Alliance [37] for mobile
core network and radio area network (RAN), respectively.

4.1 Network Data Analytics Function

The most recognized AI functionality in networks is the
network data analytics function (NWDAF) in mobile core
networks. The NWDAF refers to a network function spec-
ified in Clause 6.2.18 of 3GPP TS 23.501 as a part of the
architecture for the 5G system, which includes one or more
of the following functionalities [38].

• Support data collection from network functions (NFs)



TAGAMI et al.: INTEGRATION OF NETWORK AND ARTIFICIAL INTELLIGENCE TOWARD THE BEYOND 5G/6G NETWORKS
1271

Fig. 3 Generic information flow of NWDAF.

and application functions (AFs)
• Support data collection from operations, administration
and management (OAM)

• NWDAF service registration and metadata exposure to
NFs and AFs

• Support analytics information provisioning to NFs and
AFs

• Support machine learning model training and provi-
sioning to NWDAFs (containing analytics logical func-
tion)

The detailed specifications of NWDAF are defined in
3GPP TS 23.288 [39]. The main objective of NWDAF is to
optimize the network configuration based on analytics. The
generic information flow is extracted as depicted in Fig. 1,
which is commonly applied to all analytics defined in the
specification. The information flow involves three functional
blocks, i.e., NWDAF, consumer NF, and data source NF,
and consists of the following steps. Any NFs in the mobile
network possibly be the consumer NF, and any AFs can also
be the consumer regardless of their trust.

1. Consumer NF sends a request for analytics (or for a sub-
scription to the analytics in the case of subscribe/notify
model).

2. NWDAF discovers or selects the appropriate data
source NF(s) based on the request by asking network
repository function (NRF).

3. NWDAF sends a request for data (or for a subscription
to the data).

4. Data source NF(s) responds with the requested data or
notify of the requested data. Note that how data source
NF(s) observes or collects data is out of the scope of
the specification.

5. NWDAF responds with analytics (or notify of analyt-
ics).

6. Consumer NF optimizes the network configuration
based on the analytics. Note that how the consumer
NF optimizes the network configuration is out of the
scope of the specification.

For the moment of the beginning of Release 18, 14 an-
alytics, such as “Slice load level related network data ana-
lytics”, “Observed Service Experience related network data
analytics”, and so on, have been specified so far. The up-

Fig. 4 O-RAN architecture overview.

coming versions may introduce further analytics. Most of
the analytics support the prediction as well as the analysis
of past data. AI is especially expected to facilitate fast and
accurate prediction.

As for the latest update in Release 17, mobility of the
analytics, that means transfer of analytics context from one
NWDAF to another NWDAF, and aggregation of multiple
analytics are newly supported. Additionally, to enhance AI-
friendly architecture, NWDAF has been logically split into
two logical functions, i.e., Analytics logical function (AnLF)
and Model training logical function (MTLF) are also newly
introduced. AnLF is in charge of providing analytics services
to consumers, and MTLF is in charge of training machine
learning models and delivering models to AnLF. This log-
ical split has evolved into a mechanism that facilitates the
operation and execution of various AI algorithms including
federated learning. As an extension of the enhancement
of Release 17, AI functionality in the mobile network will
be further advanced in the upcoming Release 18 and later
versions.

4.2 Non-Realtime RAN Intelligent Controller

Figure 4 shows an overview of the O-RAN architecture [40].
The O-RAN Alliance describes a non real time RAN intelli-
gent controller (Non-RTRIC) as a functionality of the service
management and orchestration (SMO) to realize intelligent
RAN optimization. The main task of Non-RT RIC is ser-
vice and policy management, such as providing policy-based
guidance, AI model management, and enrichment informa-
tion to the near real time (Near-RT) RIC functions. The
Non-RT RIC also intelligently manages radio resources in a
non-real time of greater than 1 second, as it is named, while
a Near-RT RIC works in real-time. Non-RT RIC creates
policies that specify quality of service (QoS) and quality
of experience (QoE) targets or KPI/KQI targets, such as
guaranteed flow bit rate, priority level, mean opinion score
(MOS) value, or throughput and latency for specific user
equipments (UEs), slices, QoS flows, and cells and transfer
them to Near-RT RIC over the A1 interface. The RIC can
determine the RAN optimization actions and configuration
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by AI/ML training and data analytics, where the data, such
as radio resource allocation parameters and UE performance
report, are collected from RAN by the SMO over the O1
interface. O-RAN Alliance also discusses a use case of au-
tomation in which AI predicts traffic demand using such a
framework, and RIC re-allocates network resources before
congestion occur.

4.3 Network Functionality Exposure

The main object of these standardized functionalities de-
scribed in the above sections is the intelligent network op-
timization and only partial optimization is showed as a use
case. TM Forum defines six levels of autonomous networks,
and shows advanced or fully autonomous networks beyond
partial optimization [26]. In the B5G/6G networks, the net-
work operators will have the huge turning point to AI-driven
network operations, i.e., the operators does not maintain the
network, but maintain the AI models for the network man-
agement.

At the same time, the idea of exposing access to network
functions as application programmable interfaces (APIs),
and leveraging them inside and outside organizations to ex-
pand the ecosystem, is also gaining traction as the “API
economy”. The network exposure function (NEF) in the
mobile core network exposure NF capabilities and events for
3rd party, application functions, edge computing, and so on.
CAMARA is a open source project to define, develop and
test the APIs to access telco networks [41]. The activities
facilitate application-to-network integration, and may also
realize the integration of networks and AI when AI becomes
part of the functions in B5G/6G networks.

5. Conclusion

Mobile networks have evolved from mere communication
infrastructure to the foundation of our lives and social activ-
ities, and their affinity with various applications will solidify
their position in the B5G/6G era. AI is another technology
that can be applied to various applications and is expected to
make significant progress in the future. The fusion of these
two foundations is a natural progression and is expected to
progress further in the future.

This paper introduced these efforts from both “Network
for AI” and “AI for Network” perspectives, and mentioned
the autonomous network as a comprehensive concept of “AI
for Network.” Since 3GPP and the O-RAN Alliance stan-
dardize network frameworks and functions for AI-enabled
network operation, i.e. Network for “AI forNetwork”, AIOps
will become a key technology for network operation in the
B5G/6G era.

However, there is still room for research and develop-
ment to achieve the high accuracy required by commercial
networks. Networks change on a daily basis, and there are
issues such as how to keep up with these changes and how to
build an AI model to operate a new network offering a new
service. In addition, the autonomous network may change

the role of operators; instead of operators directly operating
the network, they will operate AI models that operate the
network. The skills required at that time may be higher than
today. The use of AI is an inevitable and essential matter in
the future, and these issues need to be carefully addressed.

We believe that this paper will help researchers in net-
working and AI to understand the current status and chal-
lenges and contribute to the creation of new technologies in
the future.
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