
126
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

INVITED PAPER
Introduction to Compressed Sensing with Python

Masaaki NAGAHARA†a), Member

SUMMARY Compressed sensing is a rapidly growing research field
in signal and image processing, machine learning, statistics, and systems
control. In this survey paper, we provide a review of the theoretical foun-
dations of compressed sensing and present state-of-the-art algorithms for
solving the corresponding optimization problems. Additionally, we discuss
several practical applications of compressed sensing, such as group testing,
sparse system identification, and sparse feedback gain design, and demon-
strate their effectiveness through Python programs. This survey paper aims
to contribute to the advancement of compressed sensing research and its
practical applications in various scientific disciplines.
key words: compressed sensing, sparse representation, convex optimiza-
tion, group testing, system identification, feedback control, Python

1. Introduction

Compressed sensing is a mathematical framework for re-
constructing sparse signals from a limited number of mea-
surements [1], [2]. Namely, compressed sensing attempts
to find the sparsest vector among vectors satisfying under-
determined linear equations. This formulation appears in
many scientific and technological problems inmany research
fields such as machine learning, signal/image processing,
and statistics. One example is audio signal reconstruction.
Audio signals have frequency components only in the low
frequencies, and hence they can be treated as sparse signals
in the frequency domain. In particular, the human voice can
be assumed to be in the frequency range of the so-called
telephone bandwidth of 30Hz–3400Hz, by which the hu-
man voice can be coded at the sampling rate 8000Hz [3].
Also, a pulse signal, which is active (i.e., non-zero) only in a
short duration of time, can be considered as a sparse signal
in the time domain. This property is effectively used for
the seismic reflection survey in geophysics [4]–[6]. Other
practical examples of compressed sensing can be found in
many fields such as image processing [7], medical imaging
[8], and signal processing [7].

This is formulated as amathematical optimization prob-
lem to find a minimum `0-norm vector among the feasible
solutions. Since this problem is NP-hard [9], many heuris-
tic methods have been proposed. An effective method to
solve the compressed sensing problem is to approximate the

Manuscript received April 30, 2023.
Manuscript revised June 5, 2023.
Manuscript publicized August 15, 2023.
†The author is with the Graduate School of Advanced Science

and Engineering, Hiroshima University, Higashi-Hiroshima-shi,
739-8521 Japan.

a) E-mail: nagahara@ieee.org
DOI: 10.1587/transcom.2023EBI0002

`0 norm by the `1 norm, which makes the problem convex.
Then we can easily solve the `1 optimization with linear or
convex constraints by using numerical optimization software
such as CVX [10] onMATLAB andCVXPY [11] on Python.

More recently, the compressed sensing approach has
been extended to optimal control. In particular, the papers
of [12], [13] have introduced a new type of optimal con-
trol called themaximum hands-off control, which minimizes
the L0 norm, the Lebesgue measure (i.e., the length) of the
support, of a continuous-time control signal, under a con-
trol objective with control constraints. Namely, maximum
hands-off control has the minimum length of time duration
on which the control is active (i.e., non-zero) among all fea-
sible controls. We note that maximum hands-off control has
a long period over which the control is exactly zero, which is
used in practical control systems, sometimes called gliding
or coasting. An example of hands-off control is a stop-start
system in automobiles where the engine is automatically shut
down when the car is stationary [14], [15]. Another example
can be found in a hybrid vehicle, where the internal com-
bustion engine is stopped when the vehicle is at a stop or a
low speed while the electric motor is alternatively used [16]–
[18]. These systems can effectively reduce fuel consumption
and CO or CO2 emissions. Railway vehicles [19], [20] and
free-flying robots [21] take advantage of hands-off control
as well. By these properties, hands-off control is sometimes
called green control [22].

Mathematical properties ofmaximumhands-off control
have also been explored recently [23]. Maximum hands-off
control is mathematically described as an L0 optimal con-
trol, which is very hard to solve. Borrowing the idea of
the `1-norm heuristic in compressed sensing, L1 optimal
control has been proposed in [13] to solve the L0 optimal
control. The L1 optimal control, also known as the min-
imum fuel control, has been extensively studied since the
1960s (see, e.g., [24]), and the problem is easily solved.
In [13], the equivalence between L0 and L1 optimal con-
trols is established under some mild assumptions. Funda-
mental properties of maximum hands-off control, such as
the value function [25] and necessary conditions [26], have
been investigated. The maximum hands-off control has also
been extended to time-optimal control [27], control in the
presence of denial-of-service attacks [28], distributed con-
trol [29], [30], continuous control [31], infinite-dimensional
systems [32], optimal multiplexing [33], stochastic control
[34], [35], minimum attention control [36], and time-space
sparse control [37], [38]. Efficient numerical algorithms for

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

NAGAHARA: COMPRESSED SENSING
127

maximum hands-off control have been proposed in recent
papers of [39]–[41]. Discrete-time hands-off control is also
essential in digital control systems, on which a recent line of
research has focused [42]–[45]. Finally, practical applica-
tions of maximum hands-off control have been reported for
electrically tunable lens [46], spacecraft maneuvering [47],
thermally activated building systems [48], and quadrotor
groups [49].

The organization of this paper is as follows: Section 2
gives mathematical formulations of compressed sensing.
Section 3 shows the core idea of compressed sensing to
solve the optimization problem as an `1 optimization prob-
lem. Section 4 discusses the problem of group testing as a
compressed sensing problem. Section 5 introduces an appli-
cation of compressed sensing to dynamical system identifi-
cation. Section 6 shows sparse feedback gain design using
the concept of compressed sensing. Finally, Sect. 7 makes
the conclusion.

Notation

Let x be a vector. The `p norm ‖x‖p with p ∈ (0,∞) is
defined by

‖x‖p ,
(∑

i

|xi |p
)1/p

, (1)

where xi is the i-th element of x. In particular, the `1 norm
and the `2 norm are important in this article:

‖x‖1 ,
∑
i

|xi |, ‖x‖2 ,
√∑

i

|xi |2 =
√
〈x, x〉, (2)

where 〈·, ·〉 denotes the inner product. For p = 0, the `0 norm
is defined by

‖x‖0 , #
(
supp(x)

)
, (3)

where supp(x) is the support set of x, that is,

supp(x) ,
{
i : xi , 0

}
, (4)

and #
(
supp(x)

)
is the number of elements in the finite set

supp(x).
Let A be a matrix. The transpose of A is denoted by

A>, and the rank by rank(A). The i-th largest singular value
of A is denoted by σi(A), and the maximum singular value
by σmax(A). The mutual coherence of A is denoted by µ(A).

For a closed subset C of a normed space S with norm
‖ · ‖, the projection of x ∈ S onto C is denoted by ΠC(x),
that is,

ΠC(x) ∈ arg min
z∈C

‖z − x‖. (5)

For a real number x, sign(x) is the sign of x, namely,

sign(x) ,


1, if x > 0,
−1, if x < 0,
0, otherwise.

(6)

Python codes

The Python codes in this survey paper can be downloaded
from the following web page:

github.com/nagahara-masaaki/IEICECS2023

2. Mathematical Formulation of Compressed Sensing

In this section, we briefly review the basics of compressed
sensing.

2.1 The `0 Norm

First, we consider the `0 norm of a vector in a finite-
dimensional vector space, which plays an important role
in compressed sensing. The `0 norm ‖x‖0 of x =
[x1, . . . , xn]> ∈ Rn is defined in (3), and it counts the number
of nonzero elements in x. We should note that ‖x‖0 is actu-
ally not a proper norm since it does not necessarily satisfy
the positive homogeneity property. For example, a vector
x ∈ Rn has the same `0 norm as 2x, and hence

‖2x‖0 = ‖x‖0 , 2‖x‖0, (7)

whenever x , 0. We say x ∈ Rn is sparse if ‖x‖0 � n.
Also, if a vector x ∈ Rn satisfies ‖x‖0 ≤ s with s ∈ N, then
it is called s-sparse, and we denote the set of all s-sparse
vectors in Rn by Σ̃s . Namely,

Σ̃s ,
{

x ∈ Rn : ‖x‖0 ≤ s
}
. (8)

2.2 Signal Reconstruction Problem

In compressed sensing, we consider the system of linear
equations

Ax = b, (9)

where A ∈ Rm×n and b ∈ Rm are given. We call A the mea-
surement matrix, and b the observation vector. In particular,
we assumem < n and rank(A) = m (i.e., A has full row rank).
That is, we consider a signal reconstruction problem where
the number m of the observations in b is less than the length
n of the unknown vector x. In this case, there are infinitely
many solutions for (9), and we need to uniquely identify x
with some additional information. In compressed sensing,
we assume that x is known to be sparse (i.e., ‖x‖0 � n
holds), and solve the following optimization problem:

minimize
x

‖x‖0 subject to Ax = b. (10)

We call this the `0 optimization.
We first discuss the uniqueness of the solution of (10).

For this, we introduce themutual coherence of a matrix. For
a matrix A = [a1,a2, . . . ,an] ∈ Rm×n with column vectors
ai ∈ Rm, i = 1,2, . . . ,n, themutual coherence µ(A) is defined

128
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

by

µ(A) , max
i, j=1,...,n

i,j

|〈ai,aj〉|

‖ai ‖2‖aj ‖2
, (11)

where 〈ai,aj〉 is the inner product of ai and aj , that is,
〈ai,aj〉 = a>i aj and ‖ai ‖2 =

√
〈ai,ai〉. Then, we have the

following uniqueness theorem [50], [51]:

Theorem 1: If the linear Eq. (9) has a solution x satisfying

‖x‖0 <
1
2

(
1 +

1
µ(A)

)
, (12)

then x is the unique solution of (10). �

It is easily checked whether a given solution x of (9) satisfies
(12) or not. However, to seek a solution x that satisfies (12)
is very hard, and actually it is NP hard [9]. Hence, for large-
scale problems, we need to employ a heuristic method to
efficiently solve the `0 optimization (10).

3. The `1-Norm Heuristic

A widely used method is to adopt the `1 norm

‖x‖1 ,
n∑
i=1
|xi |, (13)

as a surrogate of the `0 norm. Namely, we solve the following
optimization problem instead:

minimize
x

‖x‖1 subject to Ax = b. (14)

This is a convex optimization problem, and efficiently solved
by, e.g., CVX [10] on MATLAB and CVXPY [11] on
Python.

We then discuss the relation between the `0 optimiza-
tion (10) and the `1 optimization (14). For this, we define
the restricted isometry property (RIP) [1, Section 1.4.2] of
matrix A:

Definition 1: A matrix A is said to satisfy the restricted
isometry property of order s ∈ N if there exists δs ∈ (0,1)
such that

(1 − δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖
2
2, (15)

holds for any x ∈ Σ̃s , the set of s-sparse vectors defined in
(8).

Then, we have the following theorem [1, Section 1.5.1]:

Theorem 2: Suppose that matrix A satisfies the RIP of or-
der 2s with δ2s <

√
2 − 1. Suppose also that there exists

x∗ ∈ Σ̃s that satisfies Ax∗ = b. Then, the solution x̂ of the
`1 optimization (14) is equivalent to x∗.

We should note that to check if the condition in Theorem 2
is satisfied or not is known to be NP hard [52]. Hence, in
practical applications, we usually do not check the condition

using the RIP before we just solve the `1 optimization (14).
In the noisy case, where the observation vector b suf-

fers from noise, the reconstruction problem is formulated as
regularization:

minimize
x

‖Ax − b‖22 + λ‖x‖0, (16)

where λ > 0 is the regularization parameter that should
be chosen appropriately. The optimization problem (16) is
called the `0 regularization. This problem is also hard to
solve, and is relaxed to the following convex optimization
problem using the `1 heuristic approach:

minimize
x

‖Ax − b‖22 + λ‖x‖1. (17)

This is called the `1 regularization, or LASSO (least absolute
shrinkage and selection operator).

3.1 Numerical Optimization with CVXPY

The optimization problems with the `1 norm are convex
optimization and we can solve them easily using efficient
programming packages. In particular, CVXPY [11] in Python
is suitable. CVXPY is a Python-embeddedmodeling language
for convex optimization problems. It provides a simple and
intuitive syntax for formulating and solving convex optimiza-
tion problems including linear programming, quadratic pro-
gramming, second-order cone programming, semi-definite
programming, and many others. We here use CVXPY to solve
the `1 optimization problem (14) with specific measurement
matrix A and observation vector b.

To use CVXPY we need to install the package. This is
done for example by

!pip install cvxpy

Then, we define the measurement matrix A in (14) as a
random matrix. The Python code is given as follows:

import packages
import numpy as np
import cvxpy as cp
random seed
np.random.seed(1)
Problem size
n = 1000
m = 100
random measurement matrix
A = np.random.randn(m, n)

We first import two packages of numpy and cvxpy. The
package numpy is for numerical computation with vectors
and matrices. The third command np.random.seed(1)
sets the seed of the random number generator. Then, we
set n = 1000 and m = 100, and obtain a random matrix
A ∈ R100×1000 whose elements are drawn from the normal
distribution with mean 0 and variance one.

We then set the original vector xorig to be estimated. We

NAGAHARA: COMPRESSED SENSING
129

assume xorig ∈ R
1000 is a 10-sparse vector (i.e., ‖xorig‖0 =

10) whose nonzero elements are 1. This is done by the
following Python code:

sparse vector (n-dimensional , s-
sparse)

s = 10
x_orig = np.zeros(n)
S = np.random.randint(n,size=s)
x_orig[S] = 1

Using A and xorig above, we compute the observation vector
b ∈ R100 as:

observation vector
b = A @ x_orig

Now, we solve the optimization problem (14) by CVXPY.
The Python code is given as follows:

optimization by cvxpy
x = cp.Variable(n)
objective = cp.Minimize(cp.norm(x, 1)
)

constraints = [A @ x == b]
prob = cp.Problem(objective ,

constraints)
result = prob.solve()

The first command defines the n-dimensional op-
timization variable x by cp.Variable(n). The
second command defines the cost function ‖x‖1
by cp.Minimize(cp.norm(x,1)) where cp.norm(x,1)
means the `1 norm of x. The third command defines the
equality constraint Ax = b, where A @ x is the multipli-
cation Ax. The fourth command defines the optimization
problem with the cost function and the constraint. Finally,
the fifth command solves the optimization problem.

To see the result, we show the original vector xorig and
the reconstructed vector x in Fig. 1. The figure is obtained
by the following Python code:

reconstructed vector

Fig. 1 The original vector (left) and the reconstructed vector (right).

fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
ax1.stem(x_orig)
ax2 = fig.add_subplot(1, 2, 2)
ax2.stem(x.value)

We can see the reconstruction is almost exact. In fact, the
reconstruction error ‖xorig−x‖2 is computed as 3.305×10−10

by the Python code:

error = np.linalg.norm(x_orig-x.value)

3.2 Fast Algorithms

The Python package CVXPY is very useful for numerical op-
timization. However, for very large-scale problems or real-
time applications like feedback control, more fast algorithms
that can be easily and compactly implemented are preferable.
Here we show fast algorithms to numerically solve convex
optimization problems (14) and (17). First, we define an im-
portant function called the soft-thresholding function. Let
v = [v1, . . . , vn]

> ∈ Rn. Then the soft-thresholding function
Sγ : Rn → Rn with positive parameter γ is defined by

[Sγ(v)]i ,


vi − γ, if vi ≥ γ,
0, if − γ < vi < γ,

vi + γ, if vi ≤ −γ,
(18)

for i = 1,2, . . . ,n, where [Sγ(v)]i is the i-th entry of Sγ(v) ∈
Rn. Figure 2 shows the graph of this function.

Then, the `1 optimization in (14) can be efficiently
solved by the Douglas-Rachford splitting algorithm [53]
given as follows:

x[k + 1] = Sγ(z[k]),
z[k + 1] = z[k] + ΠC(2x[k + 1] − z[k]) − x[k + 1],

k = 0,1,2, . . . ,
(19)

with initial vector z[0] ∈ Rn, where γ > 0 is the step size
and ΠC is the projection onto the constraint set

Fig. 2 Soft-thresholding function.

130
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

C , {x ∈ Rn : Ax = b}, (20)

for (9), which is given by

ΠC(v) = v + A>(AA>)−1(b − Av). (21)

Note that AA> is invertible if A has full row rank. The
convergence result is given as follows [53]:

Theorem 3: For any γ > 0 and any z[0] ∈ Rn, the sequence
{x[k]}∞

k=0 generated by the Douglas-Rachford splitting algo-
rithm (19) converges to a solution of the optimization prob-
lem (14). �

For the LASSO problem in (17), we have the following
algorithm:

x[k + 1] = Sγλ
(
x[k] − γA>(Ax[k] − b)

)
,

k = 0,1,2, . . . ,
(22)

with initial vector x[0] ∈ Rn, where γ > 0 is the step size and
Sγλ is the soft-thresholding function defined in (18). This
algorithm is called the proximal gradient algorithm, or the
iterative shrinkage thresholding algorithm (ISTA). For the
convergence, the following theorem holds [54]:

Theorem 4: Suppose that the step size γ satisfies

0 < γ ≤
1

σmax(A)2
, (23)

where σmax(A) is the maximum singular value of A. Then,
for any x[0] ∈ Rn, the sequence {x[k]}∞

k=0 generated by the
proximal gradient algorithm (22) converges to a solution of
the optimization problem (17). �

4. Group Testing

Group testing has been used for a variety of infectious dis-
eases such as HIV, hepatitis B and C, and COVID-19 [55].
This is a technique to find a few infected individuals from a
large number, say n, of people with much fewer tests than n.
The key idea is to apply the technique of compressed sensing
as described below.

Group testing was first proposed by R. Dorfman in 1948
[56]. To explain the method, let us suppose that only one of
eight patients is infected with a disease that can be detected
by examining the blood. We are given eight blood samples
from the eight patients. It easily checks who is infected by
testing all the blood samples by eight tests. Then, we want
to identify the infected individual by fewer tests than eight,
since blood testing is expensive and time-consuming.

For this purpose, we adopt the following strategy (see
also Fig. 3):

• TEST 1: We first divide the blood samples of the eight
individuals into two groups of four individuals, and take
a little bit of blood from each of them, and mix them for
each group. Since there is only one infected individual,
the blood from either group will test positive.

Fig. 3 Group testing from eight blood samples.

• TEST 2: Divide the group that tested positive into
two groups of two patients, and do the same thing. At
this point, the number of suspicious persons has been
narrowed down to two.

• TEST 3: Finally, by examining the blood of the two in-
dividuals separately, the infected person can be uniquely
identified.

By this method, we can identify the infected individual
in six tests, whereas eight tests would be required for an
individual blood test. In general, if there is only one infected
individual among 2T individuals, we can identify the infected
one in less than 2T tests. For example, for 1024 patients,
only 20 tests are needed to identify the infected individual.
Therefore, group testing can dramatically reduce the number
of tests compared to testing all individuals’ blood separately.
A question here is how to obtain a sophisticated method like
this in a general situation where a few people in 100,000
for example are infected, instead of examining the blood of
100,000 individuals one by one. This is the problem of group
testing.

Now we describe the problem of group testing in detail.
Let n be the number of people to be tested. Define a variable,
xi (i ∈ {1,2, . . . ,n}) representing whether the i-th individual
is infected or not. Namely,

xi ,

{
1, if the i-th individual is infected,
0, otherwise.

(24)

Then define an n-dimensional binary vector, called called
the infection vector, that takes values of 0 or 1 as

x , [x1, x2, . . . , xn]> ∈ Rn. (25)

Then our problem is to predict this n-dimensional unknown
binary vector. Of course, if we examine each one of them
individually, we can determine the vector x with n tests, but
here we want to identify x with a much smaller number of
tests.

Now let us formulate the process of group testing. For

NAGAHARA: COMPRESSED SENSING
131

this, we first define the testing vector aj , j = 1,2, . . . ,m,
where m represents the number of tests. To see the role of
this vector, we consider the eight blood samples shown in
Fig. 3. In this case, the infection vector is given by

x = [0,0,1,0,0,0,0,0]> ∈ Rn (26)

Namely, the third element is active and hence the third in-
dividual is infected. Then the first testing vector is given
by

a1 = [1,1,1,1,0,0,0,0]>. (27)

Thismeans that the first test is applied to the first four samples
of the eight samples. Then taking the inner product of a1
and x, we have the test result, or the observation:

b1 , 〈a1, x〉 = 1. (28)

This means that there is one infected individual among the
first four individuals. Then if the second testing vector is
given by

a2 = [0,0,0,0,1,1,1,1]>, (29)

The observation b2 , 〈a2, x〈= 0 implies that the last four
individuals are all negative.

In general, the observation bj or the inner product of
aj and x shows the number of infected individuals in the
group defined by the testing vector aj . For simplicity, we
assume this number can be obtained by blood testing. Then,
we formulate the above process using a matrix and vectors.
First, we define the measurement matrix A by

A =
[
a1 a2 . . . am

]>
∈ Rm×n, (30)

and the observation vector y by

b =


b1
b2
...

bm


=


〈a1, x〉
〈a2, x〉
...

〈am, x〉


=


a>1 x
a>2 x
...

a>mx


=


a>1
a>2
...

a>m


x = Ax (31)

Now, the problem of group testing is to reconstruct the
infection vector x ∈ Rn from the observation vector b ∈ Rm

that satisfies the linear Eq. (31). Since the purpose of group
testing is to dramatically reduce the number m of tests, this
should be much smaller than n, the number of individuals.
Therefore, the linear Eq. (31) has infinitely many solutions
in general (if solutions exist). This means that we cannot
uniquely determine the original vector x only from the ob-
servation vector b with Eq. (31). However, if we assume that
the number of infected people is much smaller than n, or
vector x is sparse (i.e., x has very few nonzero elements),
then we can formulate the problem of group testing as the
following optimization problem:

minimize
x∈Rn

‖x‖0 subject to Ax = b, (32)

which is the problem of compressed sensing as discussed in

the previous sections. Many methods to efficiently solve this
problem have been proposed since the Dorfman’s paper [56].
For recent methods, you can refer to, for example, [57], [58].

Python Example 1: Here we execute a Python program
to see if the problem of group testing is solved by using
techniques of compressed sensing.

We solve the problem in (32) by the `1-norm heuristic
mentioned in Section 3. That is, we solve the `1 optimization
(14) instead of (32).

First, we import two packages:

import numpy as np
import matplotlib.pyplot as plt

The package matplotlib is for plotting results. We set the
parameters as follows: the number of individuals n = 1000,
the number of infected individuals s = 5, and the number
of tests m = 40. The infection vector is randomly generated
such that the vector contains s = 5 ones and n − s95 zeros.
This is done by the following code:

vector size (number of individuals)
n = 1000
number of positives
s = 5
random seed
np.random.seed(1)
original vector (n-dimensional , s-

sparse)
x_orig = np.zeros(n)
S = np.random.randint(n,size=s)
x_orig[S] = 1
number of tests
m = 40

Then, we need to design themeasurement matrix A. For this,
we simply adopt a random 0-1 valued matrix. This means
that the groups are formed randomly. Using this A, we also
define the observation vector b. The Python code is given as
follows:

measurement matrix
A = np.random.randint(2,size=(m, n))
observation vector
b = A @ x_orig

We solve the `1 optimization in (14) by Douglas-
Rachford splitting algorithm in (19). For this, we fist define
the soft-thresholding function (18):

Soft-thresholding function
def St(lmbd, v):
Sv = np.sign(v) * np.maximum(np.abs(v
) - lmbd, 0)

return Sv

Wechoose the step size as γ = 1, andwe iterate the algorithm
5000 times. The algorithm is implemented as follows:

132
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

Fig. 4 The error ‖x[k] − xorig ‖.

Parameter setting
gamma = 1 # step size
max_itr = 5000 # number of iterations
x = np.zeros(n) # initial guess

Ap = np.linalg.pinv(A) # pseudo
inverse of A

M = np.eye(n) - Ap @ A
v = Ap @ b

error = np.zeros(max_itr) # residual
z = x # variable z
Iteration
for k in range(max_itr):
error[k] = np.linalg.norm(x_orig -
x)

x = St(gamma,z)
z = z + M @ (2*x - z) + v - x

In each iteration, we compute the error ‖x[k] − xorig‖. Fig-
ure 4 shows the error.

We can see the error rapidly decreases before it achieves
a sufficiently small value. To check the reconstructed re-
sult, we show Fig. 5. Note that we round the values in the
reconstructed vector to their nearest integers. Then, the re-
construction is perfect.

Finally, we show the Python code to draw these figures:

Error analysis
fig = plt.figure()
plt.semilogy(error)
plt.xlabel("k")
plt.ylabel("error")
Reconstructed vector
fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
ax1.stem(x_orig,use_line_collection=

True)
ax2 = fig.add_subplot(1, 2, 2)
ax2.stem(x,use_line_collection=True)

Fig. 5 The original vector (left) and the reconstructed vector (right).

5. System Identification

System identification is the process of building mathematical
models of dynamical systems based on input-output data.
In system identification, we use the input-output data to es-
timate the characteristics of a system, such as its impulse
response, transfer function, and state-space equation.

The accuracy of system identification depends highly
on how a priori information is utilized. The kernel regu-
larization is one of the most effective methods to take such
information into account, as discussed in [59]. For example,
in [60], [61], it was shown that the kernel method can sig-
nificantly improve the accuracy of system identification of a
stable linear system by adopting the exponential convergence
of impulse response. More recently, the method has been
extended to a priori information on the DC gain [62], the
frequency domain decay characteristics [63], [64], and the
relative degree [65].

On the other hand, the notion of sparsity also plays
an important role in system identification [66], [67]. In this
section, we introduce system identification of sparse impulse
response that has only a few nonzero coefficients.

For this, we consider the FIR (finite impulse response)
model described by

yk =

m−1∑
i=0

giuk−i + εk, k = 0,1,2, . . . , (33)

where {uk} and {yk} are respectively the input and output
sequences, {εk} is noise, and {gi} is the impulse response.
Figure 6 shows the block diagram of this system, where G
is the system to be identified. The problem is to identify
the impulse response {gi : i = 0,1, . . . ,m − 1} from the
input/output data {(uk, yk) : k = 0,1, . . . ,N}. For this, we
define the following vectors:

y ,


y0
...
yN

 , ε ,

ε0
...
εN

 , g ,

g0
...

gm−1

 , (34)

and the following matrix:

NAGAHARA: COMPRESSED SENSING
133

Fig. 6 Block diagram.

U ,


u0 0 . . . 0

u1 u0
. . .

...
...

...
. . . 0

uN−1 uN−2 . . . uN−m


. (35)

Then, we consider the squared `2 error E(g) as

E(g) ,
1
2
‖y −Ug‖22 . (36)

The minimizer of E(g) is the least-square solution, which is
used when we have no prior information on g. However, it
may cause overfitting [68] in particular when the parameter
size m is large. To avoid this, we adopt regularization with
the following regularization term:

Ω(g) ,
α

2
g>Qg + (1 − α)‖g‖1, (37)

where Q = [Qi j] is a positive definite matrix, and the second
term with the `1 norm of g is for the sparsity of the impulse
response. That is, we minimize the following cost function:

J(g) , E(g) + λΩ(g)

=
1
2
‖y −Ug‖22 +

λα

2
g>Qg + λ(1 − α)‖g‖1.

(38)

This minimization problem can be equivalently transformed
into the `1 regularization (or LASSO) as in (17). To do this,
we first define a matrix

√
λαQ such that√

λαQ
>√

λαQ = λαQ. (39)

Since Q is positive definite and λ > 0, α ≥ 0, there exists√
λαQ that satisfies (39). Then, define the following matrix

and vector:

Ũ =
[

U
√
λαQ

]
, ỹ =

[
y
0

]
. (40)

Then we have

‖ ỹ − Ũg‖22 = (y −Ug)>(y −Ug) + λαg>Qg. (41)

Therefore, the cost function in (38) can be rewritten as

1
2
‖ ỹ − Ũg‖22 + λ̃‖g‖1, (42)

where λ̃ = λ(1 − α). Hence, we adopt the proximal gradient
algorithm (22) to minimize J(g) for sparse system identifi-
cation.

Fig. 7 True impulse response.

Python Example 2: Here we consider a Python simulation
of sparse system identification.

First, we import some libraries:

import numpy as np
from scipy.linalg import toeplitz
from numpy.linalg import inv
import matplotlib.pyplot as plt

In the second line, we import toeplitz to compute the
matrix U in (35), and the third one is for matrix inversion.

First, we make the input sequence {uk} of length N =
100 as

input u
np.random.seed(0)
N = 100
u = np.random.rand(N)
u = np.where(u >= 0.5, 1, -1)

We use random variables to obtain a ±1-valued random vec-
tor.

Then, the impulse response g∗ to be estimated is set as

true impulse response g*
m = 20
gstar = np.zeros([m,1])
gstar[5:10] = 1

Figure 7 shows this impulse response.
With the input and the impulse response, we then com-

pute the output {yk}. Namely, we compute the output by
(33), where we add Gaussian noise with mean 0 and vari-
ance σ2 = 0.1.

output y
sigma2 = 0.1 # noise variance
y = np.convolve(gstar.ravel(), u.

ravel(), mode=’full’)[:N] + np.
sqrt(sigma2)*np.random.randn(N)

Note that the noise variance has a significant impact on the
accuracy of the model’s estimation as shown in Fig. 8 (see

134
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

also the explanations of Fig. 8 below).
We then compute the matrix U as follows:

Toeplitz matrix U
U = toeplitz(np.concatenate(([u[0]],

np.zeros(m - 1))), u).T

We choose the positive definite matrix Q in (37) as
kernel regularization with the kernel matrix K = [Ki j]. In
particular, we adopt the tuned-correlated kernel, also known
as first-order stable-spline kernel [60], [61], defined by

Ki j ,

{
βamax(i, j), ifi = j,
0, otherwise.

(43)

Using this, the matrix Q is defined as Q = K−1. The Python
code is given as follows:

TC Kernel
T1 = np.ones((m, 1)) * np.arange(1, m

+1)
TCbeta = 100
TCalpha = 0.9
K = TCbeta * TCalpha**(np.maximum(T1,

T1.T))
K = np.diag(np.diag(K))

With this kernel, we fist solve the problem of impulse
response estimation by minimizing

Jkernel(g) ,
1
2
‖y −Ug‖22 +

λ

2
g>K−1g. (44)

Namely, we minimize J(g) in (38) with α = 1. The solution
is easily obtained by

g?2 , K(U>UK + λI)−1U>y. (45)

The associated Python code is given as follows:

lmbd = 1
g2 = K @ (inv(U.T @ U @ K + lmbd * np
.eye(m)) @ U.T @ y)

Now, let’s solve the sparse regularization. We take the
parameters α = 0.8 and λ = 50 in (38). First, we compute
the matrix Ũ and ỹ in (40). The Python code is given as
follows:

Q = inv(K)
alpha = 0.8
lmbd = 50
if alpha > 0:
tU = np.vstack((U, np.linalg.

cholesky(lmbd * alpha * Q)))
ty = np.vstack((y.reshape(-1,1), np
.zeros((m, 1))))

tlambda = lmbd * (1 - alpha)
elif alpha == 0:
tU = U

Fig. 8 Reconstructed impulse response by kernel regularization (left) and
sparse regularization (right).

ty = y
tlambda = lmbd

else:
print(’alpha should be in [0,1]’)
exit()

Note that we assume α ∈ [0,1]. Then, we implement the
proximal gradient algorithm (22) with step size γ = 0.01.
The Python code is given as follows:

Soft-thresholding function
def St(lmbd, v):
Sv = np.sign(v) * np.maximum(np.abs
(v) - lmbd, 0)

return Sv
Proximal gradient algorithm
gamma = 0.01
g = np.zeros((m, 1))
for k in range(1000):
g = St(gamma*tlambda,g + gamma * tU
.T @ (ty - tU @ g))

Figure 8 shows the results of the kernel regularization
(45) and the sparse regularization. From this figure, we can
see that the zero values in the impulse response are exactly
reconstructed by the sparse regularization. This property
is useful when we detect the delay time in the response.
Since the sparse regularization can reconstruct the nonactive
response exactly, it can also detect the delay time precisely.

6. Sparse Feedback Gain

In this section, we show an application of compressed sens-
ing to the design of a sparse feedback gain.

Let us consider the following linear time-invariant sys-
tem:

Ûx(t) = Ax(t) + Bu(t), t ≥ 0, (46)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m. We
assume (A,B) is stabilizable [69]. Then there exists a state
feedback gain K ∈ Rm×n such that the state feedback control

NAGAHARA: COMPRESSED SENSING
135

u(t) = K x(t), (47)

asymptotically stabilizes the system (46). Inserting (47) into
(46), we have

Ûx(t) = (A + BK)x(t), t ≥ 0. (48)

Then, if K asymptotically stabilizes the feedback system,
then the eigenvalues of the matrix A + BK have negative
real parts [69, Proposition 5.5.6]. This is equivalent to the
existence of Q � 0 such that the following matrix inequality
holds [70, Corollary 3.5.1]:

(A + BK)>Q +Q(A + BK) ≺ 0. (49)

In this inequality, K and Q are both unknown variables, and
hence it is nonlinear. To make the inequality linear, we
introduce new variables P , Q−1 and Y , KP. Then, from
matrix inequality (49), we have

P � 0, AP + PA> + BY + Y>B> ≺ 0. (50)

These are called linear matrix inequalities (LMIs). LMIs
play an important role in linear control systems design [70].

Now, the problem of sparse feedback gain design is
formulated as follows:

Problem 1 (Sparse feedback gain): Find matrix Y that has
the minimum `0 norm among matrices satisfying the LMIs
(50).

If Y is sparse, or contains many zeros, then choosing the
output as y = P−1x, one can implement a sparse output
feedback gain u = Y y.

Let us consider how to obtain such a sparse solution.
First, we slightly change the LMIs in (50) as follows:

P � ε I, AP + PA> + BY + Y>B> � −ε I, (51)

with a small number ε > 0. Then the set

Λ , {Y : ∃P � ε I, AP + PA> + BY + Y>B> � −ε I},
(52)

becomes a closed subset of Rm×n. We note that if Y ∈ Λ
then this Y satisfies (50).

Now, Problem 1 is described as a matrix optimization
problem of

minimize
Y

‖Y ‖0 subject to Y ∈ Λ, (53)

where ‖Y ‖0 is the `0 norm of Y . As in compressed sens-
ing, this is a combinatorial optimization and hard to solve.
Therefore, we approximate the `0 norm ‖Y ‖0 by the `1 norm
‖Y ‖1, the sum of absolute values of the entries of Y . With
the `1 norm, the `0 optimization in (53) is reduced to the
following convex optimization problem:

minimize
Y

‖Y ‖1 subject to Y ∈ Λ. (54)

The `1 norm heuristic approach for sparse feedback gains
has been proposed in [71], [72].

To numerically solve the convex optimization problem
(54), we can use CVXPY discussed in Sect. 3 as shown in the
example below.

Python Example 3: Here we design a sparse feedback gain
for the linear plant (46) with

A =


0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859


,

B =


0 0 0
−0.12 1 0

0 0 0
4.419 0 −1.665
1.575 0 −0.0732


.

(55)

This model, named AC2, is taken from the benchmark prob-
lem set in COMPLeib library [73].

First, we solve the `1 norm optimization in (54). For
this, we use CVXPY package [11]. So, we first install this
package.

!pip install cvxpy

Then we import necessary packages.

import cvxpy as cp
import numpy as np

We define the system matrices A and B in (55) as

System matrices
n = 5
m = 3
A = np.matrix(
[[0,0,1.1320,0,-1],
[0,-0.0538,-0.1712,0,0.0705],
[0,0,0,1,0],
[0,0.0485,0,-0.8556,-1.0130],
[0,-0.2909,0,1.0532,-0.6859]])

B = np.matrix(
[[0,0,0],
[-0.12,1,0],
[0,0,0],
[4.419,0,-1.6650],
[1.575,0,-0.0732]])

Then we set the cost function and the LMI constraints
(51) with ε = 0.01. The Python code is given by

epsil = 0.01
eI = epsil * np.eye(n)
P = cp.Variable((n,n), symmetric=True

)

136
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

Y = cp.Variable((m,n))
objective = cp.Minimize(cp.norm1(Y))
constraints = [P - eI >> 0]
constraints += [A @ P + P @ A.T + B @

Y + Y.T @ B.T + eI << 0]

Finally, we solve the optimization problem (54) by
Python as follows:

prob = cp.Problem(objective ,
constraints)

prob.solve()
Y_ = Y.value
Y_[np.abs(Y_) < 1e-6] = 0

In this code, cp.Problem defines the optimization prob-
lem to be solved, and prob.solve() solves it. To extract
the numeric value in the optimization variable Y, we write
Y.value. Then, we shrink the values whose absolute val-
ues are less than 10−6 to zero, by the last command. After
running the codes, we obtain the following solution:

Y =

0 0 0 0 0
0 −0.00552915 0 0 0
0 0 0 0 0

 , (56)

This is a sparse matrix, and we successfully obtain a sparse
feedback gain.

7. Conclusion

In this survey paper, we have provided a comprehensive re-
view of the theoretical foundations and practical applications
of compressed sensing, with a focus on group testing, sys-
tem identification, and feedback control. The concept of
sparsity, which underlies compressed sensing, holds great
potential for advancing research in a wide range of scientific
fields. We hope that this survey paper has provided valuable
insights into the possibilities and challenges of compressed
sensing, and will inspire further exploration and develop-
ment of this important research area.

Acknowledgments

This research was partly supported by JSPS KAK-
ENHI Grant Nos. 23H01436, 22H00512, 22H01653, and
22KK0155.

References

[1] Y.C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Ap-
plications, Cambridge University Press, Cambridge, 2012.

[2] M. Vidyasagar, An Introduction to Compressed Sensing, SIAM,
Philadelphia, 2019.

[3] R.V. Cox, S.F. De Campos Neto, C. Lamblin, and M.H. Sherif,
“ITU-T coders for wideband, superwideband, and fullband speech
communication,” IEEE Commun. Mag., vol.47, no.10, pp.106–109,
2009.

[4] J.F. Claerbout and F. Muir, “Robust modeling with erratic data,”
Geophysics, vol.38, no.5, pp.826–844, 1973.

[5] F. Santosa andW.W. Symes, “Linear inversion of band-limited reflec-
tion seismograms,” SIAM J. Sci. Stat. Comp., vol.7, no.4, pp.1307–
1330, 1986.

[6] H.L. Taylor, S.C. Banks, and J.F. McCoy, “Deconvolution with the
`1 norm,” Geophysics, vol.44, no.1, pp.39–52, 1979.

[7] J.L. Starck, F. Murtagh, and J.M. Fadili, Sparse Image and Signal
Processing, Cambridge University Press, 2010.

[8] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly, “Compressed
sensing MRI,” IEEE Signal Process. Mag., vol.25, no.2, pp.72–82,
March 2008.

[9] B.K. Natarajan, “Sparse approximate solutions to linear systems,”
SIAM J. Comput., vol.24, no.2, pp.227–234, 1995.

[10] M. Grant and S. Boyd, “Graph implementations for nonsmooth con-
vex programs,” Recent Advances in Learning and Control, V. Blon-
del, S. Boyd, and H. Kimura, eds., Lecture Notes in Control and
Information Sciences, vol.371, pp.95–110, Springer, London, 2008.

[11] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol.17, no.1, pp.2909–2913, 2016.

[12] M. Nagahara, D.E. Quevedo, and D. Nešić, “Maximum hands-off
control and L1 optimality,” 52nd IEEE Conference on Decision and
Control (CDC), pp.3825–3830, Dec. 2013.

[13] M. Nagahara, D.E. Quevedo, and D. Nešić, “Maximum hands-off
control: A paradigm of control effort minimization,” IEEE Trans.
Autom. Control, vol.61, no.3, pp.735–747, 2016.

[14] B. Dunham, “Automatic on/off switching gives 10-percent gas sav-
ing,” Popular Science, vol.205, no.4, p.170, Oct. 1974.

[15] R. Kirchhoff, M. Thele, M. Finkbohner, P. Rigley, and W. Settgast,
“Start-stop system distributed in-car intelligence,” ATZextra
Worldw., vol.15, no.11, pp.52–55, Jan. 2010.

[16] C. Chan, “The state of the art of electric, hybrid, and fuel cell
vehicles,” Proc. IEEE, vol.95, no.4, pp.704–718, April 2007.

[17] P. Shakouri, A. Ordys, P. Darnell, and P. Kavanagh, “Fuel efficiency
by coasting in the vehicle,” International Journal of Vehicular Tech-
nology, vol.2013, p.14, 2013.

[18] M. Nalbach, A. Korner, and S. Kahnt, “Active engine-off coasting us-
ing 48V: Economic reduction of CO2 emissions,” 17th International
Congress ELIV, pp.41–51, Oct. 2015.

[19] E. Khmelnitsky, “On an optimal control problem of train operation,”
IEEE Trans. Autom. Control, vol.45, no.7, pp.1257–1266, 2000.

[20] C. Chang and S. Sim, “Optimising train movements through coast
control using genetic algorithms,” IEE Proceedings-Electric Power
Applications, vol.144, no.1, pp.65–73, 1997.

[21] G. Vossen and H. Maurer, “On L1-minimization in optimal con-
trol and applications to robotics,” Optimal Control Applications and
Methods, vol.27, no.6, pp.301–321, 2006.

[22] M. Nagahara, D.E. Quevedo, and D. Nešić, “Hands-off control as
green control,” SICE Control Division Multi Symposium 2014,
March 2014.

[23] M. Nagahara, “Sparse control for continuous-time systems,” Interna-
tional Journal of Robust and Nonlinear Control, vol.33, no.1, pp.6–
22, Jan. 2022.

[24] M. Athans and P.L. Falb, Optimal Control, Dover Publications, New
York, 2007. an unabridged republication of the work published by
McGraw-Hill in 1966.

[25] T. Ikeda and M. Nagahara, “Value function in maximum hands-off
control for linear systems,” Automatica, vol.64, pp.190–195, 2016.

[26] D. Chatterjee, M. Nagahara, D.E. Quevedo, and K.M. Rao, “Char-
acterization of maximum hands-off control,” Systems & Control
Letters, vol.94, pp.31–36, 2016.

[27] T. Ikeda andM.Nagahara, “Time-optimal hands-off control for linear
time-invariant systems,” Automatica, vol.99, pp.54–58, 2019.

[28] S. Sukumar and D. Chatterjee, “A jammer’s perspective of reach-
ability and LQ optimal control,” Automatica, vol.70, pp.295–302,
2016.

[29] T. Ikeda, M. Nagahara, and K. Kashima, “Maximum hands-off dis-
tributed control for consensus of multi-agent systems with sampled-

http://dx.doi.org/10.1017/cbo9780511794308
http://dx.doi.org/10.1017/cbo9780511794308
http://dx.doi.org/10.1137/1.9781611976120
http://dx.doi.org/10.1137/1.9781611976120
http://dx.doi.org/10.1109/mcom.2009.5273816
http://dx.doi.org/10.1109/mcom.2009.5273816
http://dx.doi.org/10.1109/mcom.2009.5273816
http://dx.doi.org/10.1109/mcom.2009.5273816
http://dx.doi.org/10.1190/1.1440378
http://dx.doi.org/10.1190/1.1440378
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1137/0907087
http://dx.doi.org/10.1190/1.1440921
http://dx.doi.org/10.1190/1.1440921
http://dx.doi.org/10.1017/cbo9780511730344
http://dx.doi.org/10.1017/cbo9780511730344
http://dx.doi.org/10.1109/msp.2007.914728
http://dx.doi.org/10.1109/msp.2007.914728
http://dx.doi.org/10.1109/msp.2007.914728
http://dx.doi.org/10.1137/s0097539792240406
http://dx.doi.org/10.1137/s0097539792240406
http://dx.doi.org/10.1007/978-1-84800-155-8_7
http://dx.doi.org/10.1007/978-1-84800-155-8_7
http://dx.doi.org/10.1007/978-1-84800-155-8_7
http://dx.doi.org/10.1007/978-1-84800-155-8_7
https://dl.acm.org/doi/10.5555/2946645.3007036
https://dl.acm.org/doi/10.5555/2946645.3007036
https://dl.acm.org/doi/10.5555/2946645.3007036
http://dx.doi.org/10.1109/cdc.2013.6760473
http://dx.doi.org/10.1109/cdc.2013.6760473
http://dx.doi.org/10.1109/cdc.2013.6760473
http://dx.doi.org/10.1109/tac.2015.2452831
http://dx.doi.org/10.1109/tac.2015.2452831
http://dx.doi.org/10.1109/tac.2015.2452831
http://dx.doi.org/10.1365/s40111-010-0237-4
http://dx.doi.org/10.1365/s40111-010-0237-4
http://dx.doi.org/10.1365/s40111-010-0237-4
http://dx.doi.org/10.1109/jproc.2007.892489
http://dx.doi.org/10.1109/jproc.2007.892489
http://dx.doi.org/10.1155/2013/391650
http://dx.doi.org/10.1155/2013/391650
http://dx.doi.org/10.1155/2013/391650
http://dx.doi.org/10.1109/9.867018
http://dx.doi.org/10.1109/9.867018
http://dx.doi.org/10.1049/ip-epa:19970797
http://dx.doi.org/10.1049/ip-epa:19970797
http://dx.doi.org/10.1049/ip-epa:19970797
http://dx.doi.org/10.1002/oca.781
http://dx.doi.org/10.1002/oca.781
http://dx.doi.org/10.1002/oca.781
http://dx.doi.org/10.1002/rnc.5858
http://dx.doi.org/10.1002/rnc.5858
http://dx.doi.org/10.1002/rnc.5858
http://dx.doi.org/10.1016/j.automatica.2015.10.043
http://dx.doi.org/10.1016/j.automatica.2015.10.043
http://dx.doi.org/10.1016/j.sysconle.2016.05.002
http://dx.doi.org/10.1016/j.sysconle.2016.05.002
http://dx.doi.org/10.1016/j.sysconle.2016.05.002
http://dx.doi.org/10.1016/j.automatica.2018.10.004
http://dx.doi.org/10.1016/j.automatica.2018.10.004
http://dx.doi.org/10.1016/j.automatica.2016.03.026
http://dx.doi.org/10.1016/j.automatica.2016.03.026
http://dx.doi.org/10.1016/j.automatica.2016.03.026
http://dx.doi.org/10.1109/tcns.2018.2880296
http://dx.doi.org/10.1109/tcns.2018.2880296

NAGAHARA: COMPRESSED SENSING
137

data state observation,” IEEE Trans. Control Netw. Syst., vol.6, no.2,
pp.852–862, June 2019.

[30] T. Ikeda, D. Zelazo, and K. Kashima, “Maximum hands-off dis-
tributed bearing-based formation control,” 2019 IEEE 58th Confer-
ence on Decision and Control (CDC), pp.4459–4464, 2019.

[31] M. Nagahara, D. Chatterjee, N. Challapalli, and M. Vidyasagar,
“CLOT norm minimization for continuous hands-off control,” Auto-
matica, vol.113, p.108679, 2020.

[32] T. Ikeda and K. Kashima, “On sparse optimal control for general
linear systems,” IEEE Trans. Autom. Control, vol.64, no.5, pp.2077–
2083, 2019.

[33] Y. Kumar, S. Srikant, and D. Chatterjee, “Optimal multiplexing of
sparse controllers for linear systems,” Automatica, vol.106, pp.134–
142, 2019.

[34] I. Exarchos, E.A. Theodorou, and P. Tsiotras, “Stochastic L1-optimal
control via forward and backward sampling,” Systems & Control
Letters, vol.118, pp.101–108, 2018.

[35] R.P. Aguilera, R. Delgado, D. Dolz, and J.C. Agüero, “Quadratic
MPC with `0-input constraint,” IFAC Proceedings Volumes, vol.47,
no.3, pp.10888–10893, 2014. 19th IFAC World Congress.

[36] M. Nagahara and D. Nešić, “An approach to minimum attention con-
trol by sparse derivative,” 2020 59th IEEE Conference on Decision
and Control (CDC), pp.5005–5010, 2020.

[37] T. Ikeda and M. Nagahara, “Maximum hands-off control with time-
space sparsity,” IEEE Control Syst. Lett., vol.5, no.4, pp.1213–1218,
Oct. 2021.

[38] T. Ikeda and M. Nagahara, “Resource-aware time-optimal control
with multiple sparsity measures,” Automatica, vol.135, p.109957,
2022.

[39] B. Polyak and A. Tremba, “Sparse solutions of optimal control via
Newton method for under-determined systems,” J. Glob. Optim.,
vol.76, pp.613–623, 2020.

[40] K. Hamada, I. Maruta, K. Fujimoto, and K. Hamamoto, “Locally
deforming continuation method based on a shooting method for a
class of optimal control problems,” SICE Journal of Control, Mea-
surement, and System Integration, vol.14, no.2, pp.80–89, 2021.

[41] Y. Kumar, S. Sukumar, D. Chatterjee, and M. Nagahara, “Sparse
optimal control problems with intermediate constraints: Necessary
conditions,” Optimal Control, Applications and Methods, vol.43,
no.2, pp.369–385, 2022.

[42] C.V. Rao, “Sparsity of linear discrete-time optimal control prob-
lems with l1 objectives,” IEEE Trans. Automa. Control, vol.63, no.2,
pp.513–517, 2018.

[43] P.K. Mishra, D. Chatterjee, and D.E. Quevedo, “Resource efficient
stochastic predictive control under packet dropouts,” IET Control
Theory & Applications, vol.11, no.11, pp.1666–1673, 2017.

[44] P.K. Mishra, D. Chatterjee, and D.E. Quevedo, “Sparse and con-
strained stochastic predictive control for networked systems,” Auto-
matica, vol.87, pp.40–51, 2018.

[45] A. Sachan, S. Kamal, S. Olaru, D. Singh, and X. Xiong, “Discrete-
time sector based hands-off control for nonlinear system,” Inter-
national Journal of Robust and Nonlinear Control, vol.30, no.6,
pp.2443–2460, 2020.

[46] D. Iwai, H. Izawa, K. Kashima, T. Ueda, and K. Sato, “Speeded-up
focus control of electrically tunable lens by sparse optimization,” Sci.
Rep., vol.9, p.12365, 2019.

[47] M. Leomanni, G. Bianchini, A. Garulli, A. Giannitrapani, and
R. Quartullo, “Sum-of-normsmodel predictive control for spacecraft
maneuvering,” IEEE Control Syst. Lett., vol.3, no.3, pp.649–654,
2019.

[48] Y. Shiraishi, M.Nagahara, andD. Saelens, “Optimal control of TABS
by sparse MPC,” Building Simulation 2021 Conference, 2021.

[49] K. Motonaka, T. Watanabe, Y. Kwon, M. Nagahara, and S. Miyoshi,
“Control of a quadrotor group based on maximum hands-off dis-
tributed control,” International Journal of Mechatronics and Au-
tomation, vol.8, no.4, pp.200–207, 2021.

[50] D. Donoho and M. Elad, “Optimally sparse representation

in general (nonorthogonal) dictionaries via l1 minimization,”
Proc. Natl. Acad. Sci., vol.100, no.5, pp.2197–2202, 2003.

[51] M. Elad, Sparse and Redundant Representations, Springer, New
York, 2010.

[52] A.S. Bandeira, E. Dobriban, D.G. Mixon, and W.F. Sawin, “Cer-
tifying the restricted isometry property is hard,” IEEE Trans. Inf.
Theory, vol.59, no.6, pp.3448–3450, 2013.

[53] P.L. Combettes and J.C. Pesquet, “Proximal splitting methods in
signal processing,” Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, pp.185–212, Springer New York, New
York, NY, 2011.

[54] A. Beck and M. Teboulle, “Gradient-based algorithms with appli-
cations to signal-recovery problems,” Convex Optimization, Cam-
bridge University Press, Cambridge, 2010.

[55] H.Y. Kim, M.G. Hudgens, J.M. Dreyfuss, D.J. Westreich, and C.D.
Pilcher, “Comparison of group testing algorithms for case identifica-
tion in the presence of test error,” Biometrics, vol.63, no.4, pp.1152–
1163, 2007.

[56] R. Dorfman, “The detection of defective members of large popula-
tions,” Ann. Math. Statist., vol.14, no.4, pp.436–440, Dec. 1943.

[57] G.K. Atia and V. Saligrama, “Boolean compressed sensing and noisy
group testing,” IEEE Trans. Inf. Theory, vol.58, no.3, pp.1880–1901,
March 2012.

[58] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algo-
rithms: Bounds and simulations,” IEEE Trans. Inf. Theory, vol.60,
no.6, pp.3671–3687, June 2014.

[59] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung,
“Kernelmethods in system identification, machine learning and func-
tion estimation: A survey,” Automatica, vol.50, no.3, pp.657–682,
2014.

[60] G. Pillonetto and G. De Nicolao, “A new kernel-based approach for
linear system identification,” Automatica, vol.46, no.1, pp.81–93,
2010.

[61] T. Chen, H. Ohlsson, and L. Ljung, “On the estimation of transfer
functions, regularizations and Gaussian processes–Revisited,” Auto-
matica, vol.48, no.8, pp.1525–1535, 2012.

[62] Y. Fujimoto andT. Sugie, “Kernel-based impulse response estimation
with a priori knowledge on the DC gain,” IEEE Control Syst. Lett.,
vol.2, no.4, pp.713–718, 2018.

[63] Y. Fujimoto, “Kernel regularization in frequency domain: Encoding
high-frequency decay property,” IEEE Control Syst. Lett., vol.5,
no.1, pp.367–372, 2021.

[64] Y. Fujimoto, “Kernel regularization for low-frequency decay sys-
tems,” 60th IEEE Conference Decision and Control (CDC 2021),
pp.308–3023, Dec. 2021.

[65] Y. Fujimoto, I. Maruta, and T. Sugie, “Extension of first-order stable
spline kernel,” 20th IFAC World Congress (IFAC 2017), pp.15481–
15486, July 2017.

[66] Y. Chen, Y. Gu, and A.O. Hero, “Sparse LMS for system identifica-
tion,” Proc. IEEE ICASSP2009, pp.3125–3128, 2009.

[67] S. Fattahi and S. Sojoudi, “Data-driven sparse system identifica-
tion,” Proc. 56th An. Allerton Conf. Commun., Contr., Computing,
pp.462–469, 2018.

[68] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[69] E.D. Sontag, Mathematical Control Theory, 2nd ed., Springer, New
York, 1998.

[70] R.E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic
Approach to Linear Control Design, Taylor&Francis, London, 1998.

[71] F. Lin, M. Fardad, and M.R. Jovanović, “Design of optimal sparse
feedback gains via the alternating direction method of multipliers,”
IEEE Trans. Autom. Control, vol.58, no.9, pp.2426–2431, 2013.

[72] B. Polyak, M. Khlebnikov, and P. Shcherbakov, “An LMI approach
to structured sparse feedback design in linear control systems,” 2013
European Control Conference (ECC), pp.833–838, 2013.

[73] F. Leibfritz, “Comple ib: constraint matrix optimization problem
library,” Technical Report, 2005.

http://dx.doi.org/10.1109/tcns.2018.2880296
http://dx.doi.org/10.1109/tcns.2018.2880296
http://dx.doi.org/10.1109/tcns.2018.2880296
http://dx.doi.org/10.1109/cdc40024.2019.9029574
http://dx.doi.org/10.1109/cdc40024.2019.9029574
http://dx.doi.org/10.1109/cdc40024.2019.9029574
http://dx.doi.org/10.1016/j.automatica.2019.108679
http://dx.doi.org/10.1016/j.automatica.2019.108679
http://dx.doi.org/10.1016/j.automatica.2019.108679
http://dx.doi.org/10.1109/tac.2018.2863220
http://dx.doi.org/10.1109/tac.2018.2863220
http://dx.doi.org/10.1109/tac.2018.2863220
http://dx.doi.org/10.1016/j.automatica.2019.05.015
http://dx.doi.org/10.1016/j.automatica.2019.05.015
http://dx.doi.org/10.1016/j.automatica.2019.05.015
http://dx.doi.org/10.1016/j.sysconle.2018.06.005
http://dx.doi.org/10.1016/j.sysconle.2018.06.005
http://dx.doi.org/10.1016/j.sysconle.2018.06.005
http://dx.doi.org/10.3182/20140824-6-za-1003.01844
http://dx.doi.org/10.3182/20140824-6-za-1003.01844
http://dx.doi.org/10.3182/20140824-6-za-1003.01844
http://dx.doi.org/10.1109/cdc42340.2020.9303783
http://dx.doi.org/10.1109/cdc42340.2020.9303783
http://dx.doi.org/10.1109/cdc42340.2020.9303783
http://dx.doi.org/10.1109/lcsys.2020.3023265
http://dx.doi.org/10.1109/lcsys.2020.3023265
http://dx.doi.org/10.1109/lcsys.2020.3023265
http://dx.doi.org/10.1016/j.automatica.2021.109957
http://dx.doi.org/10.1016/j.automatica.2021.109957
http://dx.doi.org/10.1016/j.automatica.2021.109957
http://dx.doi.org/10.1007/s10898-019-00784-z
http://dx.doi.org/10.1007/s10898-019-00784-z
http://dx.doi.org/10.1007/s10898-019-00784-z
http://dx.doi.org/10.1080/18824889.2021.1893936
http://dx.doi.org/10.1080/18824889.2021.1893936
http://dx.doi.org/10.1080/18824889.2021.1893936
http://dx.doi.org/10.1080/18824889.2021.1893936
http://dx.doi.org/10.1002/oca.2807
http://dx.doi.org/10.1002/oca.2807
http://dx.doi.org/10.1002/oca.2807
http://dx.doi.org/10.1002/oca.2807
http://dx.doi.org/10.1109/tac.2017.2732286
http://dx.doi.org/10.1109/tac.2017.2732286
http://dx.doi.org/10.1109/tac.2017.2732286
http://dx.doi.org/10.1049/iet-cta.2016.0879
http://dx.doi.org/10.1049/iet-cta.2016.0879
http://dx.doi.org/10.1049/iet-cta.2016.0879
http://dx.doi.org/10.1016/j.automatica.2017.09.013
http://dx.doi.org/10.1016/j.automatica.2017.09.013
http://dx.doi.org/10.1016/j.automatica.2017.09.013
http://dx.doi.org/10.1002/rnc.4888
http://dx.doi.org/10.1002/rnc.4888
http://dx.doi.org/10.1002/rnc.4888
http://dx.doi.org/10.1002/rnc.4888
http://dx.doi.org/10.1038/s41598-019-48900-z
http://dx.doi.org/10.1038/s41598-019-48900-z
http://dx.doi.org/10.1038/s41598-019-48900-z
http://dx.doi.org/10.1109/lcsys.2019.2915152
http://dx.doi.org/10.1109/lcsys.2019.2915152
http://dx.doi.org/10.1109/lcsys.2019.2915152
http://dx.doi.org/10.1109/lcsys.2019.2915152
http://dx.doi.org/10.26868/25222708.2021.30551
http://dx.doi.org/10.26868/25222708.2021.30551
http://dx.doi.org/10.1504/ijma.2021.120377
http://dx.doi.org/10.1504/ijma.2021.120377
http://dx.doi.org/10.1504/ijma.2021.120377
http://dx.doi.org/10.1504/ijma.2021.120377
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1073/pnas.0437847100
http://dx.doi.org/10.1073/pnas.0437847100
https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1007/978-1-4419-7011-4
http://dx.doi.org/10.1109/tit.2013.2248414
http://dx.doi.org/10.1109/tit.2013.2248414
http://dx.doi.org/10.1109/tit.2013.2248414
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1017/cbo9780511804458.003
http://dx.doi.org/10.1017/cbo9780511804458.003
http://dx.doi.org/10.1017/cbo9780511804458.003
http://dx.doi.org/10.1111/j.1541-0420.2007.00817.x
http://dx.doi.org/10.1111/j.1541-0420.2007.00817.x
http://dx.doi.org/10.1111/j.1541-0420.2007.00817.x
http://dx.doi.org/10.1111/j.1541-0420.2007.00817.x
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1109/tit.2011.2178156
http://dx.doi.org/10.1109/tit.2011.2178156
http://dx.doi.org/10.1109/tit.2011.2178156
http://dx.doi.org/10.1109/tit.2014.2314472
http://dx.doi.org/10.1109/tit.2014.2314472
http://dx.doi.org/10.1109/tit.2014.2314472
http://dx.doi.org/10.1016/j.automatica.2014.01.001
http://dx.doi.org/10.1016/j.automatica.2014.01.001
http://dx.doi.org/10.1016/j.automatica.2014.01.001
http://dx.doi.org/10.1016/j.automatica.2014.01.001
http://dx.doi.org/10.1016/j.automatica.2009.10.031
http://dx.doi.org/10.1016/j.automatica.2009.10.031
http://dx.doi.org/10.1016/j.automatica.2009.10.031
http://dx.doi.org/10.1016/j.automatica.2012.05.026
http://dx.doi.org/10.1016/j.automatica.2012.05.026
http://dx.doi.org/10.1016/j.automatica.2012.05.026
http://dx.doi.org/10.1109/lcsys.2018.2847415
http://dx.doi.org/10.1109/lcsys.2018.2847415
http://dx.doi.org/10.1109/lcsys.2018.2847415
http://dx.doi.org/10.1109/lcsys.2020.3001879
http://dx.doi.org/10.1109/lcsys.2020.3001879
http://dx.doi.org/10.1109/lcsys.2020.3001879
http://dx.doi.org/10.1109/cdc45484.2021.9683114
http://dx.doi.org/10.1109/cdc45484.2021.9683114
http://dx.doi.org/10.1109/cdc45484.2021.9683114
http://dx.doi.org/10.1016/j.ifacol.2017.08.2425
http://dx.doi.org/10.1016/j.ifacol.2017.08.2425
http://dx.doi.org/10.1016/j.ifacol.2017.08.2425
http://dx.doi.org/10.1109/icassp.2009.4960286
http://dx.doi.org/10.1109/icassp.2009.4960286
http://dx.doi.org/10.1109/allerton.2018.8635921
http://dx.doi.org/10.1109/allerton.2018.8635921
http://dx.doi.org/10.1109/allerton.2018.8635921
http://dx.doi.org/10.1007/978-1-4612-0577-7
http://dx.doi.org/10.1007/978-1-4612-0577-7
http://dx.doi.org/10.1109/tac.2013.2257618
http://dx.doi.org/10.1109/tac.2013.2257618
http://dx.doi.org/10.1109/tac.2013.2257618
http://dx.doi.org/10.23919/ecc.2013.6669578
http://dx.doi.org/10.23919/ecc.2013.6669578
http://dx.doi.org/10.23919/ecc.2013.6669578

138
IEICE TRANS. COMMUN., VOL.E107–B, NO.1 JANUARY 2024

Masaaki Nagahara received a bachelor’s
degree in engineering from Kobe University in
1998, and a master’s degree and a Doctoral de-
gree in informatics from Kyoto University in
2000 and 2003, respectively, under the supervi-
sion of Prof. Yutaka Yamamoto. He is currently
a Professor at the Graduate School of Advanced
Science and Engineering, Hiroshima University.
He has been a Visiting Professor at Indian Insti-
tute of Technology Bombay since 2017. His re-
search interests include control theory, machine

learning, and sparse modeling. He received two remarkable international
awards: George S. Axelby Outstanding Paper Award in 2018 and Transition
to Practice Award in 2012 from the IEEE Control Systems Society. Also,
he received many awards from Japanese research societies such as SICE
Young Authors Award in 1999, SICE Best Paper Award in 2012, SICE Best
Book Authors Awards in 2016 and 2021, SICE Control Division Research
Award (Kimura Award) in 2020, and the Best Tutorial Paper Award from
the IEICE Communications Society in 2014. He is a senior member of
the IEEE. He has been serving as General Co-Chair of IEEE CCTA2027,
Awards Chair of IFAC NMPC2024, IPC Vice-Chair of IFAC WC 2023,
Delegate of ISCIE (2022–), Director of Journal of SICE (2022–), Editor
of SICE JCMSI (2022–), and Associate Editor of Asian Journal of Control
(2019–) and Advanced Robotics (2021–).

