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SUMMARY In the beyond 5G and 6G networks, the number of con-
nected devices and their types will greatly increase including not only user
devices such as smartphones but also the Internet of Things (IoT). More-
over, Non-terrestrial networks (NTN) introduce dynamic changes in the
types of connected devices as base stations or access points are moving
objects. Therefore, continuous network capacity design is required to fulfill
the network requirements of each device. However, continuous optimiza-
tion of network capacity design for each device within a short time span
becomes difficult because of the heavy calculation amount. We introduce
device types as groups of devices whose traffic characteristics resemble and
optimize network capacity per device type for efficient network capacity
design. This paper proposes a method to classify device types by analyz-
ing only encrypted traffic behavior without using payload and packets of
specific protocols. In the first stage, general device types, such as IoT and
non-IoT, are classified by analyzing packet header statistics using machine
learning. Then, in the second stage, connected devices classified as IoT in
the first stage are classified into IoT device types, by analyzing a time series
of traffic behavior using deep learning. We demonstrate that the proposed
method classifies device types by analyzing traffic datasets and outperforms
the existing IoT-only device classification methods in terms of the num-
ber of types and the accuracy. In addition, the proposed model performs
comparable as a state-of-the-art model of traffic classification, ResNet 1D
model. The proposed method is suitable to grasp device types in terms of
traffic characteristics toward efficient network capacity design in networks
where massive devices for various services are connected and the connected
devices continuously change.
key words: device type classification, traffic behavior analysis, machine
learning, deep learning

1. Introduction

Network operators play a fundamental role in providing
network connectivity that fulfills service requirements of
user devices. In the beyond 5G and 6G eras, the number
of connected Internet of Things (IoT) devices will become
much larger. In addition, service types of IoT are becom-
ing more diverse such as health-care, manufacturing, and
autonomous vehicles. Connected IoT devices numbered
13.2 billion in 2022 and are estimated to increase to 34.7
billion by the end of 2028 [3]. Legacy mobile networks,
such as 4G, have limited network requirements, where voice
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and data communication using mobile phones is a domi-
nant network service. On the other hand, in 5G and 6G,
network requirements become more diverse as heteroge-
neous services, includingmassive IoT device-based services,
need to be provided on the common network infrastruc-
ture. In 5G networks, three service types are specified: en-
hanced mobile broadband (eMBB), massive machine-type
communications (mMTCs), and ultra-reliable low-latency
communications (URLLCs) [4]. Finer-grained service types
may be specified in future networks such as vehicle-to-
everything (V2X) communication for autonomous vehicles
and remote surgery, which require networks with lower la-
tency and higher reliability. Therefore,it is a challenge to
design network capacity to fulfill all service requirements on
a single piece of network infrastructure shared by massive
user devices.

In the beyond 5G and 6G eras, network demands change
largely and rapidly because devices hand off more fre-
quently in accordance with denser base-station placement.
The number of situations where network demands change
largely and rapidly from ordinary time is also increasing due
to natural disasters and events. Moreover, Non-terrestrial
networks (NTN) has been considered in 5G standardiza-
tion, where flying objects such as unmanned aerial vehi-
cles (UAVs), high altitude platform stations (HAPSs), and
satellites are used as base stations and relay nodes. NTN
may require frequent and continuous network design be-
cause network nodes provide connectivity to devices while
moving. As a result, network operators need to design net-
work dynamically to handle the massive and rapid changes
in connected devicesand network demands.

Network operators need to design network capacity, in
which how many network nodes, including NTN nodes, are
required to accommodate the traffic of massive user devices
for various services. However, it is difficult to optimize
network capacity per device in networks where massive de-
vices are connected and the connected devices continuously
change. We introduce device types as groups of devices
whose traffic characteristics resemble and optimize network
capacity per device type for efficient network capacity de-
sign. As a result, it is expected to reduce the calculation
amount to optimize network capacity design.

Network operators need to grasp network requirements
of connected devices for network capacity design. Network
operators may grasp network requirements for network ca-
pacity design with a device type classification method by
linking requirements models with device types that network
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operators define in advance. For example, a requirement
model needs a lot of bandwidth because they continuously
send high-resolution video. On the other hand, another re-
quirement model does not need much bandwidth but low
latency and high-reliability communication. As a result, a
method to classify traffic into device types are required for
efficient network capacity design to fulfill network require-
ments in beyond 5G and 6G eras with massive and diverse
connected devices.

Possible approaches for device type classification can
be categorized into two classes: analysis based on logs and
management databases; and analysis based on traffic in the
network. Typical ways in the former approaches are to use
system logs (Syslog) [5] and to use subscriber identity mod-
ule (SIM) information in mobile networks. However, the
standardized formats of these data are not so detailed that
can be exploited to classify connected device types includ-
ing IoT device types. In particular for IoT devices, IoT device
types are not specified in SIM and depend on users’ inputs.
In the latter approach, several works have presented traf-
fic analysis-based ways in IoT-only networks, which can be
further categorized into two sub-classes: to analyze traffic
contents [6], [7]; and to analyze only traffic behavior such
as packet headers and statistics on the basis of encrypted
traffic [8]–[10]. However, due to privacy-related laws that
network operators must follow, network operators need to
take a device classification approach without the contents of
traffic. Additionally, it is difficult to apply methods using
features extracted from the traffic of specific protocols be-
cause protocols of traffic sent from IoT are not standardized
and proprietary protocols for some specific IoT services are
used. There is no method to classify devices including not
only IoT devices but also mobile phones, PCs, and routers
only with traffic behavior. Therefore, there is a need for a
new device type classification method based only on traffic
behavior, such as traffic statistics, whose input data can be
collected by a network operator.

In this paper, we propose a method to classify device
types by analyzing only traffic behavior, including statistics
and their time series extracted from encrypted traffic without
using any information of payload and specific protocols in
two stages, which can be collected by a network operator at
base stations and some access points. The proposed method
analyzes statistics and their time series extracted from en-
crypted traffic without information of payload and specific
protocols. The proposed method is applicable to traffic in
networks where diverse devices are connected. We analyze
packet header statistics and their time series in the first and
second stages, respectively. The first stage classifies devices
into general types such as IoT, non-IoT, and routers by ana-
lyzing packet header statistics. The second stage classifies
connected devices that are classified as IoT in the first stage
into IoT device types by analyzing traffic waveforms that in-
dicate the number of packets and the sum of packet lengths
sent by each device over time. We demonstrate that the pro-
posed method classifies device types only on the basis of
traffic behavior in a network, where diverse devices includ-

ing mobile phones, PCs, and routers as well as IoT devices
are connected.

Progress is being made in intelligent networking,
which aims to autonomously and automatically design
and control networks with artificial intelligence (AI) and
machine learning (ML). The 3rd Generation Partnership
Project (3GPP) [11] specifies that the network data ana-
lytics function (NWDAF) is to be introduced to 5G core
network (5GC) functions in release 15 and AI/ML function
is to be included in NWDAF in releases 16 and 17. NWDAF
is assumed to collect and analyze various data in networks
with MLmodels, and output analyzed results. An intelligent
RAN is being promoted by O-RAN Alliance [12] which
has been established by fundamental network operators all
over the world including AT&T, China Mobile, Deutsche
Telekom, NTT DOCOMO, and Orange. They define RAN
intelligent controller (RIC) as a control function that plays
roles to make RAN intelligent. The design and manage-
ment of these automated autonomous networks require more
various, timely, finer-grained data in terms of traffic, ser-
vice and application types of connected user devices, and
surroundings without manual operation. Therefore, the pro-
posed method to classify traffic into device types and the
dynamic optimization based on the device types for network
capacity design will fit for automated autonomous networks
in beyond 5G and 6G eras.

The rest of this paper is organized as follows. Section 2
describes related works. Section 3 presents the proposed
method. Section 4 describes evaluation results using a real
traffic dataset. Section 5 indicates directions for future re-
search. Finally, Sect. 6 concludes this paper.

2. Related Work

This work focuses on a method to classify source device
types by analyzing traffic characteristics. Hence, we classify
the related works into two topics: traffic classification and
device type classification.

2.1 Traffic Classification

Methods have been presented to classify applications and
services for security and network design and management
by analyzing encrypted traffic [13]–[16]. S. Rezaei et al. sur-
veyed encrypted traffic classification approaches using deep
learning [13]. They provided general guidelines for classifi-
cation tasks including data collection and cleaning, feature
selection, and model selection. They also raised the problem
of collecting and labeling a large amount of data for deep
learning model training and proposed a multi-task learn-
ing approach for traffic classification [14]. N. Bayat et al.
provided a method to classify encrypted server name indi-
cation in HTTPS traffic [15]. K. Hatanaka et al. proposed
a method to extract and predict both patterns of accessed
domains and temporal access patterns from DNS query log
data for network monitoring [16]. These methods use traffic
information in communication with specific protocols such



TAKASAKI et al.: DEVICE TYPE CLASSIFICATION BASED ON TWO-STAGE TRAFFIC BEHAVIOR ANALYSIS
119

as HTTPS and DNS. However, these methods are not appli-
cable to networks where various devices, including IoT, are
connected because protocols used in communication with
IoT are not standardized. The proposed method is suitable
for traffic classification in networks where various devices
are connected because it classifies traffic without protocol
information. In beyond 5G and 6G eras, massive devices
for various services are connected to networks, and the con-
nected devices and the service requirements dynamically
change because of the introduction of NTN. Network oper-
ators are expected to efficiently design network capacity to
accommodate traffic sent frommassive devices and deal with
dynamic changes in the connected devices and requirements.
It is difficult to optimize network capacity per application
because of frequent optimization caused by dynamic change
and handle all devices as the same because of the variety of
devices and services. Hence, device type classification helps
efficient network capacity design by handling devices of the
same device type together.

Several state-of-the-art approaches in the fields of other
deep learning tasks such as image recognition and natu-
ral language processing are applied to classification tasks
for encrypted traffic [17]–[19]. Y. Zhou et al. apply an im-
provedAlexNetmodel to encrypted traffic classification [17].
AlexNet [20] is the first deep convolutional neural net-
work (CNN) model proposed in 2012 for image recogni-
tion. They shorten the long training time of AlexNet and
have higher accuracy than the classical traffic classifica-
tion model. M. Lotfollahi et al. proposed a CNN model
that integrates both feature extraction and classification [18].
They also provide an implementation of ResNet one dimen-
sional (1D) model in addition to the CNN model. Residual
neural networks (ResNet) [21] is a standard model for im-
age recognition tasks, which has a very deep convolutional
network. The ResNet 1D model is implemented to apply
the ResNet model to traffic analysis that has one dimen-
sion. X. Lin et al. applied bidirectional encoder represen-
tations from transformer (BERT), which achieves state-of-
the-art performance on natural language processing tasks,
to encrypted traffic classification tasks [19]. They showed
that BERT outperformed several state-of-the-art methods on
multiple datasets. In beyond 5G and 6G eras, classification
models are assumed to require retraining many times to ac-
commodate the frequent changes of connected devices and
their requirements. In addition, smaller models are expected
because it is supposed to implement the models distributed
to each access point such as base station. These state-of-the-
art methods take long to retrain in the networks though they
are effective for classification tasks. Hence, the proposed
method is suitable to apply to the networks in beyond 5G
and 6G eras because the proposed method is smaller than
the state-of-the-art models in terms of lines of code.

2.2 Device Type Classification

Network operators need to classify traffic into device types
to efficiently optimize network capacity of user devices. In

Table 1 Summary of related works for device type classification.
Data types in analysis

Contents Behavior
Classification Source device [6] [8], [9]
objectives Device type [7] [10], Proposed

beyond 5G and 6G eras, various devices such as mobile
phones and tablets as well as IoT devices are connected to
networks. Therefore, network operators need a method to
classify traffic into device types. Table 1 shows the sum-
mary of the related works regarding device classification by
analyzing traffic on the axes of data types and classification
objectives.

There are methods to extract device information from
packets of the Universal Plug and Play (UPnP), SNMP, and
NETCONF protocols. However, several challenges remain
in the methods using the IoT management protocols: stan-
dardization of protocols and data models, and security and
privacy [22]. Therefore, a secure and efficient method is ex-
pected to extract device information for heterogeneous IoTs.
A method has been studied to identify devices connected to
the network by analyzing the communication traffic with the
server (device server) operated by the manufacturer [6]. It
is not applicable to device type classification because device
types include several deviceswhosemanufacturers are differ-
ent, and their manufacturers produce many types of devices.
J. Bao et al. proposed a hybrid supervised and unsupervised
learning method to classify seen and unseen devices on the
basis of service types [7]. For network capacity design, un-
known devices are expected to be classified as types with
similar network requirements. These two studies are ana-
lyzed traffic including contents. However, network operators
generally cannot see packet payloads. H. Noguchi et al. stud-
ied amethod of device identification that identifies themodel
of devices by analyzing traffic feature similarities [8]. This
method may not identify devices in networks where the con-
nected devices and their traffic continuously change because
the rules of the similarity threshold to identify devices as the
same device defined in the database change. A. Sivanathan
et al. presented a method to identify source devices by ana-
lyzing traffic with random forest classifier [9]. The method
uses header information of specific proxies such as DNS and
NTP. The protocols may not be used in all IoT communi-
cation because the standardization of IoT communication is
premature. In addition, devices whose traffic features change
over time may not be classified into correct types without
time series analysis. These studies presented methods to
identify source devices by analyzing packet header statis-
tics. However, only the lower-right category in Table 1 is
suitable for classifying device types by analyzing only traffic
behavior, and these methods are not applicable.

L. Bai et al. studied classification of four IoT device
types (cameras, switches & triggers, electronics, and hubs)
by analyzing traffic output from IoT devices with deep learn-
ing [10], which are categorized as the same category with the
proposed method in Table 1. Their study was presented for
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device management in networks where many IoT devices are
connected, assuming that they can extract traffic sent by IoT
devices. However, network operators may not extract traf-
fic sent by IoT devices from traffic including other devices:
mobile phones and tablets when they cannot access SIM
information. As a result, there is no applicable method to
classify device types by analyzing information in networks,
where mobile phones and routers as well as IoT devices are
connected.

3. Device Type Classification Method

We propose a method to classify device types only on the
basis of traffic behavior, including statistics and their time
series extracted from encrypted traffic without using any
information of payload and specific protocols in networks
where various devices include not only IoT but also mobile
phones and routers. Figure 1 shows an overview of the
proposed method. The proposed method classifies device
types on the basis of the two-stage traffic analysis. In the
first stage, we analyze packet header statistics and classify
devices into three general device types: A. IoT, B. Non-IoT,
andC. Router. A. IoT consists of IoT devices such as cameras
and hubs, B. Non-IoT consists of devices such as PCs, mobile
phones, and C. Router consists of network routers. In the
second stage, we analyze traffic waveforms that represent
the number of packets and the sum of packet lengths sent
by each device over time and classify IoT device types of
devices classified as A. IoT in the first stage. The proposed
method does not specify device types of any kind.

In beyond 5G and 6G eras, massive devices for vari-
ous services are connected to networks, and the connected
devices dynamically change because of the introduction of
NTN. Network operators are expected to efficiently design
network capacity to accommodate traffic sent from massive
devices and deal with dynamic changes in the connected
devices. It is difficult to optimize network capacity per ser-
vice or device within a short time span because of the heavy
calculation amount. Hence, a method is required to clas-
sify traffic into device types introduced for efficient network
capacity design. The device type classification method is
expected to help optimize network capacity with a light cal-
culation amount by defining the device types and linking
the device types with the network requirement models by

Fig. 1 Overview of the device classification method.

network operators in advance. In this paper, we propose a
method to classify traffic into device types by analyzing only
traffic behavior toward efficient network capacity design.

3.1 First Stage: Classification of Device Categories by
Analyzing Packet Header Statistics

In the first stage, we analyze packet header statistics and
classify the general device types (A. IoT, B. Non-IoT (other
than IoT devices: mobile phones, tablets, and PCs), and
C. Router). We analyze statistics such as traffic send rate and
the number of destination addresses, extracted from packet
headers with ML models and classify device categories. We
use (1a) logistic regression, (1b) random forest, and (1c) sup-
port vector machine (SVM) as ML models.

Logistic regression classifies data by applying a logistic
function to a linear polynomial equation. Random Forest
classifies data by generating a large number of decision trees
with repeated conditional branches in a tree structure and
taking majority votes or averages. SVM classifies data by
determining class boundaries so that the distance between
the nearest data in each class is maximized.

3.2 Second Stage: Classification of IoT Function Cate-
gories by Analyzing Traffic Waveforms

In the second stage, traffic waveforms that represent time
variation of packet statistics are analyzed with deep learning
to classify IoT device types of devices that were classified
as A. IoT in the first stage. We construct three types of
deep learning models using multi-layer perceptron (MLP),
long short-term memory (LSTM), and CNN. A neural net-
work (NN) is a model that mimics human neural circuits.
MLP is a fully-connected NN that uses the output of all
nodes in each layer to compute nodes in the next layer. Our
MLP model is configured with four MLP layers and the
softmax layer used for classification. The LSTM is an im-
provement on the recurrent neural network (RNN), which
can learn temporal dependencies, and enables learning of
long-term dependencies. The CNN learns by convolving
surrounding information and is good at image identification.
In this paper, we construct three models: (2a) a MLP model
with four layers (MLP), (2b) a LSTM model with two layers
of MLP on each time step and one layer of LSTM (LSTM),
and (2c) a LSTM and 1D CNN model with one layer of
LSTM and one layer of 1D CNN (LSTM+CNN). Figure 2
shows the structure of (2c) LSTM+CNN.

3.3 Target Network Models

Figure 3 shows the target network models of the proposed
device type classification method. We assume that the de-
vice type classification method is applied to two types of
networks: cellular and home networks. Network operators
capture raw traffic without decryption outside base stations
or access points, and the traffic is input to the device type
classifier in both types of networks. The network operators
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Fig. 2 Structure of (2c) LSTM+CNN model.

Fig. 3 Target network models.

may capture traffic with other packet capturing equipment in
cellular and home networks or access points where packet
dump software is installed. For example, tcpdump is in-
stalled on OpenWrt [23], which is a Linux operating system
targeting embedded devices such as routers, used in the re-
lated work providing the dataset [24].

4. Evaluation

We evaluate the device type classification accuracy of the
proposed method, including comparison with the state-of-
the-art classification models. A. Sivanathan et al. provided
a dataset that captures sending and receiving packets from
31 devices in nine categories connected to the network of
the University of New South Wales [24]. In addition to the
dataset, we used our own dataset consisting of traffic sent
and received from 12 devices in seven categories. Table 2
shows the number of devices per function category in the
two datasets.

4.1 First Stage: Classification of General Device Types by
Analyzing Packet Header Statistics

In the first stage, we analyze packet header statistics withML
models, and classify the three general device types: A. IoT,
B. Non-IoT, and C. Router. We generate a feature dataset by
extracting the number of packets, the sum of packet lengths,
the average of packet lengths, and the number of destination
addresses, which each device sends for 10 minutes. Table 3
shows the number of data per general device type: 75%of the
data is used for training and the rest for test. In addition, 30%
of training data is used for validation data in hyper-parameter

Table 2 Number of devices per device category.
Device type # of deviceGeneral device type IoT device type

A. IoT

1. Hubs 4
2. Cameras 14
3. Switches & Triggers 5
4. Air quality sensors 2
5. Healthcare devices 4
6. Light bulbs 1
7. Electronics 6
8. Smart watches 3

B. Non-IoT 3
C. Router 1

Table 3 Number of data per general device type used for analysis of
packet header statistics.

General device type # of data
A. IoT 95,364
B. Non-IoT 6,801
C. Router 6,592
Total 108,757

Table 4 Accuracies and F-measures of general device type classification
per ML model.

ML model Training Test F1-scoreaccuracy accuracy
(1a) Logistic Regression 92.5% 92.5% 60.5%
(1b) Random Forest 97.8% 97.6% 92.4%
(1c) SVM 98.9% 90.7% 58.1%

optimization with Optuna [25].
We use training accuracies, test accuracies, and F1-

scores for evaluationmetrics of eachmodel. Training and test
accuracies indicate the percentage of prediction results that
are consistent with the correct answer. An evaluation only
based on accuracies may not correctly classify devices of
B. Non-IoT and C. Router, which have fewer data than A. IoT,
because the number of data in each category is non-uniform.
Therefore, we use the F1-score as a metric to accurately
evaluate when using non-uniform dataset. The F1-score is
a metric of performance with a non-uniform dataset that
takes the harmonic mean of the recall (the percentage of data
that is predicted to be positive out of those that are actually
positive) and the precision (the percentage of data that is
actually positive out those that are predicted to be positive).
Table 4 shows the training accuracies, the test accuracies,
and the F1-scores of each ML model. While (1a) logistic
regression and (1c) SVM classify the general device types
with test accuracies of more than 90%, the F1-scores drop
significantly and fail to classify the devices in the B. Non-
IoT and C. Router types. On the other hand, (1b) Random
Forest shows a test accuracy of 97.6% and an F1-score of
92.4%, indicating that it classifies the general device types
more accurately than other ML models.
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Fig. 4 Examples of traffic waveforms.

4.2 Second Stage: Classification of IoT Device Types by
Analyzing Traffic Waveforms

In the second stage, we classify the IoT device types of the
devices that are classified as A. IoT in the first stage by
analyzing traffic waveforms with deep learning. In addi-
tion, our proposed deep leaning model is compared with the
ResNet 1D model [18] which is a state-of-the-art method
for encrypted traffic classification. ResNet [21] is a stan-
dard model for image recognition tasks, which has a very
deep convolutional network. The ResNet 1D model is im-
plemented to apply the ResNet model to traffic analysis that
has one dimension.

Traffic waveforms represent time variations of packet
statistics such as the number of packets and the sum of packet
lengths. We generate two types of datasets with 6000 fea-
tures: the number of packets that each device sends per 100
ms for 10 minutes and the sum of packet lengths that each
device sends per 100 ms for 10 minutes. Figure 4 shows
examples of traffic waveforms of a A-1. hubs device and
a A-2. cameras device. The left waveforms, (a) and (c),
in Fig. 4 show the number of packets and the sum of packet
lengths sent from a hub device, respectively. The right wave-
forms, (b) and (d), in Fig. 4 show the number of packets and
the sum of packet lengths sent from a camera device, respec-
tively. In terms of device types, outlines of waveform and
packet sent frequencies are totally different in a hub device
((a) and (c)) and a camera device ((b) and (d)). In terms of
types of waveforms, waveforms of a hub device represent
similar outlines. On the other hand, waveforms of a camera
device represent that the sum of packet lengths is different
although the number of packets is the same at a time slot.

Table 5 Number of data per IoT device type.
IoT device type # of data
A-1. Hubs 19,436
A-2. Cameras 45,491
A-3. Switches & Triggers 20,836
A-4. Air quality sensors 15,984
A-5. Healthcare devices 13,248
A-6. Light bulbs 7,632
A-7. Electronics 17,354
A-8. Smart watches 1,673
Total 141,654

Table 6 Accuracies of IoT device type classification with dataset 1.
Deep learning model Training accuracy Test accuracy
(2a) MLP 85.2% 75.1%
(2b) LSTM 80.2% 80.3%
(2c) LSTM+CNN 83.0% 82.6%
Previous method [10] NA 74.8%

Table 7 Accuracies of IoT device type classification with dataset 2.
Deep learning model Training accuracy Test accuracy
(2a) MLP 75.8% 68.3%
(2b) LSTM 84.6% 84.5%
(2c) LSTM+CNN 90.2% 86.8%
Previous method [10] NA 74.8%

Table 5 shows the number of data per general device type:
75% of the data is used for training and the rest for test.

Table 6 shows the training accuracies and the test ac-
curacies of each deep learning model using dataset 1, which
is the number of packets that each device sends per 100ms
for 10 minutes. The (2c) LSTM+CNN model has the best
accuracy in this evaluation. We consider that this is because
the model was able to successfully learn both long-term
and short-term time series features by using LSTM and 1D
CNN. In addition, Table 6 shows that the proposed method
classified device types with about 8% higher accuracy in a
network, where not only IoT devices but also mobile phones,
PCs, and routers are connected, than the relatedmethod [10].

Table 7 shows the training accuracies and the test accu-
racies of each deep learning model using dataset 2, which is
the sum of packet lengths that each device sends per 100 ms
for 10 minutes. The (2c) LSTM+CNN model also has the
best accuracy in the evaluation. Compared with the results
with dataset 1, the results with dataset 2 show higher accu-
racies to classify IoT device types with the (2b) LSTM and
(2c) LSTM+CNN models.

Figure 5 shows the confusion matrices with
(2c) LSTM+CNN trained with dataset 1 and 2, which in-
dicates the classification accuracies per IoT device type.
The characteristics of classification results are different de-
pending on the input datasets: the mainly misclassified cat-
egories using dataset 1 are A-4. Air quality sensors and
A-8. Smart watches and the misclassified categories using
datset 2 are A-5. Healthcare sensors and A-8. Smart watches.
We consider that the misclassifications happen because traf-
fic is sent based on user activity from devices belonging to



TAKASAKI et al.: DEVICE TYPE CLASSIFICATION BASED ON TWO-STAGE TRAFFIC BEHAVIOR ANALYSIS
123

Fig. 5 Confusion matrix of IoT device type classification with (2c)
LSTM+CNN model.

A-4. Air quality sensors, A-5. Healthcare sensors, and A-
8. Smart watches. The frequency and length of actions are
different per user. As a result, it is difficult to extract and
train common features of devices of the same type.

Table 8 shows the training accuracies, the test accura-
cies, the F1-scores, and the training times per epoch us-
ing dataset 2 trained by the proposed (2c) LSTM+CNN
model and the ResNet 1D model. Figure 6 shows the
learning curves of training and validation loss and accu-
racy. We used a machine with one CPU [11th Gen In-
tel(R) Core(TM) i7-11700KF @ 3.60GHz] and one GPU
[NVIDIA GeForce RTX 3090] in the evaluation. The pro-

Table 8 Accuracy comparison with dataset 2 using (2c) LSTN+CNN
and ResNet model.

Model Training Test F1-score Training time
accuracy accuracy per epoch

(2c) LSTM 90.2% 86.8% 86.6% 3.6 s+CNN
ResNet 1D 88.3% 88.0% 87.7% 131.6 s

Fig. 6 Learning curves on training.

posed (2c) LSTM+CNN model using dataset 2 that has
the best accuracies in the IoT device type classification is
compared with ResNet 1D model [18]. We observe that
the time consumed for training per epoch with the pro-
posed (2c) LSTM+CNN model is about 40 times shorter
than the time with the ResNet 1D model. The proposed
(2c) LSTM+CNN model has almost the same accuracy as
the ResNet 1D model, which is the state-of-the-art model of
traffic classification tasks, even though the (2c) LSTM+CNN
model has the simple structure shown in Fig. 2: the proposed
(2c) LSTM+CNN model is implemented in 30 times fewer
lines than the ResNet 1D model.

We compare classification results with the proposed
two-stage device classification method and a single-stage
method to evaluate effects of the proposed method. The
single-stage method classifies ten categories including eight
IoT device types, Non-IoT, and Router shown in Table 2
by analyzing dataset 2 which represents time variations of
the sum of packet length with the (2c) LSTM+CNN and
ResNet 1D models only on one stage. Figure 7 indicates
F1-scores of each device category classified by the proposed
method and the single-stagemethod. The devices in theNon-
IoT category are not classified accurately by the single-stage
method. On the other hand, the proposed method classifies
the devices in the Non-IoT category more accurately. As a
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Fig. 7 F1-scores of each device category.

result, the two-stage traffic behavior analysis will be more
suitable than the single-stage one when diverse devices are
connected to the network.

5. Directions for Future Research

There can be three directions for future research in this field.
The first direction is to classify device types without packet
header information if packets, including headers, are fully
encrypted. The proposed device classification method is
applicable to encrypted traffic if traffic is divided per source
devices. In case it is impossible to divide traffic per source
device because of header encryption, a method to classify
traffic into device types using only fully encrypted traffic,
for example, analysis of the length, inter-arrival time, and
byte segment of each packet is possible. J. Zhang et al.
proposed an application classification method by training
byte segments of encrypted packets with CNN [26].

The second direction is to deal with misclassification
of traffic sent based on user activity from devices. The fre-
quency and length of actions are different per device user. It
is difficult to extract and train common features of devices of
the same type. For example, A-5 healthcare devices gener-

ate temporal and burst data traffic triggered by user activities
such as measurement of body weight and blood pressure.
A method is required to extract common features of control
packets, which do not depend on user activity, from traf-
fic, for example, by frequency analysis such as Fourier and
Wavelet analysis.

The third direction is to evaluate the performance of
service-aware scenarios, such as a scenario considering
URLLC services. The evaluation depends on the optimiza-
tion in network capacity design rather than on the proposed
method itself. The target scenarios affect the accuracy, train-
ing and inference time, and the number of device types of the
device type classification method required to fulfill the net-
work requirement. Hence, the requirements and the perfor-
mance should be evaluated with the optimization in network
capacity design.

6. Conclusion

We introduced device types as groups of devices whose traf-
fic characteristics resemble for efficient network capacity
design in beyond 5G and 6G eras with massive and diverse
connected devices. In this paper, we proposed a method
to classify device types by two-stage analysis of only traffic
behavior collected in networks where various devices are
connected. We demonstrated that the proposed method clas-
sifies IoT devices by analyzing packet header statistics in the
first stage. In the second stage, we also demonstrated that our
system classifies more IoT device types by analyzing traffic
waveforms using the (2c) LSTM+CNN model with about
12% higher accuracy than the existing method. In addition,
the proposed model in the second stage performs almost
the same accuracy with 40 times shorter training time as
a state-of-the-art model of traffic classification, ResNet 1D
model. The proposed method is expected to classify traf-
fic into device types for capacity design in networks where
massive devices for various services are connected and the
connections continuously change.
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