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PAPER
Overfitting Problem of ANN- and VSTF-Based Nonlinear
Equalizers Trained on Repeated Random Bit Sequences

Kai IKUTA†a), Student Member, Jinya NAKAMURA††, Nonmember, and Moriya NAKAMURA†, Member

SUMMARY In this paper, we investigated the overfitting characteris-
tics of nonlinear equalizers based on an artificial neural network (ANN)
and the Volterra series transfer function (VSTF), which were designed to
compensate for optical nonlinear waveform distortion in optical fiber com-
munication systems. Linear waveform distortion caused by, e.g., chromatic
dispersion (CD) is commonly compensated by linear equalizers using digital
signal processing (DSP) in digital coherent receivers. However, mitigation
of nonlinear waveform distortion is considered to be one of the next impor-
tant issues. An ANN-based nonlinear equalizer is one possible candidate
for solving this problem. However, the risk of overfitting of ANNs is one
obstacle in using the technology in practical applications. We evaluated
and compared the overfitting of ANN- and conventional VSTF-based non-
linear equalizers used to compensate for optical nonlinear distortion. The
equalizers were trained on repeated random bit sequences (RRBSs), while
varying the length of the bit sequences. When the number of hidden-layer
units of the ANN was as large as 100 or 1000, the overfitting character-
istics were comparable to those of the VSTF. However, when the number
of hidden-layer units was 10, which is usually enough to compensate for
optical nonlinear distortion, the overfitting was weaker than that of the
VSTF. Furthermore, we confirmed that even commonly used finite impulse
response (FIR) filters showed overfitting to the RRBS when the length of
the RRBS was equal to or shorter than the length of the tapped delay line of
the filters. Conversely, when the RRBS used for the training was sufficiently
longer than the tapped delay line, the overfitting could be suppressed, even
when using an ANN-based nonlinear equalizer with 10 hidden-layer units.
key words: optical nonlinear compensation, nonlinear equalizers, artificial
neural network, Volterra series transfer function, overfitting

1. Introduction

Data traffic through communication systems has been contin-
uing to grow exponentially with the technological develop-
ment of cloud computing and fifth-generation (5G) mobile
communications. Increasing the capacity further will re-
quire optical fiber communications technology that supports
these services. To meet this demand, multi-level modu-
lation, including quadrature amplitude modulation (QAM),
is an important technology that can increase the spectral
efficiency in the limited optical bandwidth. However, a
QAM signal has a large peak-to-average power ratio (PAPR)
and is susceptible to nonlinear waveform distortion caused
by optical nonlinear effects such as self-phase modulation
(SPM) and cross-phase modulation (XPM). Techniques to
compensate for the nonlinear waveform distortion using dig-
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ital signal processing (DSP), digital backpropagation (DBP)
and nonlinear equalizers based on the Volterra series trans-
fer function (VSTF) have been studied [1]–[4]. However,
the significant computational complexity of these methods
poses a technical barrier to their practical implementation.
On the other hand, nonlinear equalizers based on artificial
neural networks (ANNs) are attracting attention as another
possible candidate. ANN-based nonlinear equalizers have
been experimentally demonstrated with various modulation
formats, including intensity modulation and direct detection
(IM/DD), QAM, and orthogonal frequency-division multi-
plexing (OFDM) [5]–[7]. The effectiveness of the equal-
izers has been verified not only in laboratory experiments
but also with an 11,000-km live-traffic carrying submarine
cable [8]. Recently, several field-programmable gate array
(FPGA) implementations of ANN-based nonlinear equaliz-
ers have been demonstrated [9], [10]. One implementation
realized both the equalization and training stages within the
same FPGA simultaneously [11]. In our research group, we
demonstrated complex-valued ANN-based nonlinear equal-
izers, which showed improved learning speed and reduced
computational complexity compared to a conventional real-
valued ANN [12]. Furthermore, we clarified the necessary
number of ANN units for compensating for chromatic dis-
persion (CD) and SPM [13]. We also reported that an ANN
can effectively compensate for nonlinearities using signifi-
cantly less computational effort compared to DBP and the
VSTF [14], [15].

An issue that has been pointed out with the ANN-based
nonlinear equalizers is overfitting. In particular, when a
pseudo-random binary sequence (PRBS) is used in the train-
ing, the ANN configures a logic circuit that is optimized
for the specific PRBS [16]–[18]. Consequently, the ANN
predicts the incoming PRBS signals, resulting in overesti-
mation of the compensation performance. Conversely, when
the compensation performance is evaluated using a PRBS
different from the one used in the training, the compensation
performance is underestimated. Some reports investigated
the dependence of the tap length of the ANN and the length
of the PRBS on the overfitting characteristics [19], [20]. It
is also reported that the overfitting becomes stronger when
the number of hidden-layer of the ANN is increased from
three to four [21]. We evaluated the overfitting character-
istics of VSTF-based nonlinear equalizers using the same
method that has been employed to evaluate the overfitting of
ANN-based nonlinear equalizers. As a result, we revealed
that the overfitting of the ANN- and VSTF-based nonlinear
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equalizers occurs under the same conditions when PRBSs
are used in the training [22]. This is because the VSTF has
a high function representation capability and thus acquires
the logic circuit of the PRBS as well as the ANN. We should
consider that the overfitting is not a problem that is unique
to ANN-based nonlinear equalizers but possibly occurs with
any equalizers using learning algorithms.

In addition to PRBSs, the overfitting characteristics of
the ANN-based nonlinear equalizers have also been inves-
tigated in a case where finite-length repeated random bit
sequences (RRBSs) were used in the training [16]–[18]. As
the number of input and hidden layer units in the ANN is in-
creased, the ANN-based nonlinear equalizers have a higher
function representation capability to memorize the random
bit sequence, resulting in overfitting. However, it is known
that the overfitting of ANN-based nonlinear equalizers with
an RRBS is weaker than that with a PRBS. On the other
hand, the overfitting characteristics of VSTF-based nonlin-
ear equalizers with an RRBS have not been investigated, to
the authors’ best knowledge. Therefore, it remains unclear
whether the overfitting of ANN-based nonlinear equalizers
with an RRBS is larger than that of the VSTF. This pa-
per focuses on comparing the overfitting characteristics of
the ANN- and VSTF-based nonlinear equalizers trained on
RRBSs, in contrast to the characteristics of the ANN trained
on PRBS, which were investigated in [19], [20].

In this study, we evaluated and compared the overfitting
characteristics of nonlinear equalizers based on the ANN
and VSTF which were trained on a finite-length RRBS. We
clarified that the overfitting characteristics of theANN-based
nonlinear equalizer were comparable to those of the VSTF
when the number of hidden-layer units of the ANN was as
large as 100 or 1000. However, when the number of hidden-
layer units was 10, which is usually enough to compensate
for optical nonlinear distortion, the overfitting was weaker
than that of the VSTF.

The remainder of this paper is organized as follows:
Section 2 summarizes the theory and computational com-
plexity of ANN- and VSTF-based nonlinear equalizers. In
Sect. 3, we explain the system setup for evaluating overfitting
characteristics. Section 4 offers a comparison between the
overfitting of the ANN and that of the VSTF. Finally, Sect. 5
provides the conclusion of this paper.

2. ANN- and VSTF-Based Nonlinear Equalizers and
Computational Complexity

2.1 ANN-Based Nonlinear Equalizer

Figure 1(a) shows the construction of theANN-based nonlin-
ear equalizer used for optical nonlinear compensation [12].
The ANN consists of three layers: an input layer, a hidden
layer, and an output layer. Input signal x(n) is fed to the
input layer through a feedforward tapped delay line, where n
represents the time index of the sampled signal with a sam-
pling interval of T . L = 2N + 1 expresses the tap length of
the tapped delay line. y(n) is the output signal of the ANN-

Fig. 1 ANN-based nonlinear equalizer and hidden-layer.

based nonlinear equalizer. x(n) and y(n) are real values,
while complex values are employed in [12]. This is because
binary signals are used in this investigation of the overfitting.
Therefore, we employed a real-valuedANN. Input-layer units
simply distribute the input signal to the hidden-layer units.
Figure 1(b) shows a hidden-layer unit used in the ANN.
The inner potential of the j-th hidden-layer unit, u j(n), is
described as

u j(n) =
N∑

i=−N

w
(1)
ji x(n + i) + b(1)j , (1)

where w(1)ji is the weight between the i-th input-layer unit and
the j-th hidden-layer unit, and b(1)j is the bias. The units in
the hidden layer have a sigmoid function expressed as

zj(n) =
1

1 + e−u j (n)
, (2)

where zj(n) is the output of the hidden-layer unit. The units
in the output layer have a linear function. The output of the
ANN-based nonlinear equalizer, y(n), is described as unit.

y(n) =
M∑
j=1

w
(2)
j zj(n) + b(2), (3)

where w(2)j is the weight between the j-th hidden-layer unit
and the output-layer unit, and b(2) is the bias. M is the number
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Fig. 2 VSTF-based nonlinear equalizer.

of hidden-layer units. We trained the ANN by using the error
backpropagation (EBP) method, a type of least mean square
(LMS) algorithm. We trained the ANN sample by sample.
We did not use batches or minibatches. The error function
is described as

e(n) = |y(n) − t(n)|2 , (4)

where t(n) is the ideal signal point at the time index n, namely
a supervised signal. The error, e(n), is minimized by updat-
ing the weights using the equation described as

w(n + 1) = w(n) − µ
∂e(n)
∂w

, (5)

where µ is the step size parameter which decides the learning
speed and its stability. w represents all the weights in the
ANN. The number of hidden layer units required to compen-
sate for SPM is about ten or less [13]. The required number
of input layer units, which is equal to the number of taps of
the tapped delay line, is decided by the amount of CD [13].

2.2 VSTF-Based Nonlinear Equalizer

Figure 2 shows the VSTF-based nonlinear equalizer. Here,
the Volterra kernels for the nonlinear compensation are ac-
quired using the LMS algorithm. Optical nonlinearity of the
optical fibers can be approximated by using only first- and
third-order Volterra kernels [3], [4]. We omitted second-
order Volterra kernels, because it is known that the second-
order terms of the VSTF are not effective in equalizing the
optical-fiber nonlinearity. The output of the VSTF is ex-
pressed as

y(n) =
N∑

m1=−N

hm1 x (n − m1) +

N∑
m1=−N

N∑
m2=m1

N∑
m3=−N

hm1m2m3 x (n − m1) x (n − m2) x∗ (n − m3) ,

(6)

where x(n) and y(n) are the real-valued input and real-valued
output of the VSTF at time index, n, respectively, hm1 and
hm1m2m3 are the first- and third-order Volterra kernels, re-
spectively, and L = 2N + 1 expresses the number of taps
of the tapped delay line. If we use only first-order Volterra
kernels, omitting third- order terms in Eq. (6), the equalizer
is equivalent to an FIR filter.

Fig. 3 Required number of multiplications versus the number of taps.

2.3 Computational Complexity of ANN- and VSTF-Based
Nonlinear Equalizers

The number of multiplications required for the ANN-based
nonlinear equalizer to compensate for a symbol is expressed
as

MANN = L × Shidden + Shidden, (7)

where MANN is the number of real-valued multiplications, L
is the number of taps of the tapped delay line, and Shidden is
the number of hidden-layer units [14], [15]. Here, we neglect
the calculations for the sigmoid functions of the hidden-layer
units, assuming that a lookup table is employed. The number
of real-valuedmultiplications required for a first-order VSTF
(equivalent to an FIR filter) is expressed as

MVSTF(1st,order) = L. (8)

The number of real-valued multiplications per symbol of
first- and third-order VSTF-based nonlinear equalizers can
be expressed as

MVSTF (1st, 3rd order) = L + 3L2(L + 1)/2

=
3
2

L3 +
3
2

L2 + L, (9)

where we eliminated the redundant terms, taking into ac-
count the symmetry of the Volterra kernels [14], [15]. Fig-
ure 3 shows the number of multiplications of the equalizers
versus the number of taps. The number of multiplications in
the ANN-based nonlinear equalizer increases linearly with
the number of taps and hidden layer units. The number of
multiplications in the first-order VSTF also increases lin-
early. On the other hand, for the first- and third-order VSTF,
the number of multiplications increases in proportion to the
cube of the number of taps. Therefore, if we need a long
tapped delay line, the VSTF-based nonlinear equalizer will
require significantly more multiplications than the ANN-
based nonlinear equalizer.

3. System Setup for Evaluating Overfitting

Figure 4 shows the system setup used to evaluate the over-
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Fig. 4 Additive WGN channel with RRBS.

fitting, which had been employed in previous studies on
the overfitting evaluation of ANN-based nonlinear equaliz-
ers [16]–[18]. By employing this setup, we can simplify
the evaluation to focus on the essential characteristics of the
overfitting, eliminating the effects of the transmission pa-
rameters such as CD, SPM, pulse shape, and modulation for-
mats. Even in actual transmission systems, the effects of the
transmission parameters can be compensated by the equal-
izers, theoretically. Therefore, the essential characteristics
of the overfitting are also applicable in actual transmission
systems. A binary RRBS was generated by the Mersenne
Twister (MT) algorithm. White Gaussian noise (WGN) was
added to this binary baseband signal so that the signal-to-
noise ratio (SNR) was adjusted to 4 dB. The bit lengths were
changed from 15 to 31, 127, and 511 bits. The nonlin-
ear equalizers were trained to try to “compensate” for the
noise. The signal quality after the “compensation” was eval-
uated using the error vector magnitude (EVM). Essentially
the noise cannot be compensated for using the equalizers.
When the overfitting occurs, however, the equalizers predict
the next incoming signals, resulting in an improvement of the
apparent EVM values. The numbers of hidden-layer units
of the ANN were 10, 100, and 1000. As noted in Sect. 2.1,
only about ten or fewer hidden layer units are enough to
compensate for the fiber nonlinearity [13]. Nevertheless, we
attempted to use as many as 100 or 1000 hidden layer units
to evaluate the overfitting characteristics of the ANN-based
nonlinear equalizers with a computational complexity com-
parable to that of the VSTF. We employed the first-order
VSTFs and the first- and third-order VSTFs. In the training
of the ANN and VSTF, we did not employ the techniques
such as batch normalization, a dropout layer, and an early
stopping algorithm. This approach was chosen to compare
the overfitting characteristics of ANN and VSTF in the sim-
plest condition. This simplicity of the training algorithm
is important in high-speed optical communication systems.
We trained the equalizers over 100,000 epochs, which we
confirmed to be a sufficient number of epochs. Each epoch
involved the training and test samples with different noise
generated using different seeds. We used the same RRBS
generated using one seed through the training over 100,000
epochs to observe the overfitting to the RRBS. The num-
bers of the training and test samples correspond to the bit
length of the RRBS used. The learning rate was adjusted to
minimize the average learning error for each combination of
the number of taps, the number of hidden units, and RRBS
length.

Fig. 5 EVM versus the number of taps (trained on 15-bit RRBS).

4. Results and Discussion

First, we evaluated the overfitting with a short RRBS of 15
bits, which is comparable to or shorter than the number of
taps of the tapped delay line of the nonlinear equalizers. 15
bits is impractically short, and it is easily expected that strong
overfitting is prone to occur. However, we performed this
investigation using the short RRBS to evaluate the overfitting
of the first-order VSTFs (equivalent to FIR filters). Figure 5
shows the EVM versus the number of taps of the first-order
VSTF-based nonlinear equalizer when trained on the 15-bit
RRBS. In the figure, the characteristics of the first- and third-
order VSTF andANN are also presented for comparison. We
plotted the averages of ten trials of the training, with the error
bars representing the standard deviation at each tap length of
the equalizers. The RRBSs for the ten trials were generated
using different seeds. In the case of the first-order VSTFwith
one tap, the equalizer simply multiplies the input signal by
a Volterra kernel. Therefore, the equalizer does not change
the EVM of the input signal with WGN, and the value was
about 55%. It should be noted that the EVM was decreased
by overfitting when we increased the number of taps of the
first-order VSTF. When the number of taps was as large as
31, the EVM was decreased by about 23%. In the case of
the first- and third-order VSTFs and ANNs, the EVM values
were decreased to about 48% and 41%, respectively, even
when the number of taps was one. This is not due to the
overfitting, but due to the clipping of WGN caused by the
nonlinearity of the third-order terms of the VSTFs and the
sigmoid functions of the ANNs.

Figure 6(a) shows the waveforms of the RRBSs with
WGN before and after the first-order VSTF-based nonlinear
equalizer with only one tap. As noted above, the equal-
izer simply multiplies the input signal by a Volterra kernel.
Therefore, a linear relationship exists between the input and
output waveforms. Figure 6(b) shows the waveforms before
and after the first- and third-order VSTFs with one tap. In
this case, we can observe that the amplitude of the WGN
was clipped by the nonlinearity of the third-order terms of



IKUTA et al.: OVERFITTING PROBLEM OF ANN- AND VSTF-BASED NONLINEAR EQUALIZERS TRAINED ON REPEATED RANDOM BIT SEQUENCES
353

Fig. 6 Clipping of WGN by nonlinearity of equalizers.

the VSTF. When the overfitting is evaluated by using the
EVM, we have to take into account the effect of the clipping
caused by the nonlinearity of the equalizers. Figure 6(c)
shows the waveforms before and after the ANN with ten
hidden-layer units and one tap. The saturation curve of the
sigmoid functions of the hidden-layer units causes stronger
clipping than the VSTF. Figure 6(d) shows the principle of
the clipping caused by the nonlinearity of the equalizers.
When the transfer function of the equalizer is nonlinear, the
large amplitude of the input signal is clipped to some extent,
according to the nonlinear curve of the function. The first-
and third-order VSTF-based nonlinear equalizers caused this
clipping due to the nonlinear operation in the second term of
Eq. (6), whereas the ANN-based nonlinear equalizers caused
the clipping due to the nonlinearity of the activation function.
These clippings decreased the apparent EVM, as shown in
Fig. 5 and Fig. 6(b) and (c).

To eliminate the effects of the clipping, we plotted the
variations in EVM, ∆EVM, from the value that was eval-
uated with one tap. Figure 7(a) is the replotted version of
Fig. 5, showing the variations, ∆EVM, versus the number
of taps of the VSTF- and the ANN-based nonlinear equal-
izers when trained on the 15-bit RRBS. In the case of the
first-order VSTF, the EVM decreased by about 23% when
the number of taps was 31, as mentioned above. When we
used the first- and third-order VSTFs, the EVM decreased
by about 35% with 31 taps, which shows larger overfitting
than that which occurred in the case of the first-order VSTF.
When we used the ANNs with 10, 100, and 1000 hidden-
layer units, we observed stronger overfitting than observed
with the VSTF. This result implies the high function repre-
sentation capability of the ANN-based equalizers. However,
when the number of taps was 31, the EVM decreased by
about 35%, which was approximately equal to that of the
first- and third-order VSTFs. This is due to the lower limit
of the EVM, as shown in Fig. 5. Figure 7(b) shows ∆EVM
versus the number of taps of the equalizers when trained on
31-bit RRBS. In the case of the first-order VSTF, the EVM
decreased by 7% when the number of taps was 31. When we
used the first- and third-order VSTFs, the EVM decreased by
27% with 31 taps. When we used the ANN with 10 hidden-
layer units, the overfitting characteristics were comparable to
those of the first- and third-order VSTFs. When we used the
ANNs with 100 and 1000 hidden-layer units, we observed
stronger overfitting than observed with the VSTF. This re-
sult shows the tendency toward weaker overfitting with an
increase in the length of the RRBS used for the training. In
order to investigate the overfitting characteristics with longer
RRBS than the number of taps, we set the length to 127 bits.
Figure 7(c) shows ∆EVM versus the number of taps of the
equalizers which was trained on 127-bit RRBS. In the case
of the first-order VSTF, EVM decreased by only 2% when
the number of taps was 31, indicating the weak overfitting.
When we used the first- and third-order VSTFs, the EVMde-
creased by 22% when the number of taps was 31. When we
used the ANNwith 10 hidden layer units, however, the EVM
decreased by 7%, which is much smaller than that of the
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Fig. 7 ∆EVM versus the number of taps.

first- and third-order VSTFs. When we used the ANNs with
100 and 1000 hidden-layer units, the overfitting character-
istics were comparable to those of the first- and third-order
VSTFs. Figure 7(d) shows ∆EVM versus the number of
taps when a 511-bit RRBS was employed for the training.
In the case of the first-order VSTF, the EVM variation was
about 0%, even when the number of taps was as large as 31.
When we used the first- and third-order VSTFs, the EVM
decreased by 13%, when the number of taps was 31. On the
other hand, when we used the ANN with 10 hidden-layer
units, ∆EVM was only about 1%, even when the number
of taps was as large as 31. In this case, the overfitting was
suppressed enough, although we employed the ANN-based
nonlinear equalizer. However, when we used the ANN and
the number of hidden-layer units was as many as 100 and
1000, the overfitting characteristics were comparable to that
of the first- and third-order VSTFs.

Figures 8(a) and (b) show the variations ∆EVM versus
the bit length of the RRBS used for the training under the
condition where the number of taps of the nonlinear equal-
izers was 31. First, we should note that the first-order VSTF,
which is equivalent to an FIR filter, showed strong overfit-
ting when the RRBS was as short as 31 or less. However,

when the RRBSwas longer than 127, the overfitting was suf-
ficiently suppressed. In the case of the first- and third-order
VSTFs, we observed strong overfitting, even when the RRBS
was as long as 511. This result indicates that the first- and
third-order VSTFs have a high function representation capa-
bility, and the VSTF-based nonlinear equalizer memorized
the trained RRBS. Consequently, the equalizer predicted the
incoming RRBS, and the EVM decreased. The ANN-based
nonlinear equalizers have a high function representation ca-
pability as good as one based on the VSTF. However, when
the number of hidden-layer units was as small as 10, the
∆EVM was only about 1%, and the overfitting was suffi-
ciently suppressed against the 511-bit RRBS, whereas the
first- and third-order VSTF showed strong overfitting in the
same condition. As mentioned in Sect. 2.1, only about ten or
fewer hidden layer units are sufficient to compensate for the
fiber nonlinearity [13]. It should be noted that the computa-
tional complexity of the ANN-based nonlinear equalizer is
much smaller than that of theVSTF, as shown in Fig. 3. How-
ever, when we increased the number of hidden-layer units to
more than required, namely, 100 or 1000, we observed strong
overfitting similar to the case of the VSTF. The results indi-
cate that we need to carefully consider the overfitting and the
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Fig. 8 ∆EVM versus bit-length of RRBS.

required number of hidden-layer units of ANN-based non-
linear equalizers. In [22], the overfitting characteristics of
the ANN- and VSTF-based nonlinear equalizers were com-
pared using PRBSs. In this case, both equalizers showed
stronger overfitting than what was observed in this study us-
ing RRBSs. This is because the ANN and VSTF can learn
the simple generation rule of the PRBSs and consequently
predict the received pattern. The overfittings of the nonlinear
equalizers with RRBSs were weaker than that with PRBSs.
In particular, when the number of the hidden-layer units of
the ANN was as small as 10, the overfitting of the ANN was
weaker than that of VSTF in the case of RRBSs.

5. Conclusion

We investigated the overfitting of ANN- and VSTF-based
nonlinear equalizers trained on a finite-length RRBS. The
results show that the VSTF used for nonlinear compensation
in optical communication causes stronger overfitting than
the ANN, depending on the conditions, in particular, the
length of the RRBS and the number of taps. Nevertheless,
it should be noted that we have to take care in deciding
the number of hidden-layer units of the ANN. If we use

more hidden-layer units than necessary, this will result in
stronger overfitting. The problem of overfitting occurs not
only with ANN-based nonlinear equalizers but also with
general equalizers using learning algorithms. Depending on
the conditions, the overfitting can occur even when we use a
simple FIR filter.
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PAPER
Capacity and Reliability of Ionosphere Communication Channel
Based on Multi-Carrier Modulation Technique and LUF-MUF
Variation

Varuliantor DEAR† ,††a), Annis SIRADJ MARDIANI††, Nandang DEDI††, Prayitno ABADI††† ,††††, Nonmembers,
Baud HARYO PRANANTO†, Member, and ISKANDAR†, Nonmember

SUMMARY Low capacity and reliability are the challenges in the devel-
opment of ionosphere communication channel systems. To overcome this
problem, one promising and state-of-the-art method is applying a multi-
carrier modulation technique. Currently, the use of multi-carrier modula-
tion technique is using a single transmission frequency with a bandwidth
is no more than 24 kHz in real-world implementation. However, based on
the range of the minimum and maximum ionospheric plasma frequency
values, which could be in the MHz range, the use of these values as the
main bandwidth in multi-carrier modulation techniques can optimize the
use of available channel capacity. In this paper, we propose a multi-carrier
modulation technique in combination with a model variation of Lowest Us-
able Frequency (LUF) and Maximum Usable Frequency (MUF) values as
the main bandwidth to optimize the use of available channel capacity while
also maintaining its reliability by following the variation of the ionosphere
plasma frequency. To analyze its capacity and reliability, we performed a
numeric simulation using a LUF-MUF model based on Long Short Term-
Memory (LSTM) and Advanced Stand Alone Prediction System (ASAPS)
in Near Vertical Incidence Skywave (NVIS) propagation mode with the as-
sumption of perfect synchronization between transmitter and receiver with
no Doppler and no time offsets. The results show the achievement of the
ergodic channel capacity varies for every hour of the day, with values in
the range of 10Mbps and 100Mbps with 0 to 20 dB SNR. Meanwhile, the
reliability of the system is in the range of 8% to 100% for every hour of
one day based on two different Mode Reliability calculation scenarios. The
results also show that channel capacity and system reliability optimization
are determined by the accuracy of the LUF-MUF model.
key words: ionosphere communication channel, capacity, reliability, multi-
carrier, LUF, MUF

1. Introduction

The main challenge of the ionospheric communication chan-
nel system is its low channel capacity and reliability. The low
channel capacity is due to the multipath fading environment
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and the coherent bandwidth limitations [1], [2]. While the
low-reliability main factor is caused by the boundary of the
transmission frequency value, which follows the variation of
the ionosphere plasma frequency [3]. To overcome the low
capacity issue, a multi-carrier modulation technique such
as Orthogonal Frequency Division Multiplexing (OFDM)
is used as one of the solutions, with the purpose to avoid
frequency selective fading [4]–[8]. To overcome the low re-
liability issue, a management frequency approach [9]–[11],
alongwith the implementation of adaptive selection frequen-
cies such as the Automatic Link Establishment (ALE) tech-
nique, employed in the system [12]–[14]. This technique
enables the system to follow the variations in ionospheric
plasma frequencies in order to guarantee the success of ra-
dio wave propagation from transmitter to receiver. Those
approaches are known as the state-of-the-art methods in the
development of the ionospheric communication channel sys-
tem.

Currently, the use of a multi-carrier modulation tech-
nique in the ionosphere communication channel system uses
a conventional main bandwidth which values are 3 kHz (nar-
rowbandHF) [15]–[19] and 24 kHz (widebandHF) [4], [20]–
[22]. Meanwhile, the adaptive technique uses an analysis of
data link quality from the sounding process to select a sin-
gle frequency with a narrow bandwidth [23], [24]. Those
combined approaches improve the reliability of the system
by following the ionosphere plasma variation and increas-
ing the channel capacity up to 9.6 kbps in the real-world
implementation [25]. However, based on the range of min-
imum and maximum ionosphere frequency plasma values,
which are in the range of MHz [3], [10], [26], the utiliza-
tion of this frequency range as the main bandwidth of a
multi-carrier modulation technique is quite promising. The
utilization of the ionosphere frequency plasma range as the
main bandwidth of the multi-carrier modulation technique
could potentially optimize the use of available channel ca-
pacity while also maintaining its reliability. In this paper,
we propose the multi-carrier modulation technique with a
combination of the Lowest Usable Frequency (LUF) - Maxi-
mum Usable Frequency (MUF) variations in the ionosphere
communication channel system and examine its capacity and
reliability. The proposed system uses the variations of the
LUF-MUF value from a model and uses it as the main
bandwidth, where its maximum value could be more than

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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10MHz. For the sub-carrier bandwidth, the bandwidth co-
herent value based on the International Telecommunication
Union’s (ITU) recommendation is used, where its value is in
the range of kHz [27]. To analyze its capacity and reliabil-
ity, we performed a numeric simulation using a LUF-MUF
model based on Long Short-TermMemory (LSTM) and Ad-
vanced Stand Alone Prediction System (ASAPS) for Near
Vertical Incidence Skywave (NVIS) propagation mode. To
get a comprehensive explanation, the structure of this paper
is presented as follows: In Sect. 2 we discuss the variation
of the ionosphere and its channel capacity and reliability
calculation. In Sect. 3, we explain the main concept of the
multi-carrier modulation technique with a combination of
LUF-MUF variation and its capacity and reliability analy-
sis method. In Sect. 4, we show and discuss the numerical
simulation result. In the last section, we conclude this paper.

2. Theoretical Background

2.1 Variation of Ionosphere Channel

As a radio wave propagation medium in the High Frequency
(HF) radio spectrum, the earth’s ionosphere is formed by the
electrons which resulted from atmosphere ionization at 60 to
2000 km altitudes. The formation of the ionosphere layers
is determined by the space weather dynamics with the main
source is solar activity radiation [28]. The dynamic forma-
tion of the ionosphere layer causes the frequency of radio
waves that can propagate in the ionosphere layer to vary in
time and place [3]. Variations of the radio wave frequency
values that can be reflected by the ionosphere layer could
refer to the critical frequency value of the ionospheric F
layer ( foF2) which has daily, seasonal, and solar cycle activ-
ity variations [28]. For application in ionospheric channel
communication, the foF2 value can be converted into the
lower limit and upper limit of reflected frequency, namely
the Lowest Usable Frequency (LUF) and Maximum Usable
Frequency (MUF). Therefore, to guarantee the propagation
of radio waves from transmitter to receiver, the transmission
frequency values should be selected between the LUF and
MUF values.

The calculation of LUF andMUF is based on the geom-
etry of the transmitter and receiver locations and is expressed
by the equation as follows:

MUF = α. foF2 (1)

and

LUF = α. fmin (2)

with α is the geometry factors of transmitter and receiver
locations which could be expressed using equations:

α =

√
h2 + d2

h
(3)

h is the height of the ionosphere layers, and d is the dis-
tance between the transmitter and receiver. For Near Ver-
tical Incidence Skywave (NVIS) propagation mode, where

the distance of transmitter and receiver is less than 300 km,
the value of α is equal to 1. The values of LUF and MUF
directly follow the fmin and foF2 values [29], [30].

2.2 Channel Capacity

Besides being known as a channel that has temporal and
spatial variations, the ionosphere’s physical properties also
cause radio wave propagation from the transmitter to the
receiver to experience more than one path, known as a mul-
tipath channel. As a multipath fading channel, ionospheric
channel capacity can be calculated by the following equation:

C =
∫ ∞

−∞

B log2(1 + γ)p(γ)dγ (4)

where C is the capacity in units of bits per second (bps). B
is the coherent bandwidth (Hz), γ is the signal to noise ratio
(SNR) value, and p(γ) is the probability density function
(pdf) of the SNR value, which follows the variation of the
channel realization gain value. The channel capacity in the
above equation is called the ergodic capacity, as it is known
as a random process. For the upper limit of the channel
capacity, the calculation using the Additive White Gaussian
Noise (AWGN) channel could be used, which is expressed
in the equation as follows:

C = B log2(1 + γ) (5)

with γ is the average of SNR. For the calculation of the total
channel capacity using a multi-carrier modulation technique
where each sub-channel is independent and identically dis-
tributed (i.i.d), the total ergodic capacity of the system could
be expressed as follows:

Ctot = Σ
K
k=1B log2(1 + γk)p(γk) (6)

with

γk =
|gk |

2Pk

NkBk
(7)

g is the realization of the channel gain for each of the k sub-
carriers, P is the transmitted power, N is the noise spectral
density, and B is the sub-carrier bandwidth with its values
below the coherent bandwidth of the channel.

In addition to ergodic capacity, the calculation of mul-
tipath fading channel capacity can be expressed by outage
capacity. Outage capacity is the probability of transmission
failure based on specified criteria, such as minimum SNR.
Outage capacity is expressed using the equation as follows:

Coutage = Pr (log2(1 + γ) < r) (8)

where Pr(.) is the probability function and r is the minimum
data rate threshold with an acceptable error value. Outage
capacity also has meaning as a measure of system reliability.

2.3 Reliability of Ionosphere Communication System

To calculate the reliability of the ionospheric channel com-
munication system, there are six types of reliability levels
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stated by the International Telecommunication Union (ITU)
[31], namely: Mode Reliability, Circuit Reliability, Recep-
tion Reliability, Path Reliability, Communication Reliability,
and Service Reliability. Mode Reliability (MR) is the basic
level of ionospheric communication system reliability ac-
cording to the limitations of the transmission frequency that
could propagate in the skywave mode. In simple terms, the
non-zero value of the Mode Reliability level is determined
by the selection of the transmission frequency value in the
range of LUF - MUF values. The Circuit Reliability is a
calculation of communication circuit reliability based on the
performance of a selected transmission frequency, such as
the minimum SNR value limit. The Circuit Reliability cal-
culation also includes the Mode Reliability calculation and
is used as a basis for calculating the reliability level of a
communication circuit, which is known as the Basic Circuit
Reliability (BCR). For digital modulation, the BCR calcula-
tion is expressed by the equation as follows:

BCR(%) = RSN .RT .RF (9)

where RSN is the probability of achieving the SNRminimum
(SNo). RT s the probability that the required time spread at
a level of −10 dB relative to the peak signal amplitude is not
exceeded. RF is the probability that the required frequency
dispersion at a level of −10 dB relative to the peak signal
amplitude is not exceeded. To calculate RSN , there are
two equations that could be selected based on the condition,
which are:

RSN = 130 − 80/[1 + (SNm − SNo)/Dl] for SNm ≥ SNo

= 80/[1 + (SNo − SNm)/Du] − 30 for SNm < SNo

(10)

with SNm is the monthly median SNR value. Du and Dl

are the upper decile and lower decile deviation of monthly
median SNR values, respectively. For calculating RT , there
are equations that are also based on two different conditions,
which are:

RT = 130 − 80/[1 + (To − Tm)/DTu] for Tm ≤ To

= 80/[1 + (Tm − To)/DTl] − 30 for Tm > To

(11)

with Tm is the monthly median time spread, DTu and DTl

are the lower decile and upper decile deviation of monthly
median time spread values, respectively. For calculating RF ,
the equations based on two conditions that could be used are:

RF = 130 − 80/[1 + (Fo − Fm)/DFu] for Fm ≤ Fo

= 80/[1 + (Fm − Fo)/DFl] − 30 for Fm > Fo

(12)

where Fm is the monthly median frequency dispersion,DFu

and DFl are the upper decile and lower decile deviation of
monthly median frequency dispersion values, respectively.

The SNm, RT , and RF values could be obtained from

ionospheric physical models such as VOACAP [32]. While
the upper and lower decile values for those parameters could
be selected from the ITU document [31]. To determine the
SNo value, the BER curve as a function of SNR could be
used based on the accepted minimum BER value.

For communication circuits that use more than one
transmission frequency, the calculation of reliability is done
using Basic Reception Reliability (BRR) which is expressed
by the equation as follows:

BRR(%) = 100[1 −
K∏
k=1
(1 −

BCR( fk)
100

)] (13)

with BCR( fk) is the basic circuit reliability of each carrier
frequency.

3. Multi-Carrier Modulation with LUF-MUF Variation

The basic form of multi-carrier modulation is dividing the
data stream into multiple sub-streams that are transmitted
over different orthogonal subchannels centered at different
sub-carrier frequencies [33]. In this study, the proposed
block diagram of the multi-carrier modulation technique
with a combination of LUF-MUF variations in the iono-
sphere channel communication system is shown in Fig. 1.
The data stream transmission is divided into an indepen-
dent number of K sub-carriers, which are determined by
the variations of LUF-MUF and Bandwidth coherent (Bc)
values. The values of LUF-MUF and Bc are known on the
transmitter and receiver sides.

The LUF and MUF values could be obtained from
physics models such as the International Reference of Iono-
sphere (IRI) [34], the Advanced Stand-Alone Prediction Sys-
tem (ASAPS) [35], and NeQuick [36] that available for pub-
lic uses. Those models are empirical models that were built
using different methods but have a similar number of input
variables, namely: location, time, and conditions of solar ac-
tivity. In practice, more than one input variable could make
the system more complex. Therefore, in addition to these
empirical models, a method that is currently developing and
has the potential to be used practically is a machine learning-
based model [37]–[39]. The machine learning model could

Fig. 1 Block diagram of the proposed ionosphere communication system
using the multi-carrier modulation technique and LUF-MUF variations.
Variations of LUF-MUF values and bandwidth coherence determine the
number of sub-carriers and are known by the transmitter and receiver for
optimization of available capacity usage along with reliability.
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utilize a single variable of time series data. Therefore, the
LUF-MUF model based on machine learning is simpler to
practically apply in the proposed system. In this study, the
LSTM machine learning model was used for the analysis
beside the empirical physic model namely ASAPS.

The LUF-MUF values determine the main bandwidth,
with a value in the range of MHz. To roughly determine
the number of sub-carriers of the proposed system, the main
bandwidth is divided by the Bandwidth coherent (Bc) as
spacing sub-carrier frequency to avoid frequency selective
fading. The Bc value is in the range of kHz and can be
obtained from the delay spread value recommended by ITU
[27] or from the channel sounding system as part of the
channel estimation process [40], [41]. In this study, the Bc

value is 2 kHz refers to the ITU delay spread value in quite
ionosphere conditions, and is known by the transmitter and
receiver. To calculate the total channel capacity, the equation
that could be used is expressed as follows:

Ctot = Σ
K
k=1Bk log2(1 +

|gk |
2Pk

NkBk
) (14)

where Pk is the transmit power, gk is the channel gain, Bk

is the sub-carrier bandwidth following the Bc value, and Nk

is the noise spectral density values of each independent k
sub-carrier. The number of K sub-carriers are determine
using the following equations:

Ki =
MUFi − LUFi

Bc
(15)

where MUF − LUF is the value of the maximum-lowest
usable frequency values as a function of time i, and Bc is
the coherent bandwidth value. In this calculation, the maxi-
mum number of sub-carriers is assumed without using guard
band frequency and the system has perfect synchronization
between transmitter and receiver with no Doppler, and no
time offsets.

To calculate the reliability of the proposed system, the
Basic Circuit Reliability (BCR) is used according to Eq. (9).
However, because the ground truth of LUF-MUF determines
the success of each sub-carrier frequency transmission in
the BCR calculation, the Mode Reliability (MR) calculation
should be conducted first. If the sub-carrier transmission
frequency is outside the actual LUF-MUF range, then the
transmission of radio waves from the transmitter to the re-
ceiver cannot be realized perfectly due to some sub-carrier
frequencies not being reflected by the ionosphere [3], which
inherently causes the BCR values for those frequencies to
be zero. To calculate the Mode Reliability of the proposed
multi-carrier technique, there are two scenarios that can be
used, namely:

• Scenario #1. Transmission fails completely if one or
more of the sub-carriers cannot be realized, and

• Scenario #2. Transmission can still be realized with
some degree of reliability, even if some sub-carriers
cannot be realized.

For the Scenario #1, the Mode Reliability (MR) calculation

for multi-carrier transmission could be expressed as follows:

MR(%) =
1
M
Σ
M
m=1P(LUF; MUF)m.100

P(LUF; MUF)m =


1, if LUFpred ≥ LUFact

∩MUFpred 6 MUFact

0, otherwise
(16)

where MR is the Mode Reliability in the M period time,
LUFpred and MUFpred are the LUF and MUF from the
model, and LUFact and MUFact are the actual values of
LUF and MUF from observation. MR values that achieve
100% show that in periods of M , the system is reliable due
to all sub-carrier transmissions being able to propagate in
the ionosphere channel. However, if the MR value is less
than 100%, then the system is not reliable at the period of M
because one or more sub-carrier transmissions are not able
to propagate in the ionosphere channel. The M period time
could represent the period of an hour in one day or the period
of a day in one month.

For the Scenario #2, where reliability is still realized
even though there are several sub-carriers that fail to propa-
gate in the ionosphere channel, the calculation of the Mode
Reliability can be expressed by the equation:

MR(%) =
ΣK
k=1P( fk)

(MUF−LUF
Bc

)
.100

P( fk) =

{
1, if LUF 6 fk 6 MUF
0, otherwise

(17)

where Bc is the coherent bandwidth value which determines
the number of sub-carriers from the main bandwidth. LUF-
MUF is the actual value from the observation, and P( fk) is
the probability of each k sub-carrier frequency, which is in
the range of the LUF-MUF from the model. In this scenario,
even though one or more sub-carrier transmissions cannot
be realized due to the ionospheric channel not supporting the
propagation from the transmitter to the receiver, the system
still has some degree of reliability.

4. Numerical Simulation Results

In this section we evaluate the ergodic capacity and reliabil-
ity of the proposed system using numeric simulation. The
simulation was done by sending a number of random mes-
sage bits to each of the independent sub-carrier channels
as shown in the block diagram of Fig. 1 and evaluating the
achieved capacity and reliability. Parameter that used in the
simulation are shown in Table 1, with assumption perfect
synchronization between transmitter and receiver with no
Doppler, and no time offsets which are source of Inter Sym-
bol Interference (ISI) and Inter Carrier Interference (ICI).
The sub-carrier frequencies are determined from the range
of LUF-MUF values, which resulted from a model. For
LUF-MUF models, we use the ASAPS and LSTM models.
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Table 1 Simulation parameter values.

Fig. 2 Architecture of the LSTMmodel to predict the LUF-MUF values.

The ASAPS model is provided in the public domain and
could be used openly, with its prediction performance al-
ready reported in [42]–[44]. However, for the LSTMmodel,
we designed its architecture and tested its performance.

4.1 LSTM Model Performance

Long short-term memory (LSTM) is an artificial neural net-
work that has a feedback connection and thus can be classi-
fied as a recurrent neural network (RNN) [45]. LSTM has
been shown to outperform traditional RNNs on numerous
temporal processing tasks [46]. These temporal processing
tasks include the processing of multivariate time-series data
to perform predictions on future values. In this research,
LSTM is used to predict the LUF-MUF values with the ar-
chitecture of the LSTM model presented in Fig. 2.

The model of LSTM consists of three LSTM layers and
one fully connected layer, with inputs in the form of fmin

and foF2 data set values. The data set was obtained from
Ionosonde in Pontianak, and the period of data for the LSTM
training and fitting process is December 2022. The output
of the LSTM model is the prediction of the fmin and foF2
values, and its performance is evaluated based on the actual
fmin and foF2 values from Ionosonde Pontianak in January
2023. The fmin and foF2 prediction values are equivalent to
the LUF-MUF values for determining the main bandwidth
of the proposed system. The method of the LSTM model is
open-loop forecasting, where the recent observation data is
reused for the future prediction process.

The prediction results of the LSTM model for the pa-
rameters fmin and foF2 as LUF-MUF equivalent values are
presented in Fig. 3. Comparison of the predicted results of
the LSTM model with the actual values shows that the root
mean square error (RMSE) value is 0.55502 for the fmin

parameter. As for the parameter foF2, the RMSE value
has reached 0.56099. The RMSE value of fmin and foF2
that reaches 0.5MHz will have a significant impact on the

Fig. 3 Comparison between predicted values output from the LSTM
model and actual values for (a) fmin and (b) foF2 in January 2023. The
vertical axis is frequency, and the horizontal axis is the sequence of the
predicted data set number.

Fig. 4 Performance of LSTMmodel for (a) fmin and (b) foF2 prediction
values.

utilization of available channels and the level of system reli-
ability. For instance, using a 2 kHz bandwidth of subcarriers
based on ITU delay spread recommendations values [27], the
0.5MHz error prediction value lower than the actual could
make around 250 subcarriers not used effectively. Mean-
while, the 0.5MHz error prediction value higher than the
actual could make around 250 subcarriers impossible to re-
alize, which influenced the reliability of the system. Figure 4
shows the statistical analysis of the performance of the LSTM
model. The correlation between the predicted results and the
actual parameter fmin is 0.89. As for the parameter foF2,
the correlation is 0.905. The error distribution of fmin has
a mean 0.02247 and a standard deviation 0.53438. While
the distribution of errors resulting from the prediction of
foF2 has a mean value −0.13771 and a standard deviation
of 0.54536.

4.2 Ergodic Channel Capacity

Figure 5(a) shows the results of calculating the ergodic ca-
pacity and upper limit (upper bound) of channel capacity
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Fig. 5 Comparison of ergodic capacity using the ASAPS and LSTM
models on January 1, 2023, with (a) variations of SNR 1 to 20 dB and (b)
SNR 20 dB. The achieved ergodic capacity values are in the range of 106 to
108 bps, while the conventional method is below 103 bps [25].

on January 1, 2022, based on the main bandwidth values of
the LUF-MUF ASAPS and LSTM models with SNR values
between 1 and 20 dB. From the figure, it can be seen that
the ergodic channel capacity varies every hour, with values
ranging from 10Mbps to 100Mbps. This achieved ergodic
capacity value is higher than the existing achieved capacity,
which is 9.6 kbps [25].

In Fig. 5(b), it can be seen specifically the calculation
of the ergodic capacity of the channel with 20 dB SNR of
two model LUF-MUF. The channel ergodic capacity using
the ASAPS model shows that the minimum ergodic capacity
occurs at 23 Universal Time (UT), or 6 Local Time (LT;
UT+7) with a value 5.8 · 107 bps. Meanwhile, the maximum
capacity is at 12 UT or 19 LT, with values up to 1,58 ·
108 bps. The minimum ergodic capacity using the LSTM is
6.6 · 108 bps and occurs at 22 UT or 05 LT. The maximum
ergodic capacity of the LSTM model occurs at 15 UT or
22 LT with values up to 1.56 · 108 bps.

Figure 6 depicts a comparison of ergodic channel ca-
pacity between the ASAPS model, LSTM model, and the
actual values on January 1, 2023. Figure 6(a) shows the cal-
culation of ergodic channel capacity for SNR values between
1 and 20 dB. While Fig. 6(b) shows the ergodic channel ca-
pacity with 20 dB SNR. Based on the figure, it can be seen
the difference between the ergodic channel capacity value of
the model and the actual value. The calculation of ergodic
channel capacity using models can be higher or lower than
the actual ergodic channel capacity values. This condition
depends on the comparison between the LUF-MUF values of
the model and the actual LUF-MUF values, which determine
the main bandwidth value. When the predicted main band-
width value from the model is lower than the actual main
bandwidth (an underestimate), there is still available ergodic
channel capacity that can be realized. However, when the

Fig. 6 Calculation of the ergodic capacity based on the main bandwidth
variations from the ASAPS model, LSTM model, and actual main band-
width on January 1, 2023, with (a) variations of SNR from 1 to 20 dB and
(b) SNR 20 dB.

predicted main bandwidth from the model is higher than
the actual main bandwidth (an overestimate), some ergodic
channel capacity cannot be realized, which affects the sys-
tem’s reliability.

In Fig. 6(b), the actual ergodic capacity in the 23 UT
to 00 UT, or 06 LT to 07 LT, is lower than the ergodic ca-
pacity of the ASAPS and LSTM models. This condition
occurs due to the lower values of the actual main bandwidth
compared to the predicted main bandwidth values from the
ASAPS and LSTMmodels. The ASAPS and LSTMmodels
exhibited limitations in accurately predicting the lower val-
ues of actual fmin and foF2, consequently leading to higher
main bandwidth and ergodic capacity when compared to the
actual values. The inability of the ASAPS and LSTM mod-
els to predict the fmin and foF2 could be attributed to the
“sudden change” of the fmin and foF2 trend values in those
periods of time. Around 23 UT–00 UT, or 06–07 at local
time, the sun begins to rise (sunrise). The formation of the
ionosphere layers in this period changes from the dominant
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Fig. 7 Ergodic channel capacity based on the actual bandwidth value of
the ionosphere channel on January 1, 2023

Fig. 8 Outage capacity with minimum SNR (SNo ) from 1 to 5 dB.

recombination process to the dominant ionization process
as the radiation from the sun starts [47]. The trends of the
fmin and foF2 values start to increase as the solar radiation
increases, which is opposite to the previous trends. In ad-
dition to these conditions, the rate of the ionization process
in the D layer, which determines the fmin values, is different
from the rate of the ionization process in the F layer, which
determines the foF2 value [48]. The fmin values increase
faster than the foF2 values, which makes the actual main
bandwidth lower compared to the previous values. These
“sudden trend changes” could not be correctly predicted by
the ASAPS and LSTM models, which resulted in a lower
actual ergodic capacity value.

In Fig. 7, the calculation of ergodic channel capacity as a
function of SNR for every hour on January 1, 2023, using the
actual LUF-MUF value is presented. From the calculation
results, it can be seen that the highest capacity occurs at
13 UT (20 LT) and the lowest capacity at 00 UT (07 LT).
When the SNR is 0 dB, the difference in capacity between the
minimum and maximum is 10Mbps. Meanwhile, at 20 dB
SNR, the difference reaches 100Mbps.

In Fig. 8, the outage capacity with a minimum SNR

Fig. 9 Mode reliability calculation result for each day in January 2023
using Scenario #1.

value between 1 and 5 dB is presented as a general calcula-
tion of the reliability level of communication systems in the
Rayleigh distributed channel. It can be seen that an increase
in the SNR minimum or threshold value is followed by an
increase in the outage capacity. If the SNR value on the re-
ceiving side increases and the minimum SNR value remains
constant, the outage capacity value decreases.

4.3 Reliability

Figure 9 shows the calculation of the Mode Reliability for
each day in January 2023 with the first scenario based on
Eq. (16). The M period of this Mode Reliability calculation
is for each day in one month. From Fig. 9, it can be seen
that the Mode Reliability using the LUF-MUF value from
the ASAPS model in January 2023 is in the range of 10%
to 79%, and the Mode Reliability using the LSTM model
is in the range of 8% to 79%. The lowest value of Mode
Reliability in the ASAPS model is 10%, which occurs on
January 11, while the highest value of Mode Reliability is
79% and occurs on January 19. The lowest value of Mode
Reliability of the LSTM model is 8% and occurs on January
31, while the highest value of Mode Reliability is 79% and
occurs on January 24, 2023.

To get a more detailed explanation of calculation results
from Mode Reliability values using Scenario #1, which is
given in Fig. 9, a good example of comparative data between
the LUF-MUF model values and the actual LUF-MUF val-
ues from observation over one day, namely January 6, 2023,
is presented in Fig. 10. It can be seen that on January 6, 2023,
between 11 and 22 UT, the LUF and MUF values of the AS-
APS model are between the actual LUF-MUF values. This
condition is considered reliable because the range of subcar-
rier frequencies that were selected in the transmission system
could be realized. Different conditions occurred between 6
UT and 11 UT. The LUF-MUF value of the ASAPS model
is outside the range of the actual LUF-MUF values, where
the LUF model is lower than the actual LUF. Therefore, the
system is considered unreliable because all the selected sub-
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Fig. 10 Comparison of actual LUF-MUF values with results from (a)
ASAPS, and (b) LSTM models on 6th January 2023.

carrier frequencies could not be fully realized. At different
time periods, namely 0 UT to 1 UT, it can be seen that the
predicted LUF value of the ASAPSmodel is within the range
of actual LUF-MUF values. However, the predicted MUF
value is outside the range of actual LUF-MUF values, which
is considered to be an unreliable system. This condition
explains why the ASAPS Mode Reliability value reached
68% on January 6, 2022, as shown in Fig. 9. Similar to the
ASAPS model, some of the predicted LUF and MUF values
from the LSTM models are within the range of the actual
LUF-MUF values, which occurred between 16 and 22 UT,
and are considered reliable. Meanwhile, the predicted LUF
and MUF values between 6 UT and 10 UT were outside
the range of the actual LUF-MUF values, which caused the
system to be considered unreliable.

In Fig. 11, the Mode Reliability calculation result using
the first scenario for every hour of every day in January
2023 based on Eq. (16) is presented. The M period of this
Mode Reliability calculation is for each hour in one day. The
blue color represents a system considered unreliable, while
the yellow color represents a system considered reliable. In
every hour of the day, if the LUF-MUF from the model
is within the range of the actual LUF-MUF, the system is
considered reliable at that hour. However, if some values
of the LUF-MUF from the model were outside the actual
LUF-MUF, the system is considered not reliable at that hour
due to the fact that one or more of the sub-carriers could not
be realized. From the figure, it can be seen that the dominant
reliable system occurs from 17 UT to 23 UT, which is at
night in local time. The dominance of a reliable system at
night can be attributed to the very low fmin value parameter
due to the disappearance of the D layer during nighttime
[49]. With the disappearance of the D ionosphere layer, the
determination of the main bandwidth only depends on the
accuracy of the MUF value prediction.

Figure 12 is the second scenario Mode Reliability cal-
culation result, which shows the hourly variations of MR
values on each day in January 2023 for the ASAPS and
LSTMmodels. For each hour in a day, there are no zero val-
ues for MR, which indicates the total failure of transmission.
However, there are a number of hours for which theMRvalue
cannot be calculated due to the unavailability of the actual
LUF-MUF, which are on the 5th, 11th, 12th, 17th, and 21st.
The unavailable MR calculation values are shown in a white
color box with the ‘No Available Data (ND)’ mark. Based

Fig. 11 Mode reliability for each hour in January 2023 using Scenario
#1. The yellow box color indicates the system is reliable. While the blue
box color indicates the unreliability of the system, The white color with ‘No
Available Data (ND)’ marks shows the unavailable MR calculation results
due to the unavailable data of the actual LUF-MUF.

Fig. 12 Mode Reliability for each hour in January 2023 using Scenario
#2. The MR values are presented in color. The white color with ‘No
Available Data (ND)’ marks shows the unavailable MR calculation results
due to the unavailable data of the actual LUF-MUF.

on the calculations, theMode Reliability of the LSTMmodel
shows a high value for each day from 12 UT to 20 UT, which
reaches up to 100%. As for the ASAPS model, the highest
value of Mode Reliability is in the range of 13 UT to 16 UT.
The 100% value of Mode Reliability indicates that all sub-
carrier transmissions based on the range of LUF and MUF
model values are acceptable because the ionosphere layer is
able to support the propagation. The Mode Reliability value
that is less than 100% indicates that a number of sub-carrier
transmissions fail due to being outside the range of the actual
MUF-LUF value. Fluctuations in the Mode Reliability level
indicate that transmission from each sub-carrier for every
hour of the day cannot be fully realized. There are several
sub-carrier transmissions experiencing problems as the LUF
and MUF model values do not match the actual LUF and
MUF values. The lowest value of the second scenario Mode
Reliability calculation for both ASAPS and LSTM models
is in the range of 40%.

The calculation of Mode Reliability in Fig. 12 shows
the reliability fluctuations of the selected sub-carriers based
on the realization of available sub-carriers. For each sub-
carrier frequency that can be used, the BCR value can be
calculated using equation (9) with monthly SNR (SNm) val-
ues based on the VOACAP prediction model (Fig. 13(a)),
SNo values based on the BER versus SNR curve using
BPSK modulation (Fig. 13(b)) for BER values of 10−3, and
Dl values based on the ITU table (ITU, 1999). Using
Eq. (9), the BCR value for a single sub-carrier frequency
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Fig. 13 (a) Monthly SNR prediction from the VOACAP model, and (b)
BER versus SNR curve for BPSK modulation in Rayleigh distributed chan-
nel. The SNo values can be determined based on acceptable BER values.

is 130 − 80/[1 + (50 − 24)/8].1.1 = 111.1765% or 100%.
Because the SNm value presented in Fig. 13(a) is quite uni-
form over the range of LUF-MUF values, this value can also
be used as a representation of the BCR value for all sub-
carrier frequencies, which is 100%. This result also affects
the calculation of the BRR value using Eq. (13) with a 100%
reliability. Even though the BRR value is 100%, it should
be noted that this value is limited by the selection of the
sub-carrier frequency in the range of the actual LUF-MUF
value only. The LUF-MUF values from the model can be
different from the actual LUF-MUF values. Therefore, the
optimization of channel capacity and reliability in this sys-
tem is determined by the accuracy factor of the LUF-MUF
valuemodel, whose function is the determination of themain
bandwidth value.

5. Conclusion

The multi-carrier modulation technique, combined with
LUF-MUF variation, is a promising method for improving
the channel capacity while also maintaining the reliability
of the ionospheric communication channel system. This
method uses variations of LUF-MUF prediction values from
a model as the main bandwidth and a Bandwidth coherent
Bc value as the subcarrier bandwidth. Numeric simulation
using the ASAPS and LSTM models for the LUF-MUF val-
ues shows the achieved ergodic channel capacity varies in a
range of 10Mbps to 100Mbps with SNR 0 to 20 dB. While
the reliability level of the systemusing two scenarios ofMode
Reliability calculation shows the values are in the range of
8% and 100% for every hour of the day. The simulation
was conducted in Near Vertical Incidence Skywave (NVIS)
propagation mode over the Pontianak region in January 2023
with the assumption of perfect synchronization, no Doppler,
and no time offsets. The result also shows that the opti-
mization of capacity and reliability were determined by the
accuracy level of LUF-MUF models. If the model predicts
lower LUF-MUF range values than the actual, the reliability
level is maximized, but several of the available subcarrier
bandwidths are not utilized. However, if the model predicts
a higher LUF-MUF range value than the actual, the utiliza-
tion of all the available subcarrier bandwidth is maximized,

but sacrificing the reliability level to be low due to some of
the sub-carrier transmissions cannot be realized.
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A Lightweight Graph Neural Networks Based Enhanced Separated
Detection Scheme for Downlink MIMO-SCMA Systems∗

Zikang CHEN† ,††, Student Member, Wenping GE† ,††a), Henghai FEI† ,††, Haipeng ZHAO† ,††,
and Bowen LI† ,††, Nonmembers

SUMMARY The combination of multiple-input multiple-output
(MIMO) technology and sparse code multiple access (SCMA) can sig-
nificantly enhance the spectral efficiency of future wireless communication
networks. However, the receiver design for downlink MIMO-SCMA sys-
tems faces challenges in developing multi-user detection (MUD) schemes
that achieve both low latency and low bit error rate (BER). The separated
detection scheme in the MIMO-SCMA system involves performing MIMO
detection first to obtain estimated signals, followed by SCMAdecoding. We
propose an enhanced separated detection scheme based on lightweight graph
neural networks (GNNs). In this scheme, we raise the concept of coordinate
point relay and full-category training, which allow for the substitution of the
conventional message passing algorithm (MPA) in SCMA decoding with
image classification techniques based on deep learning (DL). The features
of the images used for training encompass crucial information such as the
amplitude and phase of estimated signals, as well as channel characteristics
they have encountered. Furthermore, various types of images demonstrate
distinct directional trends, contributing additional features that enhance the
precision of classification by GNNs. Simulation results demonstrate that
the enhanced separated detection scheme outperforms existing separated
and joint detection schemes in terms of computational complexity, while
having a better BER performance than the joint detection schemes at high
Eb/N0 (energy per bit to noise power spectral density ratio) values.
key words: MIMO-SCMA, multi-user detection (MUD), bit error rate
(BER), deep learning (DL)

1. Introduction

1.1 Background

With the rapid development of the internet of things (IoT) [1],
the demands placed on next generation wireless communica-
tion networks have become increasingly rigorous, requiring
higher spectrum efficiency, reduced latency, and improved
communication quality. While orthogonal multiple access
(OMA) techniques have been successful in previous com-
munication eras bymitigating inter-user interference through
the allocation of orthogonal resource elements (REs) [2], the
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scarcity of spectrum resources driven by the pursuit of high
throughput makes it challenging to rely solely on OMA tech-
niques for resolution. The advent of non-orthogonalmultiple
access (NOMA) technology has revitalized the field of mul-
tiple access techniques, allowing for the transmission of sig-
nals from different users on the same RE, thereby increasing
the overloading factor of REs to users and effectively allevi-
ating the strain on limited spectrum resources [3].

Sparse code multiple access (SCMA) technology, as
one of the various NOMA techniques, employs combina-
tions of sparse code vectors, enabling simultaneous recep-
tion and decoding of multi-user signals [4]. This reduces
the complexity of NOMA based systems while providing
excellent anti-interference performance due to the high mu-
tual information between different user signals. Multiple-
input multiple-output (MIMO) technology, which utilizes
spatial multiplexing, is another crucial technique for enhanc-
ing spectrum efficiency in next generation wireless commu-
nication networks [5].

In this context, MIMO-SCMA holds great promise in
further improving spectrum efficiency, which is a primary
reason for the sustained interest of the academic community
in this field [6].

1.2 Related Work and Motivation

MIMO-SCMA is a technology that utilizes codebooks to
map user data into multidimensional sparse codewords for
transmission via multiple antennas. In order to improve
the performance of MIMO-SCMA systems, a large-scale
codebook optimization algorithm was proposed by [7]. Ad-
ditionally, the design of the receiver plays a critical role
in determining the performance of MIMO-SCMA systems.
Separated detection algorithms, which combine MIMO de-
tection algorithms [8] and SCMA detection scheme (mes-
sage passing algorithm (MPA) [9]), suffer from inferior bit
error rate (BER) performance and have a high computa-
tional complexity. To enhance the decoding performance, a
joint sparse graph-detector that integrates the single graph
of MIMO channels and SCMA codewords was proposed in
[10]. However, while this technique effectively reduces the
BER, it does not exhibit a significant decrease in compu-
tational complexity. Building upon the ideas presented in
[10], [11] introduced two innovative low-complexity detec-
tors based on an extended MIMO-SCMA factor graph for
downlink MIMO-SCMA systems. The experimental results

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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indicated that, while there was a noticeable reduction in
computational complexity, there was a slight decline in BER
performance. Therefore, existing separated and joint detec-
tion schemes do not achieve a balanced trade-off between
computational complexity and BER performance.

Deep learning (DL) has become a widely utilized tech-
nology across various domains. In the SCMA systems, re-
searchers in [12] applied DL to the receiver and developed
a decoder with lower computational complexity than MPA
while achieving a comparable BER performance. Building
upon this work, [13] proposed an automatic encoder-decoder
based on deep neural networks (DNNs) specifically designed
for SCMA systems, demonstrating even lower computational
complexity and superior BER performance. However, it is
worth noting that these DL based SCMA decoders did not
take into consideration the integration of SCMAwithMIMO
technology. [14] presented a DL based network model for
application in the MIMO detection, thereby advancing the
development of DL based MIMO-SCMA systems.

In this paper, we directly employ DL techniques for
downlink MIMO-SCMA systems, and propose an enhanced
separated detection algorithm based on lightweight graph
neural networks (GNNS). We propose the concept of coor-
dinate point relay, which maps the amplitude and phase of
the estimated signal obtained by MIMO detection and the
channel characteristics it have experienced into a K-point
polyline graph with trend features. The differences in types
of K-point polyline graphs can be ultimately attributed to the
differences in the corresponding transmission symbol com-
binations. TheGNNs all adopt the samemodifiedMobileNet
architecture [15]. Furthermore, we propose the concept of
full-category training, where the utilized image dataset for
the training process encompasses all categories of K-point
polyline graphs, in contrast to the random training approach
in [12]. This ensures a more scientific and rigorous training
process. Our proposed scheme surpasses existing separated
and joint detection schemes in terms of computational com-
plexity, while achieving a better BER performance than the
joint detection schemes across the high Eb/N0 (energy per
bit to noise power spectral density ratio) values.

1.3 Contributions

• Wepropose the concept of coordinate point relay, which
allows us to generate K-point polyline graphs with trend
features for training purposes. The eigenvalues of the
K-point polyline graphs contain crucial information, in-
cluding the amplitude and phase of estimated signals, as
well as channel characteristics. Additionally, different
types of K-point polyline graphs exhibit diverse trend
directions, providing extra features that aid in accurate
classification by the GNNs.
• We propose the concept of full-category training,
whereby the employed image dataset for training com-
prises all distinct categories of K-point polyline graphs.
This approach guarantees a more methodical and rigor-
ous training process, lending greater scientific validity

to our study.
• Our proposed algorithm presents a novel research per-
spective by combining traditional communication and
computer vision techniques. This approach offers a
fresh insight into multi-user detection (MUD) in the
downlink MIMO-SCMA system, by replacing the role
of the MPA at the SCMA receiver with image classi-
fication techniques based on lightweight GNNs. Ad-
ditionally, our algorithm balance both computational
complexity and BER performance. In comprehensive
evaluations, it demonstrates superior performance com-
pared to existing separated and joint detection schemes.

1.4 Organization

The remainder of this article is organized as follows. Sec-
tion 2 introduces the downlinkMIMO-SCMA systemmodel.
Section 3 introduces the conventional separated detection
scheme, and describes our lightweight GNNs based en-
hanced separated detection scheme (LG-ESDS) in detail.
Section 4 presents and evaluates the simulation results. Fi-
nally, Sect. 5 presents the conclusions.

2. Downlink MIMO-SCMA System Model

Figure 1 illustrates a downlink MIMO-SCMA system with
J independent users multiplexed over K orthogonal REs,
achieving an overloading factor of λ = J/K . In this sys-
tem, the base station is equipped with Nt transmit anten-
nas, while each user is equipped with Nr receive antennas.
For the nt -th antenna of user u, where nt = 1,2, . . . ,Nt

and u = 1,2, . . . , J, the input log2 (M) binary bits bnt
u are

mapped into a K-dimensional complex codeword xntu =[
xnt
u,1, x

nt
u,2, . . . , x

nt
u,K

]T
, which is selected from the known

corresponding SCMA codebook Cnt
u ∈ CK×M with size

M . Based on the size of the codebook, each user can be
considered to have M possible transmission symbols (e.g.,
0,1, . . . ,M−1). Therefore, at the nt -th antenna, the transmit-
ted overlapping codeword corresponding to the transmission
symbols combination (TSC) of J users can be represented

Fig. 1 Architecture of downlink MIMO-SCMA system with J = 6, K =
4, M = 4, Nt = 2, and Nr = 2.



370
IEICE TRANS. COMMUN., VOL.E107–B, NO.4 APRIL 2024

as

xnt =
J∑

u=1
xntu . (1)

The received signal at the nr -th antenna of user j, where
j = 1,2, . . . , J and nr = 1,2, . . . ,Nr , can be expressed as

ynrj =
Nt∑
nt=1

diag
{
hnr ,nt
j

}
xnt + nnr

j , (2)

where hnr ,nt
j =

[
hnr ,nt
j ,1 , hnr ,nt

j ,2 , . . . , hnr ,nt
j ,K

]T
represents the

channel gain vector between the nt -th antenna of base
station and the nr -th antenna of j-th user, and nnr

j =[
nnr
j ,1,n

nr
j ,2, . . . ,n

nr
j ,K

]T
is the additive white Gaussian noise

(AWGN) with zero mean and variance σ2
nr
. By stacking the

signals at all Nr receive antennas together, we can obain the
received signal yj of user j, which can be expressed as

yj =

Nt∑
nt=1

J∑
u=1

diag
{
hnt
j

}
x̃ntu + nj, (3)

where

yj =

[(
y1
j

)T
,
(
y2
j

)T
, . . . ,

(
yNr

j

)T ]T
,

hnt
j =

[(
h1,nt
j

)T
,
(
h2,nt
j

)T
, . . . ,

(
hNr ,nt
j

)T ]T
,

x̃ntu =
[ (

xntu
)T
,
(
xntu

)T
, . . . ,

(
xntu

)T ]T
,

nj =

[(
n1
j

)T
,
(
n2
j

)T
, . . . ,

(
nNr

j

)T ]T
. (4)

3. Separated Detection Scheme for Downlink MIMO-
SCMA System

In Sect. 3.1, we commence by introducing the concept of
conventional separated detection algorithm. Following that,
we present a comprehensive and detailed exposition of our
novel LG-ESDS in Sect. 3.2.

3.1 Conventional Separated Detection Algorithm

Figure 2 illustrates the architecture of the conventional sepa-
rated detection algorithm, depicting four distinct categories
of nodes. These categories include RA nodes representing
the receive antennas, TA nodes denoting the transmit anten-
nas, R nodes embodying the REs, and U nodes signifying the
users. The conventional separated detection algorithm refers
to a two-step process, involving MIMO detection followed
by MPA decoding of the estimated signals obtained from
MIMO detection. During this process, MIMO detection
and MPA decoding are performed independently. However,
MPA necessitates numerous iterative loops, which hinders

Fig. 2 Architecture of conventional separated detection algorithm with J
= 6, K = 4, M = 4, Nt = 2, and Nr = 2.

meeting the low latency requirements of modern communi-
cation systems. Moreover, MPA relies on continuous mes-
sage exchange between R nodes and U nodes, resulting in
the transmission and reception of both relevant and irrele-
vant information. This makes it difficult to directly exploit
the effective information of the estimated signals. In light of
this, we propose the LG-ESDS for MIMO-SCMA systems.

3.2 LG-ESDS

In Sect. 3.2.1, we provide an introduction to the MIMO de-
tection algorithm: minimum mean square error (MMSE)
detectionn algorithm [8], which is utilized in our proposed
LG-ESDS. In Sect. 3.2.2, we provide a detailed description
of the concept of coordinate point relay, which enables the
replacement of MPA in SCMA decoding with GNNs based
image classification technology. Moving to Sect. 3.2.3, we
propose the concept of full-category training to enhance the
scientific and rigorous nature of the training process. Then,
we elucidate the logical derivation for optimizing GNNs pa-
rameters. Section 3.2.4 focuses on the experimental setup
and parameter configuration employed in our simulation ex-
periment. We present the model parameters of the MIMO-
SCMA system used and describe the specific structure of the
GNNs. Moreover, we outline the parameter settings of our
proposed LG-ESDS. While the detection scheme we have
proposed can be applied to larger MIMO-SCMA systems, it
is important to note that the design of codebooks for such
systems falls outside the scope of our study. Therefore,
we consider a downlink MIMO-SCMA system where differ-
ent transmit antennas employ the same mapping codebook.
Based on this, we only need to clarify how our proposed LG-
ESDS helps user j retrieve his own information transmitted
by the antenna nt .

3.2.1 MMSE Detection Algorithm

Based on Eqs. (3), a more simplified representation of yj can
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be achieved as

yj = Hjx + nj, (5)

where Hj =
[
h1
j ,h

2
j , . . . ,h

Nt

j

]
is the MIMO channel ma-

trix, x =
[ (

x1)T , (x2)T , . . . , (xNt
)T ]T

, and nj is the complex
Gaussian noise vector at j-th user with zero mean and vari-
ance σ2.

The fundamental principle of the MMSE algorithm is
to minimize the expected value of the mean square error be-
tween the estimated signal and the actual transmitted signal
[8]. Mathematically, this can be expressed as follows:

FMMSE = arg min
F

E


Fyj − x



2
, (6)

where FMMSE is defined as the objective function of the
MMSE algorithm. According to the principle of orthogo-
nality, we can derive

E
{(

FMMSEyj − x
)
yH

}
= 0, (7)

where yH is the conjugate transpose of yj . By combin-
ing Eqs. (5) and (7) and employing the principle of matrix
inversion, we can obtain the simplified expression

FMMSE =
(
HH

j Hj + σ
2IK

)−1
HH

j , (8)

where HH
j is the conjugate transpose of Hj , and IK is a K-

dimensional identity matrix. Therefore, the estimated signal
e obtained through the MMSE algorithm can be represented
as

e = FMMSEyj =
(
HH

j Hj + σ
2IK

)−1
HH

j yj, (9)

where e =
[ (

e1)T , (e2)T , . . . , (eNt
)T ]T

, and ent =[
ent1 , e

nt
2 , . . . , e

nt
K

]T represents the estimated value of the sig-
nal transmitted by the antenna nt .

3.2.2 Coordinate Point Relay

The realization of the coordinate point relay is accomplished
in the PyTorch environment, utilizing the matplotlib module
[16]. Wemap the first component, ent1 , of ent , including both
the real and imaginary parts (i.e., Re

(
ent1

)
and Im

(
ent1

)
), onto

a Cartesian coordinate system, resulting in the coordinate
point c1, which can be expressed as

(X1,Y1) =
(
Re

(
ent1

)
, Im

(
ent1

) )
, (10)

where (X1,Y1) represents the coordinate of c1. Based on this,
we can obtain the corresponding point c2 in the Cartesian
coordinate system for the second component, ent2 , of ent ,
that can be expressed as

(X2,Y2) = (X1,Y1) +
(
Re

(
ent2

)
+ RF, Im

(
ent2

) )
,

Re
(
ent2

)
+ RF > 0, (11)

where (X2,Y2) represents the coordinate of c2, Re
(
ent2

)
and

Im
(
ent2

)
represent the real and imaginary parts of ent2 , and

RF is the rightwalk factor (RF), which is a novel concept
proposed by us, ensuring that c2 lies to the right of c1. Simi-
larly, we can obtain the corresponding points in the Cartesian
coordinate system for the remaining K − 2 components of
ent . This can be expressed as

(Xz+1,Yz+1)= (Xz,Yz)+
(
Re

(
ent
z+1

)
+RF, Im

(
ent
z+1

))
,

(12)

where (Xz+1,Yz+1) represents the coordinate of cz+1 (z =
2,3, . . . ,K − 1), (Xz,Yz) represents the coordinate of cz ,
Re

(
ent
z+1

)
and Im

(
ent
z+1

)
represent the real and imaginary

parts of ent
z+1, and RF satisfies

Re
(
ent
z+1

)
+ RF > 0, (13)

where RF guarantees that cz+1 is positioned to the right of
cz . For a receiver with perfect channel state information
(CSI), the channel characteristic hnr ,nt

j is calculated instan-
taneously in real-time to evaluate the characteristics of the
channel. The module matplotlib.colors and the colormap
class in matplotlib allow for mapping floating-point numbers
in the range of 0 to 1 to color values. Leveraging this capabil-
ity, we can define the color value for the ck (k = 1,2, . . . ,K).
The floating-point number corresponding to the color value
of the ck is set as follows:

Nr∑
nr=1

sig
(���hnr ,nt

j ,k

���)
Nr

, (14)

where
���hnr ,nt

j ,k

��� represents the magnitude of hnr ,nt
j ,k

, and sig (·)
refers to the sigmoid activation function. By not dis-
playing the coordinate system and sequentially connecting
c1, c2, . . . , cK , with the connecting lines during this process
set to black, we obtain a K-point polyline graph with trend
features, as shown in Fig. 3. It is worth noting that, during
the process of handling the output of K-point polyline graph,
we have made efforts to retain only the relevant portion of
K-point polyline graph, thereby removing any excess blank
areas surrounding K-point polyline graph. A K-point poly-
line graph with excessively big size can result in increased
computational complexity for LG-ESDS, whereas a K-point
polyline graph with excessively small size may distort the
image. Therefore, the output format of the K-point polyline
graph is appropriately set as 3 * 32 * 32 by the figsize func-
tion [16], where “3” refers to the number of color channels
(i.e., red, green, and blue), and “32 * 32” specifies the size
of the image in terms of width and height in pixels.

The above represents the mapping process of a certain
K-point polyline graph. Considering J users, each with
M possible transmission symbols, there are a total of MJ

distinct types of K-point polyline graphs, corresponding to
the MJ types of transmission symbol combinations (TSCs).
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Fig. 3 Architecture of our proposed LG-ESDS with J = 6, K = 4, and M = 4.

The coordinate point relay can generate various types
of K-point polyline graphs, whose feature values include
crucial information required for decoding, such as the am-
plitude and phase of the estimated signals, as well as the
channel characteristics they have encountered. Additionally,
since the coordinate of ck+1 in the K-point polyline graph
are derived from ck , each type of K-point polyline graph ex-
hibits distinct trend features. RF ensures that the Euclidean
distance between the mapped coordinate points in the K-
point polyline graph is sufficiently large. This property is
beneficial for GNNs to differentiate between different types
of K-point polyline graphs.

3.2.3 Full-Category Training

In the MIMO-SCMA system, the overlapping codeword cor-
responding to the TSC transmitted by antenna nt is mapped
as a K-point polyline graph after MMSE detection and coor-
dinate point relay. Based on the one-to-one correspondence
between the types of TSCs and K-point polyline graphs,
we can obtain the corresponding type of K-point polyline
graph, by controlling the type of TSC transmitted by an-
tenna nt . The TSC corresponding to the K-point polyline
graph is treated as a J-bit M-ary number, which equals a
decimal value. And the decimal value is defined as the cat-
egory of the K-point polyline graph. This can be expressed
as follow

l =
J∑
j=1

mjMJ−j, (15)

where l is the category of the K-point polyline graph, mj

(m = 0,1, . . . ,M − 1) is the user j’s transmission symbol.
Unlike [12] which generates simulated data of TSCs

with random categories for training DNNs, our proposed
LG-ESDS adopts a full-category training approach. Specif-
ically, an equal proportion of each type of TSCs’ simulated
data is generated at the transmitter of the MIMO-SCMA
system, allowing GNNs to learn the features of all types
of K-point polyline graphs in a systematic manner. During
each communication process of generating the K-point poly-
line graph, we consider the dynamic changes of hnr ,nt

j and

perform real-time calculations accordingly to determine the
color value of ck .

In order to find the optimal Eb/N0 value for training,
we test the following scenarios in this paper.

• S: train the model using a Eb/N0 value of 6 dB
• M: train the model using a Eb/N0 value of 8 dB
• B: train the model using a Eb/N0 value of 10 dB

To classify a K-point polyline graph and predict the
log2(M) data bits for user j, we train the GNNs’ parameters
by minimizing the following loss function:

L (p,b) = −
MJ∑
i=1

bi log (pi), (16)

where function L (·) is the well-known cross-entropy loss,
p = [p1, . . . , pMJ ]

T is the output of GNNs’ softmax layer,
and b represents the corresponding one-hot label of the index
allocated by the class_to_idx function [16].

After successfully categorizing the K-point polyline
graph, user j maydetermine the associatedTSC since there is
a one-to-one correlation between the K-point polyline graph
and the TSC in categories. User j is able to recreate his own
original log2 (M) binary bits bnt

j after masking the transmis-
sion symbols of other users in the known TSC.

3.2.4 Model Configuration

In this letter, we consider a basic downlink MIMO-SCMA
system model with J = 6, K = 4, and M = 4. Regarding
the number of antennas, we also consider both cases of nt =
nr = 2 and nt = nr = 4 simultaneously. The components of
the channel gain vector hnr ,nt

j are modeled as independently
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and unit variance. Each method in
this letter is using the same codebook provided by [17]. The
whole K-point polyline graph set has 2,048,000 samples.
The batch size is set to 64, and the number of iterations is set
to 400. In order to minimize the loss function in Eqs. (16),
we adopt stochastic gradient descent (SGD) optimizer [18],
in which the learning rate is set as 0.002 and the momentum
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Table 1 Structure of modified version of the MobileNet model.

Fig. 4 Left: standard convolutional layer with batchnorm and ReLU.
Right: depthwise Separable convolutions with depthwise and pointwise
layers followed by batchnorm and ReLU.

is set as 0.9. The colormap utilized in the experiment is jet
[16], and the value of RF is determined in Sect. 4.2.

A modified MobileNet [15] model has been adopted as
the GNN, and its architecture is shown in Table 1. In the
structure of the GNN, apart from the first layer of convo-
lutional layers which is a full convolutional, all other con-
volutional layers are depthwise separable convolutional lay-
ers. The distinction between depthwise separable convolu-
tional layers and standard convolutional layers is illustrated
in Fig. 4.

4. Analysis of Simulation Results

In Sect. 4.1, we identify the optimal Eb/N0 value for LG-
ESDS training. In Sect. 4.2, we determine the optimum
value of RF for generating the K-point polyline graphs. In
Sect. 4.3, we compare the performance of our LG-ESDS
with the conventional separated detection algorithm and the
joint detection scheme on BER over different MIMO chan-
nel configurations. In Sect. 4.4, We evaluate the computa-
tional complexity of our LG-ESDS, along with the conven-
tional separated detection algorithm and the joint detection
schemes over the 2×2 MIMO channel.

Fig. 5 Find the optimal Eb/N0 value for the training of LG-ESDS over
the 2×2 MIMO channel.

Fig. 6 Find the optimal Eb/N0 value for the training of LG-ESDS over
the 4×4 MIMO channel.

4.1 Choice of the Optimal Eb/N0 Value

Figure 5 and Fig. 6 show the BER performance of the LG-
ESDS over the 2×2 and 4×4 MIMO channels respectively,
after it has been trained using each of the aforementioned
scenarios. During the experiment, the value of RF is tem-
porarily set as 5. The simulation results demonstrate that,
in comparison to the alternative scenarios, M emerges as
the optimal training strategy. Therefore the Eb/N0 value for
training is set as 8 dB in the rest of this work.

4.2 Determination of the Optimum Value of RF

We run simulations for each of the following three scenarios
to determine the optimum value of RF, over the 2×2 and 4×4
MIMO channels respectively.

• RFS: set the value of RF as 4
• RFM: set the value of RF as 5
• RFB: set the value of RF as 6

As shown in Fig. 7 and Fig. 8, the simulation achieves the
greatest outcomes in scenarioRFM.Therefore, in LG-ESDS,
the value of RF is set as 5.

4.3 BER Comparison

Figure 9 and Fig. 10 compare the BER performance of our
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Fig. 7 Determine the optimum value of RF over the 2×2MIMO channel.

Fig. 8 Determine the optimum value of RF over the 4×4MIMO channel.

Fig. 9 BER comparison of MMSE+MPA, SMPA and LG-ESDS over the
2×2 MIMO channel.

LG-ESDS with the conventional separated detection algo-
rithm (MMSE+MPA) and the joint detection scheme (Se-
rial Schedule strategy based MPA (SMPA) [10]) over the
2×2 and 4×4 MIMO channels respectively. Our LG-ESDS
consistently outperforms MMSE+MPA (8 iterations) across
different Eb/N0 values, and also achieves lower BER than
SMPA (5 iterations) at high Eb/N0 values. It is notewor-
thy that when the value of Eb/N0 exceeds 6 dB, as Eb/N0
increases, the BER performance of LG-ESDS compared to
SMPA becomes more significant. This can be explained that
compared to other MIMO-SCMA decoding strategies, our
LG-ESDS does not require continuous message exchange
between R nodes and U nodes, it can directly utilize the ef-
fective information of the estimated signals. Furthermore,
our LG-ESDS exploits more features (the trend features of
the K-point polyline graphs), which is beneficial for image
classification.

Fig. 10 BER comparison of MMSE+MPA, SMPA and LG-ESDS over
the 4×4 MIMO channel.

4.4 Complexity Analysis

The computational cost of conventional convolution can be
expressed as follows:

Ks · Ks · Nin · Nout · D · D, (17)

where Ks × Ks is the kernel size, Nin denotes the number
of input channels, Nout represents the number of output
channels, and D × D is the output feature map size. The
computational cost of depthwise separable convolution can
be expressed as follows:

Ks · Ks · Nin · D × D + Nin · Nout · D × D (18)

And the computational cost of fully connected layer can be
expressed as follows:

Nn · Nc, (19)

where Nn is the number of neurons in the fully connected
layer, and Nc denotes the number of neurons in the output
layer.

The computational complexity of the MMSE detection
and the generation of the K-point polyline graph can be con-
sidered negligible compared to the computational complex-
ity of the convolutional computation. Based on Eqs. (17),
Eqs. (18), and Eqs. (19), we calculate the computational
complexity of our proposed LG-ESDS and compare it with
MMSE+MPA (8 iterations), SMPA (5 iterations), and im-
proved maximum distance MPA (IMDMPA (3 iterations))
[11], as illustrated in Fig. 11. Our LG-ESDS exhibits lower
computational complexity compared to the other three de-
coding strategies. It should be mentioned that in order to
reach performance convergence, different decoding strate-
gies may require varying numbers of iterations. In order
to ensure fairness in our comparison of computational com-
plexity, we fix the number of iterations for each strategy to
be the bare minimum needed to achieve performance con-
vergence. Although our adopted GNNs in comparison to
the original version of MobileNet has undergone significant
simplifications, the extreme similarity in the distribution of
the same type of K-point polyline graph features ensures that
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Fig. 11 Computational complexity comparison ofMMSE+MPA, SMPA,
IMDMPA and LG-ESDS over the 2×2 MIMO channel.

our LG-ESDS can achieve the decoding performance illus-
trated in Sect. 4.3. It is worth mentioning that as the number
of antennas increases in the MIMO-SCMA system, the com-
putational complexity of various decoding algorithms also
significantly increases. In such cases, our LG-ESDS exhibits
even more pronounced advantages over other decoding al-
gorithms in terms of computational complexity.

5. Conclusion

We have proposed a lightweight GNNs based enhanced sep-
arated detection scheme to accomplish the multi-user de-
tection tasks at the receiver of the downlink MIMO-SCMA
systems. We have raised the concepts of coordinate point
relay and full-category training, which replacing the MPA
in SCMA decoding with GNNs based image classification
technology and offering a more methodical and rigorous
experimental approach. Our LG-ESDS achieves a balance
between computational complexity and BER performance,
outperforming other decoding algorithms.
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PAPER
SimpleViTFi: A Lightweight Vision Transformer Model for
Wi-Fi-Based Person Identification

Jichen BIAN† ,††, Student Member, Min ZHENG†, Hong LIU†, Jiahui MAO† ,††, Hui LI†,
and Chong TAN†a), Nonmembers

SUMMARY Wi-Fi-based person identification (PI) tasks are performed
by analyzing the fluctuating characteristics of the Channel State Information
(CSI) data to determine whether the person’s identity is legitimate. This
technology can be used for intrusion detection and keyless access to re-
stricted areas. However, the related research rarely considers the restricted
computing resources and the complexity of real-world environments, re-
sulting in lacking practicality in some scenarios, such as intrusion detec-
tion tasks in remote substations without public network coverage. In this
paper, we propose a novel neural network model named SimpleViTFi, a
lightweight classification model based on Vision Transformer (ViT), which
adds a downsampling mechanism, a distinctive patch embedding method
and learnable positional embedding to the cropped ViT architecture. We
employ the latest IEEE 802.11ac 80MHz CSI dataset provided by [1]. The
CSI matrix is abstracted into a special “image” after pre-processing and fed
into the trained SimpleViTFi for classification. The experimental results
demonstrate that the proposed SimpleViTFi has lower computational re-
source overhead and better accuracy than traditional classification models,
reflecting the robustness on LOS or NLOS CSI data generated by different
Tx-Rx devices and acquired by different monitors.
key words: Wi-Fi sensing, CSI, person identification, lightweight model,
vision transformer

1. Introduction

With the continuous evolution of Wi-Fi protocols [2], [3]
and the exponential growth of Wi-Fi devices, people are no
longer solely focused on using Wi-Fi for Internet access. In-
stead, there is an increasing demand for higher bandwidth,
more reliable connections, and improved service quality to
accommodate applications such as high-immersive gaming
and remote healthcare [4]. This shift has led to the emer-
gence of a more versatile and robust wireless communication
infrastructure that not only provides seamless connectivity
but also enables novel sensing and interaction capabilities.
It is widely recognized that Wi-Fi sensing plays a crucial
role in various tasks, including indoor activity recognition,
object sensing, and localization [5], [6]. By leveraging the
fine-grained channel variations captured in Wi-Fi CSI, re-
searchers can extract meaningful features that correlate with
real-world positions, actions, and states [7]. This capabil-
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ity paves the way for an array of novel prospects in the
domain of pervasive and context-aware computing applica-
tions, including intelligent residential environments, assisted
living arrangements, and advanced security systems [5], [8].
However, there exist challenges in achieving efficient Wi-Fi
sensing in resource-constrained environments. For instance,
remote substations in underdeveloped areas need to deploy
the intrusion detection system due to their critical energy
supply role and potential security risks. Conventional cam-
era detection is difficult to illuminate at night and to guar-
antee dead-end coverage, not to mention the large demand
for computing resources. Meanwhile, such substations often
lack public network coverage because of the remote location,
making it hard to access cloud servers for the deployment
of highly resource-intensive detection applications [9], [10].
In such scenarios, the lightweight and effective Wi-Fi-based
PI method is considered as a reliable alternative, which can
operate with local, limited resources [6]. We aim to ad-
vance the state-of-the-art of Wi-Fi sensing at the edge and
contribute to its broader applicability in challenging envi-
ronments. This will ultimately enable the deployment of
Wi-Fi sensing technologies in a wider range of real-world
scenarios, thus improving the efficiency and safety of criti-
cal infrastructure management [5].

At present, a multitude of research employsWi-Fi sens-
ing technology for various tasks. [11] introduces Wisleep,
a system that infers sleep duration using passively sensed
smartphone network connections from Wi-Fi infrastructure,
achieving comparable accuracy to client-side methods. An
unavoidable limitation, though, is a reliance on users car-
rying devices, while current research trends are shifting to-
wards device-free detection methods for greater convenience
and user comfort. [12] proposes Temporal Unet, a deep con-
volutional neural network for sample-level action recogni-
tion in the Wi-Fi sensing domain, enabling precise action
localization and real-time recognition. Nevertheless, this
paper does not address potential issues related to compu-
tational complexity and generalizability across diverse en-
vironments. [13] presents FewSense, a few-shot learning-
based Wi-Fi sensing system capable of recognizing novel
classes in unseen domains using limited samples, achiev-
ing high accuracy on three public datasets (SignFi, Widar,
andWiar) and improving performance through collaborative
sensing while limiting in the large model size, which may
render it unsuitable for computationally constrained environ-
ments despite its effectiveness in cross-domain scenarios.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Despite a great deal of research being conducted, there
is still a lack of studies on Wi-Fi sensing focusing on
resource-constrained environments. In this paper, we pro-
pose a novel neural network model named SimpleViTFi
based on ViT. This model performs well on person identifi-
cation tasks using CSI data generated from Wi-Fi devices.
Our developments are inspired by works in [8], [14]. The
developments can be concretely described as follows:
(1) Drawing inspiration from the ViT model in the field of

Computer Vision (CV), we propose a lightweight ViT
model with distinctive patch segmentation, downsam-
pling operation, reduced number of layers, and efficient
feature extraction capabilities, termed as SimpleViTFi,
specifically designed for PI tasks in the Wi-Fi sensing
domain under resource-constrained scenarios.

(2) We conduct a comparative analysis of the impact of two
types of position encodingmethods - the sin-cosmethod
and learnable embedding - on PI. The results show
that the learnable embedding method yields superior
performance, and we delve into a discussion attempting
to analyze the possible explanations for this outcome.

(3) We benchmark SimpleViTFi against several popular
models, including LeNet, ResNet18, and GRU. Sim-
pleViTFi significantly outperforms thesemodels onWi-
Fi-based PI tasks. Furthermore, we introduce an incre-
mental learning approach to further enhance the perfor-
mance and efficiency of SimpleViTFi, which requires a
little extra time and data to achieve robust performance
across different CSI datasets generated by variousWi-Fi
devices.
The structure of this paper unfolds as follows: Section 2

delves into a comprehensive discussion on related works.
Section 3 provides the detail of the proposed SimpleViTFi.
Section 4 shows the experimental setup and comparisons of
the results with existing works. Section 5 concludes this pa-
per and provides recommendations for some future research
topics.

2. Related Works

In this section, we survey the existing literature on Wi-Fi
sensing using CSI data. Research work in the Wi-Fi sens-
ing field bifurcates into two main directions: fundamental
model research and application-oriented research. From a
methodological perspective, there exists a gradual shift in fo-
cus from traditional statistical modeling methods to artificial
intelligence (AI) methods.

In terms of fundamental model research, Yang et al. [7]
propose an automatic Wi-Fi human sensing learning frame-
work called AutoFi, which can achieve automatic Wi-Fi hu-
man sensing with minimal manual annotation. AutoFi can
train a robust model from low-quality CSI samples, making
it easier to use Wi-Fi sensing technology in new environ-
ments. The paper also analyzes the main gaps between ex-
isting learning-based methods and practical Wi-Fi sensing,
proposing a novel self-supervised learning framework and a
new geometric structure loss function to enhance themodel’s

transferability. Extensive experiments are conducted on pub-
lic datasets and real-world scenarios, demonstrating the high
accuracy and robustness of the AutoFi method in automatic
Wi-Fi human sensing. In another study, Hernandez and
Bulut [15] present WiFederated, a federated learning ap-
proach for training machine learning models for Wi-Fi sens-
ing tasks. This method allows for parallel training at the
edge, enabling devices to collaboratively learn and share
location-independent physical behavior features. The au-
thors demonstrate that their method diminishes the necessity
for extensive data collection at each new location, offering
a solution that is more accurate and time-efficient compared
to both transfer learning and adversarial learning solutions.
Liu et al. [16] propose a deep learning-based Wi-Fi sensing
approach using a CNN-BiLSTM architecture to identify vig-
orous activities. This architecture can simultaneously extract
sufficient spatiotemporal features of action data and establish
the mapping relationship between actions and CSI streams,
thereby improving activity recognition accuracy.

In terms of application-oriented research, several ma-
ture systems have been developed, showcasing the unique
charm of Wi-Fi sensing in various fields. Tong et al. [17]
propose FreeSense, a combination of Principal Component
Analysis (PCA), Discrete Wavelet Transform (DWT) and
Dynamic Time Warping (DTW) techniques, using for CSI
waveform-based human identification. The identification ac-
curacy of FreeSense ranges from 94.5% to 88.9% when the
number of users changes from 2 to 6. Lin et al. [18] rep-
resent WiTL, a contactless authentication system based on
Wi-Fi CSI. It is devised using a transfer learning technology,
in combination with ResNet and the adversarial network, to
extract activity features and learn environment-independent
representations. WiTL achieves a great accuracy over 93%
and 97% in multi-scenes and multi-activities identity recog-
nition, respectively.

In spite of a few existing studies ofWi-Fi-based PI tasks,
they rarely consider the feasibility in resource-constrained
environments. Therefore, we would like to combine the
latest research based on Wi-Fi sensing and AI methods to
make innovations in resource-constrained PI tasks.

3. Methodology

3.1 Channel State Information

Channel State Information (CSI) [19] is a critical compo-
nent in Wi-Fi sensing systems. It represents the combined
effects of the wireless channel’s propagation properties, in-
cluding path loss, shadowing, and multipath fading, which
are affected by the environment and the presence of objects
or people. CSI can be modeled as channel impulse response
(CIR) in the frequency domain as

h(τ) =
L∑
l=1

αle jφl δ(τ − τl), (1)

where αl and φl respectively represent the amplitude and
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phase of the l_th multipath component, τl is the time delay,
L indicates the total number of multipath components, and
δ(τ) denotes the Dirac delta function. CSI has been widely
used inWi-Fi sensing research to exploit the rich information
it contains about the surrounding environment and human
activities.

CSI can be obtained from commodity Wi-Fi devices.
When a transmitter transmits a signal x, it is received by the
receiver as y = Hx + η, where η represents environmental
noise andH represents theCSI complex-valuedmatrix. Each
element in the matrix corresponds to the channel gain be-
tween a specific transmitter-receiver antenna pair in aMIMO
system. The matrix’s dimensions depend on the number of
transmitting and receiving antennas. In addition, the CSI
matrix is also influenced by the number of Orthogonal Fre-
quency Division Multiplexing (OFDM) subcarriers. The
more subcarriers, the finer the frequency resolution, which
allows for a more accurate representation of the channel
characteristics [20].

The CSI matrix H for a system with N transmitting
antennas and M receiving antennas can be represented as:

CSIN×M =


h11 h12 . . . h1M
h21 h22 . . . h2M
...

...
. . .

...
hN1 hN2 . . . hNM


(2)

In this representation, hi j is a complex vector that represents
the channel gain between the i-th transmitting antenna and
the j-th receiving antenna. The amplitude and phase of each
hi j can be calculated as follows:

Amp(hi j) = |hi j | =
√
Re(hi j)2 + Im(hi j)2 (3)

Pha(hi j) = ∠hi j = arctan
( Im(hi j)
Re(hi j)

)
(4)

3.2 Vision Transformer

Vision Transformer (ViT) [21], [22] has emerged as a pow-
erful and flexible approach for solving various CV tasks,
inspired by the success of Transformers in natural language
processing (NLP). ViT is a type of neural network archi-
tecture that can process images by dividing them into non-
overlapping patches and treating these patches as a sequence
of tokens, similar to how Transformers process texts.

The core component of ViT is the self-attention mecha-
nism, which allows the model to learn long-range dependen-
cies between different parts of the image. This mechanism
enables ViT to capture both local and global contextual in-
formation and adaptively focus on relevant regions in the
image.

ViT has demonstrated state-of-the-art performance on a
wide range of CV tasks, such as image classification, object
detection, and semantic segmentation [23], outperforming
traditional convolutional neural networks (CNNs). The flex-
ibility and expressiveness of ViT make them a promising

approach for various CV tasks, including those that require
fine-grained visual understanding and adaptability to differ-
ent input modalities [24].

In this paper, we treat the CSI matrix as a multi-channel
“image” and attempt to address the CSI-based PI tasks with
ViT. Fromour perspective, CSI images differ from traditional
RGB images in two aspects:
(1) The weights in CSI images are evenly distributed across

all pixels, unlike conventional images that typically
have a focal point and a background. The global re-
ceptive field of ViT can better capture the features of
CSI images due to this uniform distribution.

(2) CSI images have a temporal dimension, necessitating
a focus on the relationships and changes along this di-
mension. ViT, with its unique sensitivity to positional
relationships, is well-suited to this task.

Therefore, this paper aims to explore the potential of ViT in
the realm of CSI-based classification, hoping to uncover the
unique capabilities of this technology in handling such tasks.

3.3 SimpleViTFi

As shown in Fig. 1, we propose SimpleViTFi, which is de-
signed for processing CSI images with a focus on efficient
feature extraction and classification. SimpleViTFi is inspired
by the ViT and incorporates several key components with
data flow as shown by the bold red arrows. SimpleViTFi
comprises the following main components:

Patch Embedding: The input CSI matrix X ∈

RB×A×S×T is first downsampled and divided into non-
overlapping patches along the temporal dimension, where
the dimensions represent the number of antennas(A),
subcarriers(S), and the time sequence(T) respectively. Then
the patches are linearly embedded into a higher-dimensional
feature space. A Layer Normalization operation is applied
to the embedded patches. Unlike traditional image patch
segmentation methods, we do not partition the data along
the subcarrier dimension, as we prefer the model to focus on
the temporal dimension.

Position Encoding: Learnable positional embeddings
P ∈ RS×T are added to the patch embeddings to capture the
spatial relationships between the patches in SimpleViTFi.
There are two main types of positional embeddings:
(1) Fixed Positional Embbdings follow the original method

in [25], which are initialized with a sinusoidal function.
(2) Learnable Positional Embeddings are initialized ran-

domly and then updated through backpropagation dur-
ing the training process.

The CSI dataset involves complicated spatial and temporal
relationships across different antennas and subcarriers. This
multi-dimensional complexity could pose challenges to tra-
ditional sinusoidal position encodings such as the sin-cos
method used in the Transformer model, which provides a
fixed encoding based on the position of data points in the se-
quence. In contrast, learnable positional embeddings, added
to the patch embeddings to capture the spatial relationships
between time sequences, offer a more flexible approach. By
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Fig. 1 SimpleViTFi model.

Fig. 2 Test accuracy and inference time of two position methods.

allowing the model to learn the position embeddings from
the data itself, it could enable the discovery of more intricate
or subtle patterns in the sequence order, thereby improving
its ability to identify individuals.

We compare twomethodsmentioned above: the sin-cos
method and learnable embedding. Figure 2(a) shows that the
learnable embedding achieves a more consistent high rate of
accuracy within 20 replicate experiments, as it enables the
model to adapt to the specific patterns present in theCSI data.
Although using learnable embedding increases the number
of parameters and requires additional optimization during
training, it results in a shorter inference time compared to
the other as shown in Fig. 2(b). This is attributable to the
learnable embedding being computed in parallel, whereas
the sin-cos method requires sequential computation. The
combined embeddings can be represented as X′ = X+Pexp,
where Pexp ∈ RB×A×S×T is the expanded version of P.

Transformer Encoder: The combined patch and posi-
tional embeddings are fed into a Transformer encoder, which
consists of multiple layers of multi-head self-attention and
feedforward neural networks. In the experiments that fol-
low, we employ 2 layers of self-attention and feedforward
networks.

Pooling: Following the Transformer encoder, a global
average pooling operation is performed to aggregate the fea-

tures across the sequence dimension. This operation reduces
the dimensionality of the output and prepares it for the clas-
sification head. The pooled features can be represented as
Z = mean(X′,1).

Classifier Head: The pooled featuresZ are then passed
through a LayerNormalization layer, which can be repre-
sented as:

Znorm =
Z − E[Z]√
Var[Z] + ε

, (5)

where E[.] is the expectation operation, Var[.] is the variance
operation, and ε is a small constant for numerical stability.
The normalized features Znorm are subsequently processed
by a Linear layer that maps the features to the desired number
of output classes. This can be represented as:

Y =W

(
Z − E[Z]√
Var[Z] + ε

)
+ b, (6)

where W is the weight matrix and b is the bias vector of the
Linear layer.

The SimpleViTFi architecture is designed to be
lightweight and efficient while maintaining high perfor-
mance on the task of processing and classifying CSI matri-
ces. By leveraging the strengths of both Vision Transformers
and learned positional embeddings, the SimpleViTFi model
demonstrates the robustness and adaptability to various CSI
data patterns.

4. Experiment

4.1 80MHz CSI Dataset of IEEE 802.11ac

The datasets mentioned in [1], [14] consisting of three types
of datasets applicable to activity recognition (AR), person
identification (PI), and people counting (PC), are produced
by the University of Padova. Our focus is on the subset
dedicated to PI in this paper.
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Fig. 3 Devices and users’ positions in the meetingroom.

Table 1 Measurement conditions of the dataset.

Dataset Experiment Setup:As shown in Fig. 3, the
experiments are set within a meeting room. Two pairs of
devices are strategically positioned. Specifically:

• Tx1 communicates with Rx1, establishing a line-of-
sight (LOS) condition.

• Tx2 communicates with Rx2, resulting in a non-line-
of-sight (NLOS) condition.

Additionally, two monitors, M1 and M2, are positioned to
sniff and calculate the CSI data from both communication
links. Consequently, each monitor stores two distinct sets of
CSI data, named PI-1 – PI-4 shown in Table 1.

CSI Collection Method: An iPerf3 session is estab-
lished between each pair of Tx and Rx, transmitting at a
consistent rate of 173 packets per second. This rate cor-
responds to time intervals of approximately 6ms between
each packet. The monitors configure the Nexmon-CSI ex-
traction tool [26] to sniff packets continuously. The dataset
involves 10 participants, each of whom moves individually
and randomly within the colored areas in Fig. 3.

4.2 Data Preprocessing

Taking PI2_p03 as an example, this file represents the CSI
data of Participant-3 created by Tx2 and Rx2, which is mon-
itored by M1 in NLOS condition. It is a complex matrix
of size 187264 × 256, where 256 represents the number of
OFDMsubcarriers under the 80MHzbandwidth, and 187264
represents the CSI indices of 46816 packets obtained sepa-
rately by the four antennas. We preprocess this data file as

Fig. 4 CSI amplitude matrix.

follows:
(1) Load raw data and apply a Fast Fourier Transform shift

operation.
(2) Remove invalid subcarriers and zero-sum rows from the

CSI matrix, retaining 242 subcarriers.
(3) Calculate the number of complete groups of 4-antenna

CSI data.
(4) Due to hardware artifact, negate the data from the 64th

column onwards in each group.
(5) Convert the original complex values to amplitude values

by taking the modulus.
(6) Divide the matrix into submatrices of size (4, 242,

2000) using a boundary of 2000 packets, facilitating
subsequent analysis.

4.3 Experiment Setup

To demonstrate the effectiveness of the proposed method,
we use the dataset mentioned in 4.1, and implement the
SimpleViTFi based on Pytorch. Then, we conduct extensive
experiments to evaluate the performance of SimpleViTFi
concerning classification accuracy, model parameters and
inference time of PI task.

System Design: The edge server in resource-
constrained scenarios is simulated by the PC equipped with
one NVIDIA RTX 3060 GPU. To fully evaluate the perfor-
mance of SimpleViTFi and the others, we attempt to set up
multiple experiments comprising different data sets. Four
sets of experiments are set up as shown in Table 2. Specifi-
cally:
(1) Experiment 1: Utilizing 2

3 of the PI-1 dataset as the
training set and the remaining 1

3 as the test set, this
experiment aims to validate the model’s classification
ability in handling CSI data generated from LOS con-
dition.

(2) Experiment 2: By employing 2
3 of the PI-4 dataset

for training and the rest for testing, this experiment is
designed to assess themodel’s classification abilitywith
CSI data stemming from NLOS condition.

(3) Experiment 3: This experiment combines 2
3 of the PI-

1 dataset with 1
3 of the PI-3 dataset to form the training

set, while the remaining data serves as the test set. Both
PI-1 and PI-3 generate CSI data using Tx1 and Rx1
communication link but utilize different monitors. The
primary objective is to evaluate the model’s robustness
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Table 2 Experiment setup.

Table 3 Network design of SimpleViTFi.

to variations in devices’ locations.
(4) Experiment 4: Incorporating a mixed dataset from PI-

1 to PI-4, with 2
3 used for training and the remainder

for testing, this experiment seeks to gauge the model’s
resilience under the complexities of different devices
and different monitors.
Network Implementation: The network design has been

shown in Table 3. Note that Transformer Encoder is a se-
quence of 2 attention and feed-forward layers. The atten-
tion layer uses the scaled dot-product attention mechanism
with 8 heads, and the feed-forward layer is a two-layer fully
connected network with a hidden dimension of 2048 and a
GELU activation function in between. The model is trained
with the Adam optimizer with a learning rate of 0.0001 and
a weight decay of 0.1. The loss function used is CrossEn-
tropyLoss. Themodel employs an early stoppingmechanism
during training, which halts the training process if there is
no improvement in validation loss for 8 consecutive epochs,
preventing overfitting and ensuring better generalization.

Criterion: In our experiments, we evaluate and com-
pare the models based on three key metrics: the number of

training parameters, inference time, and identification accu-
racy. The identification accuracy is denoted as the ratio of
true predicted samples and all testing samples.

Baselines: We compare our method with three tradi-
tional methods. LeNet, as one of the earliest convolutional
neural networks, has made significant contributions to the
field of image classification, setting the foundation for future
advancements [27]. ResNet18, with its innovative residual
learning framework, has further improved the performance
of deep neural networks in image classification tasks, no-
tably reducing the training error [28]. On the other hand,
GRU (Gated Recurrent Unit) has shown exceptional perfor-
mance in time series prediction due to its efficient gating
mechanisms, which handle the vanishing gradient problem
and allow for long-term dependencies [29]. In light of our
approach where we interpret the Channel State Information
(CSI) matrix as an image, and considering the substantial
temporal correlations this ‘image’ embodies, we deem it
appropriate to draw comparisons with the aforementioned
methods.

4.4 Evaluation

The proposed SimpleViTFi is compared with baselines. Fig-
ure 5 illustrates the efficiency of SimpleViTFi in compari-
son to the others. Notably, SimpleViTFi demonstrates the
shortest average inference time clocking in at 1.338 ms
and requires the least number of parameters with a total
of 1,079,923, which makes it consume the fewest compu-
tational complexity and memory usage with high efficiency
for real-time tasks.

Following this, we examine the performance of Simple-
ViTFi on PI-1 (Experiment 1). In addition to the amplitude-
based results shown in Fig. 6, we also incorporate phase-
based results shown in Fig. 7. However, the phase-based re-
sults are not as anticipated. For all four models, the accuracy
barely surpasses 25%, indicating that the models are virtu-
ally non-functional with the phase value. We believe that
the potential reasons for this could be the inherent instabil-
ity and sensitivity of phase to environment. Under complex
multipath effects, the phase undergoes multiple cumulative
changes, making it highly unstable. This heightened sensi-
tivity can lead the model to overfit, making it challenging to
capture essential features.

Returning to the amplitude-based results, as presented
in Fig. 6, SimpleViTFi outperforms the others, achieving the
highest accuracy on the test set. The box plot visualizes the
range and distribution of accuracy scores achieved by Sim-
pleViTFi and the others across multiple runs. The central
line in the box plot represents the median accuracy, which
for SimpleViTFi is an impressive 0.9566, about at least 10%
higher than the others such as 0.8525 for ResNet18. The
box itself spans from the first quartile (Q1) to the third quar-
tile (Q3), representing the interquartile range (IQR). For
SimpleViTFi, Q1 is 0.91037 and Q3 is 0.9566. This range
captures the middle 50% of accuracy scores, providing a
sense of the model’s consistency. This consistency, coupled
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Fig. 5 Train parameters and inference time per batch.

Fig. 6 Test accuracy of Experiment 1 with amplitude values. TrainSet
and TestSet consist of PI-1.

Fig. 7 Test accuracy of Experiment 1 with phase values. TrainSet and
TestSet consist of PI-1.

with the high median accuracy, underscores the robustness
of SimpleViTFi, indicating that it consistently delivers high
performance under various conditions.

In Experiment 2 shown in Fig. 8, similar trends are ob-
served. The two experiments utilize CSI data generated from
two distinct sets of devices. After training on their respec-
tive train sets, the model achieved commendable results on
their test sets, with classification accuracies exceeding 95%.
This indicates that SimpleViTFi is adept at adapting to both
LOS and NLOS scenarios. Furthermore, the results from the
NLOS condition in Experiment 2 even surpass those from
the LOS condition in Experiment 1. This suggests that the

Fig. 8 Test accuracy of Experiment 2 with amplitude values. TrainSet
and TestSet consist of PI-4.

Fig. 9 Test accuracy of Experiment 3 with amplitude values. TrainSet
and TestSet consist of PI-1 & PI-3.

Fig. 10 Test accuracy of Experiment 4 with amplitude values. TrainSet
and TestSet consist of PI-1 & PI-2 & PI-3 & PI-4.

model might be benefiting from the distinct noise character-
istics introduced by different devices.

We get similar results through Experiments 3 and 4.
Through analyzing the box plots from Fig. 6 to Fig. 10, it
is obvious that SimpleViTFi not only gets a high median
accuracy but also demonstrates consistent performance, as
indicated by the relatively small IQR, either on individual or
mixed data sets generated by different devices or acquired
by different monitors.

In conclusion, our experiments showcase the superior
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performance of the SimpleViTFi model in terms of both
user identity recognition accuracy and inference time. By
outperforming traditional methods, the SimpleViTFi model
demonstrates its robustness and adaptability to various CSI
data patterns.

4.5 Insights and Analysis

In the preceding subsections, we detail the architecture, Im-
plementation, and evaluation of SimpleViTFi. Although the
quantitative results indicate the model’s efficacy, it is es-
sential to dive deeper into the underlying mechanisms that
contribute to its performance. In this subsection, we try
to elucidate some of the key factors that are pivotal for the
observed results.
(1) Model Architecture: SimpleViTFi employs a ViT-

based architecture, which fundamentally differs from
traditional convolutional (such as LeNet and ResNet18)
and recurrent (such as GRU) neural networks. Sim-
pleViTFi utilizes self-attention mechanisms to process
input data. The self-attention mechanism is computa-
tionally expressed as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (7)

where Q, K, and V are the query, key, and value ma-
trices, respectively, and dk is the dimension of the key.
The self-attention mechanism allows each element in
the input sequence to focus on other parts, governed by
the weight calculated in the softmax term.
The self-attention mechanism’s ability to weigh and
capture relationships between different parts of the in-
put is particularly crucial for tasks involving WiFi CSI.
In the context of CSI “images” classification, these re-
lationships can be both spatial, as in different antenna
pairs, and temporal, as in different time slots. There-
fore, the self-attention mechanism, defined by the for-
mula above, enables SimpleViTFi to capture these com-
plex relationships efficiently.
On one hand, convolutional models struggle to cap-
ture the long or short-range dependencies inherent in
time series data. On the other hand, while GRU can
capture these temporal features, it computes in a time-
step manner. In contrast, the self-attention mechanism
stands out with its ability to address these challenges,
offering both flexibility and parallelized computation.
This makes SimpleViTFi highly effective and efficient
in handling tasks that involve both spatial and sequential
data.

(2) Feature Representation Capability: In traditional
CNN architectures, the receptive field is generally lo-
calized, focusing primarily on capturing local features
such as edges and textures. In contrast, SimpleViTFi
leverages self-attention mechanisms to offer a dynamic
receptive field, which allows the model to adaptively
adjust its focus and capture features at various scales

Fig. 11 Loss curve of incremental SimpleViTFi and normal SimpleViTFi.

and complexities. The dynamic nature of its receptive
field enables SimpleViTFi to integrate both local and
global information more effectively, thereby providing
an extra layer of flexibility and power in representing
features.

(3) Training and Implementation Efficiency: A signifi-
cant advantage of SimpleViTFi lies in its efficiency. By
utilizing only two transformer layers, the model inher-
ently has fewer parameters as shown in Fig 5. This
streamlined architecture not only expedites the training
process but also ensures a swift inference time. Fur-
thermore, the inherent parallel computation capability
of the architecture further boosts the inference speed.
As a result, SimpleViTFi boasts the shortest inference
time among the four models, making it highly suitable
for real-time applications.

(4) Robustness to Noise and Deformation: SimpleViTFi
incorporates dropout layers in both the FeedForward
and Attention modules. Dropout is a regularization
technique that helps prevent overfitting, especiallywhen
the model might be exposed to sharp noise features in
the data. Meanwhile, self-attention mechanism offers
a more adaptive response to noise compared to other
methods. Furthermore, the parallel processing capa-
bility ensures that SimpleViTFi remains resilient even
when faced with temporal distortions in the data.

4.6 Incremental Learning

Based on the SimpleViTFimodel trained in Experiment 3, we
implement incremental learning [30]–[32] by training with
a small amount of data from PI-4. As presented in Fig. 11,
the loss curve of the incremental learning model converges
faster than the normal one. Meanwhile, the accuracy of the
incremental learningmodel is higher under the same training
conditions.

5. Conclusion

In this paper, we introduce a novel Wi-Fi sensing method,
SimpleViTFi, designed for Wi-Fi-based PI in cross-device
sensing scenarios. To address the limitations of existing al-
gorithms, we develop a lightweight neural network model
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Fig. 12 Test accuracy of incremental SimpleViTFi and normal Simple-
ViTFi.

based on ViT with learnable embedding. The original CSI
data are generated by 2 pairs of Netgear and TP-Link Wi-Fi
devices, which enable a single antenna to enforce the com-
munication over a single spatial stream. The packets trans-
mitted over-the-air by the Tx are monitored by 2Asus routers
equipped with 4 antennas and then form 4 folders contain-
ing both LOS and NLOS scenarios. Subsequently, we train
the proposed SimpleViTFi under 4 experimental conditions,
utilizing data generated by different devices or acquired by
different monitors. Extensive experiments demonstrate that
SimpleViTFi achieves state-of-the-art performance in test
accuracy, inference time and model parameters compared to
baseline methods (LeNet, ResNet18 and GRU). Finally, we
experiment with incremental learning to obtain a new model
at a low cost. Here, a SimpleViTFi model initially trained
on one set of devices is subjected to incremental training
on another set of devices with a small amount of additional
data. The results show that better accuracy and faster con-
vergence are gained compared to training directly with data
from another set of devices.

In the future, we have several avenues of exploration
to further enhance our research. Firstly, we plan to propose
a new method of position encoding that is better adapted
to the CSI-based classification. Our experiments have un-
derscored the significant impact of this aspect on the results.
Furthermore, we aim to delve deeper into the potential of uti-
lizing various CSI parameters, such as phase values, Doppler
shifts and AoA, to improve the model’s performance. In ad-
dition, we intend to test our model onWi-Fi devices based on
OpenWrt and then conduct pilot tasks in substations within
the State Grid of China. By pursuing these avenues, we hope
to further refine our model and broaden its applicability, ul-
timately contributing to the advancement of Wi-Fi sensing
technologies.
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