
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024
387

PAPER
High-Throughput Exact Matching Implementation on FPGA with
Shared Rule Tables among Parallel Pipelines

Xiaoyong SONG† ,††a), Zhichuan GUO† ,††b), Xinshuo WANG† ,††c), and Mangu SONG† ,†††d), Nonmembers

SUMMARY In software defined network (SDN), packet processing is
commonly implemented using match-action model, where packets are pro-
cessed based on matched actions in match action table. Due to the limited
FPGA on-board resources, it is an important challenge to achieve large-
scale high throughput based on exact matching (EM), while solving hash
conflicts and out-of-order problems. To address these issues, this study
proposed an FPGA-based EM table that leverages shared rule tables across
multiple pipelines to eliminate memory replication and enhance overall
throughput. An out-of-order reordering function is used to ensure packet
sequencing within the pipelines. Moreover, to handle collisions and in-
crease load factor of hash table, multiple hash table blocks are combined
and an auxiliary CAM-based EM table is integrated in each pipeline. To
the best of our knowledge, this is the first time that the proposed design con-
siders the recovery of out-of-order operations in multi-channel EM table
for high-speed network packets processing application. Furthermore, it is
implemented on Xilinx Alveo U250 field programmable gate arrays, which
has a million rules and achieves a processing speed of 200 million opera-
tions per second, theoretically enabling throughput exceeding 100 Gbps for
64-Byte size packets.
key words: field programmable gate arrays (FPGA), match-action table,
exact matching, hash table, hash collision, CAM

1. Introduction

In software defined network (SDN), most network functions
are implemented based on match-action table (MAT) model.
InMAT, the specific fields of data packets are extracted as key
to probe the matching table, and the action instructions that
should be executed are obtained after successful matching
[1], [2]. Exact matching (EM) table plays an important role
and is widely used in packet processing applications such
as packet inspection [3], packet classification [4] and flow
monitoring [5] etc. The processing speed of network pack-
ets and the scale of networks are increasing continuously,
along with higher processing performance requirements for
switch devices, which also demand higher performance and
scalability to exact matching tables.

Manuscript received August 18, 2023.
Manuscript revised October 18, 2023.
Manuscript publicized January 30, 2024.
†The authors are with the National Network New Media Engi-

neering Research Center, Institute of Acoustics, Chinese Academy
of Sciences, Beijing 100190, China.
††The authors are with the University of Chinese Academy of

Sciences, Beijing 100049, China.
†††The author is with Suzhou Haiwang Network Technologies

Co., Ltd., China.
a) E-mail: songxy@dsp.ac.cn
b) E-mail: guozc@dsp.ac.cn (Corresponding author)
c) E-mail: wangxs@dsp.ac.cn
d) E-mail: songmg@dsp.ac.cn
DOI: 10.23919/transcom.2023EBP3140

Field programmable gate arrays (FPGA) has significant
advantages in terms of programmable flexibility and par-
allel processing, and various network functions are being
offloaded to FPGAs for accelerated processing [6]. How-
ever, neither EM nor content addressable memory (CAM)
is on an FPGA. User needs to design and implement the
matching table based on on-board resources. On FPGA, the
mainly methods to implement exact matching table include
hash-based methods and CAM-based methods. The exact
matching table based on CAM consumes huge resource and
has a low memory efficiency [7]. EM table based on hash
has higher memory efficiency, but there are problems such
as hash collision, insertion difficulty, and nondeterministic
worst case latency [8], [9]. Moreover, both methods will
face difficulties in achieving a large depth or large width EM
on FPGA with a high speed.

In order to improve the throughput of the matching ta-
ble, some designs employ multiple parallel channels. How-
ever, it also brings the problem of memory replication [10],
resulting in huge on-chip storage consumption. Some multi-
channel designs [11], [12] without storage replication also
have the problems of low hash table load factor. Moreover,
different from the out-of-order execution of a general Key-
Value System (KVS) in database, it is necessary to maintain
the sequence order of packets in most of network packet pro-
cessing applications. Hence, the issue of uncertain process-
ing latency or packets out-of-order should also be considered
in network matching table application.

To implement a large-scale high-throughput exact
matching table and solve the problems of hashing collision
and out-of-order among multiple pipelines, this paper pro-
poses a multi-channel exact matching table with shared rule
table, which can improve the processing speed of the match-
ing table without memory replication. Especially, it would
rearrange the out-of-order matching results after processing
to ensure a correct sequence, which avoids packets out-of-
order or error in network. The main contributions of this
work are as follows:

• This paper proposed an FPGA-based exact matching
implementation that leverages shared rule tables across
parallel pipelines to enhance overall throughput with-
out memory replication. The implemented EM table
based on FPGA could insert a million rules, which has
good scalability and achieves a processing speed of 200
million operations per second, theoretically enabling
throughput exceeding 100 Gbps for 64-Byte size pack-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

388
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

ets.
• An out-of-order reordering function to recover the order
of matching results within the pipelines to maintain
packet sequence in network packet processing.

• A compact CAM-based exact match table is incorpo-
rated alongside the primary hash-based EM tablewithin
each pipeline to handle hash collisions, which ensures
the important rules can be inserted into rule tables.

2. Exact Match Table Overview

2.1 Match-Action Model

As Fig. 1 shown, match-action model is the mainstream
framework to process data packets in data plane of pro-
grammable devices. At each processing stage of data pack-
ets, the feature match filed in the packet is extracted as Key
and used for MAT table lookup operation [2], [13]. The
action engine then executes actions based on the result of
the table lookup. Among the various types of MAT tables
used in packet processing and pattern matching, the exact
matching table is commonly employed.

There are two main ways to implement EM on FPGA,
which is hash-based EM like [10] and CAM-based EM like
[14]. Both hash-based and CAM-based exact matching
tables have O(1) lookup performance. In contrast, hash-
based EM has higher storage utilization efficiency, while the
SRAM-based CAM has low storage utilization. However,
CAM-based EM does not have the problem like hash colli-
sion or insert difficulty, etc.

2.2 Hash-Based Exact Match Table

The hash-based exact match table shown in Fig. 1(a) is a
fast and efficient data structure that stores Key-Value pairs in
the {Vld, Key, Value} data structure in each address space.
During inserting or querying, the Key is hashed to generate
the corresponding address index, and then the data structure
is stored at the address or retrieved for comparison, ultimately
yielding the corresponding value.

Fig. 1 Basic scheme of match-action model. (a) Architecture of hash-
based exact match table. (b) Architecture of CAM-based exact match table.
(c) Architecture of non-collision exact match table.

2.3 CAM-Based Exact Match Table

Content Addressable Memory (CAM) is a type of memory
that enables fast content queries and has the advantage of
fast search rate. As Fig. 1(b) shown, in CAM-based exact
matching table, the key is entered into CAM to get the match-
ing information matchlines which contains all match result
of each address unit, and the match address index is encoder
by Priority Encoder. Finally, this address is used to read the
corresponding Value from the Value Store.

2.4 Non-Collision Exact Match Table

The probability of collision depends on the hash function,
which is not possible to be perfect, especially in the case of
random and frequently updatable data [7]. In order to solve
the hash conflict, the cuckoo hash [9], multiple level hash
table [10] or chaining [15], adding auxiliary storage [5], [12],
[16], and other solutions have been proposed. Figure 1(c)
shows a non-collision exact match table combinedwith hash-
based EM and CAM-based EM. The rule entry is firstly
inserted into hash-based EM table. If a collision occurs,
the conflicted entry is then inserted into the CAM-based
EM table. This hybrid structure leverages the benefits of
both CAM and hash-based techniques to ensure efficient and
collision-free matching.

3. Architecture

Although hash table has good scalability and high resource
utilization, implementing a high-performance EM table on
FPGA is still a challenge, especially when the size of table
is large. It is difficult to perform matching with sufficient
throughput for wire-speed processing. For instance, in a
100Gbps high-speed network, at least 148.8 million of 64B
size packets per secondmust be processed tomeet processing
speed requirements, which means the operation throughput
of matching table should not be lower than 148.8 million.

The core idea of increasing the processing speed is to
maximize the number of operations processed per clock cy-
cle. Usually, the processing speed is increased by boosting
the main frequency of system or utilization of multiple paral-
lel pipelines [17]. It is not easy to improve the frequency on
FPGA, especially when the entire system is complex and the
table size is large. The problem faced by multiple parallel
pipelines is that it requires multi-port memories or memory
replication to store each rule several times, which consumes
more storage resources. Due to the limited resources on
FPGA, it is not feasible to use the method of memory repli-
cation when implementing a very large scale matching table.

3.1 Parallel Shared Hash Table with CAM Structure

To avoid storage replication and increase the number of en-
tries processed in a single clock cycle, we optimize themulti-
level hash pipeline structure to multiple parallel pipelines

SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
389

Fig. 2 Overall architecture of exact table with 4 parallel pipelines.

structure. Additionally, multiple CAM tables were adopted
to handle hash conflicting.

All pipelines share all rules stored in the entire exact
matching table, and each rule is only stored once timewithout
backup. The table in each pipeline can be accessed by the
operation from its neighbor pipeline if needed. For each key,
there is a probability that they will be inserted or matched in
the hash table set of each pipeline. If the operation succeeds
in a hash table set, there is no need to access other tables in
other pipelines. Meanwhile, the tables in other pipelines can
process other operations. In the worst-case scenario, when
all EM tables in all pipelines need to be accessed for each
key, the throughput of the entire EM table is the same as that
of a single pipeline. In the best scenario, all operations are
succeed in the first hash table set they access, and the entire
exact matching table could handle P operations in each clock
cycle. However, for most cases, 1 ≤ p ≤ P, where p is the
number of operations EM can process in a clock cycle and
P is the number of pipelines.

In the entire EM table, there are P parallel pipelines,
each consisting of a set of hash table blocks as the main
storage and a CAM-based EM table as auxiliary storage.
Figure 2 shows the architecture of our EM table with four
parallel pipelines. Multiple hash functions and hash table
blocks are used in each hash table set to reduce the hash col-
lision rate. To avoid the uncertainty in insertion time caused
by cuckoo hashing, we select an empty address space from
multiple alternative addresses in parallel, and the conflicted
new entry would be inserted in other hash table sets instead
of replacing existing entries if there is no empty alternative
address in current hash table set. Entries failed inserted into
all hash tables are eventually inserted into CAM. In order
to maintain the sequence of packets and ensure a constant
search latency, there is a Reorder module behind the hash
table sets and CAM tables to return the searched key and
matched result to its own input pipeline, and unify the la-
tency of each search key according to its operation path.

3.2 Hash Table Block and Hash Table Set

In each pipeline, there is a set of hash-based EM table blocks,

here called the hash table set. Each hash table set consists
of M hash table blocks, and these hash table blocks are
independent and store Key-Value pairs in their address units
with the entry structure of {Vld, Key, Value}. If Vld is ‘1’,
it indicates the entry structure is valid and the slot in hash
table block has been used.

3.2.1 Class H3 Hash Function

The performance of a hashing scheme depends on the colli-
sion handling method and the hashing function chosen [18].

Class H3 hash algorithm [8] was used to perform the
hashing operation on the key, which has been demonstrated
to be effective on distributing keys randomly [10]. Let i
denotes the number of bits for input key, and j denotes the
number of bits for hash index. Let Q denotes a i × j Boolean
matrix. For a given q ∈ Q, let q(m) be the bit string of the
mth row of Q, and let x(m) denote the mth bit of input key.
The hashing function h(x) : A→ B is defined as

h(x) = (x(1) ·q(1))⊕(x(2) ·q(2))⊕ . . .⊕(x(i) ·q(i)). (1)

Compared to other hashing algorithms like Toeplitz
[19], the H3 algorithm not only ensures uniformity and fast
computation but also consumes fewer logic resources when
implemented on an FPGA. The hardware which stores H3
matrix can be organized in a bank of registers. The same
hardware can realize any desired hashing function from this
class and the hashing function can be changed dynamically
by loading data into the bank of registers if needed [18].
To improve the clock frequency, the hashing operation is
pipelined and completed within two clock cycles.

3.2.2 Hash Collision Handling

To reduce hash collisions, an independent H3 hash matrix
is set for each hash table block, and the entire EM table has
P × M H3 hash matrices and P × M hash function units.
If a hash collision occurs during insertion, the new entry
would select another empty slot to insert, instead of replacing
the original entry like cuckoo hashing. In each hash table
set, M hash function units perform hash calculations on the
same key parallelly, and then choose an address without hash
conflict from the M candidate addresses for insertion. With
an increasing number of hash table blocks in each hash table
set, the hash collision rate would be reduced significantly,
which would be explained further in Sect. 4.1. If there is
no empty candidate address in the current hash table set,
the insertion operation proceeds to the hash table set of the
next pipeline. If all hash tables fail to insert, the conflicting
entries are stored in the CAM table finally.

3.2.3 Operations

• Insert: As illustrated in Fig. 3, for each hash table set,M
hash function units in this set first generateM candidate
addresses for the key during entry insertion. Then the

390
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 3 Insert process of hash table set.

Fig. 4 Query process of hash table set.

entry structure stored in the candidate address of each
hash table block is read. If the Vld bit in entry structure
is ‘0’, the address is empty, and ‘1’ indicates that this
address space has been already in use. The Collision
handling logic selects a hash table block with empty
candidate address to insert. Write logicwrites the entry
structure of new entry into the corresponding address
of the selected table.

• Query: As illustrated in Fig. 4, after hashing calculation
and entry structure reading, the queried key is compared
with all keys in valid entry structures. After comparing,
Compare logic encodes all comparison results and gets
the matching address, and then the matching value is
selected according to the matching address.

• Delete: Performs a query operation firstly. After the
matching is successful, the content of the matching ad-
dress is written to 0 to delete the entry.

3.3 Auxiliary CAM Tables

Even if we use multiple hash functions and multiple hash
table blocks to reduce the probability of hash collisions, a
perfect hash function does not exist. To avoid situations
where important rules cannot be inserted into hash tables
due to hash conflicts, we handle this problem by adding
auxiliary storage, namely a small depth CAM-based EM
table for storing entries that cannot be inserted into the hash

Fig. 5 Timeline of the operation (H: Hash Table Set. C: CAM Table. K:
Operation Key. H0, H1, H2, H3 are the four hash table sets in Fig. 2, and
C0, C1, C2, C3 are the four CAM tables in Fig. 2. K0, K1, · · · , K13 are
the operation keys into the tables).

table.
The CAM here is implemented using the transposed

SRAM method [20]. In the implementation of this method,
key is used as write or read address, and matchlines contain-
ing entry address information are stored in SRAM.Thewidth
of matchlines is equal to the depth of CAM, with each ad-
dress space corresponding to a single bit in matchlines. For
a given key, if a particular bit in its correspondingmatchlines
is ‘1’, it means that the address is a matching address.

Theoretically, the depth of CAM depends on the prob-
ability of hash collision, and a detailed analysis will be pro-
vided in Sect. 4.2. Here, we assume that the total CAMdepth
requirement isCdepth . Figure 5 illustrates the timeline of the
operation in the EM table. When a keyK enters thematching
table, it will appear in the timeline and the grid in Fig. 5. The
white grid indicates that the operation of K is not completed
yet, and it needs to continue entering the next hash table
set or CAM table to try its operation with the loop order of
Pipe 0→ Pipe 1→ Pipe 2→ Pipe 3→ Pipe 0. The green
grid indicates that the operation of K has been successfully
completed or all tables have been accessed. For each key, if
its operation is failed in all hash tables, it would further enter
into CAM table. The key failed to do operation in a CAM
table would access the next CAM table with the same loop
order ofCAM 0→ CAM 1→ CAM 2→ CAM 3→ CAM 0.
For instance, the operation of K1 is failed in all hash table
sets and it finally completes its operation in CAM table 0. To
avoid the worst-case scenario which shown in Fig. 5, when
all hash table sets in multiple pipelines need to insert con-
flicting entries into CAM simultaneously (K10, K11, K12,

SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
391

Fig. 6 Architecture of CAM-based EM table.

and K13), we place a CAM table after each hash table set
in each pipeline. The key of K10, K11, K12, and K13 are
failed to do their operation after traversing all hash tables
in four pipelines. After the first Reorder module behind the
hash tables in Fig. 2, K10 ∼ K13 enter into the CAM tables
with their corresponding pipelines. The depth of the CAM
in each pipeline CD = Cdepth

P , where P is the number of
pipelines or the number of hash table sets.

By combining CAM-based EM tables with hash-based
EM tables, it can address potential hash conflicts and ensure
that important rules are correctly inserted into the match
table.

3.3.1 Address Spaces Management

As shown in Fig. 6, for each CAM table there is a bitmap
CAMVld vector which records the usage status of each CAM
address space. ‘0’ means that the space is already in use,
while ‘1’ means that it is available for use. When inserting
an entry into CAM, the address index generator allocates an
empty address space to this entry by the vld bitmap and a
priority encoder. After an entry is deleted, the corresponding
address vld bit corresponding would be set to ‘1’ again,
indicating this address can be reallocated.

3.3.2 Operations

• Insert: After generating the write index, the new con-
tent of the entry is generated based on the write index
(new content = 1 << write index). In the same
time, the original content in the address of writing key
should be read out as old matchiline. The new content
and old matchiline perform the or operation to generate
the new matchiline written into CAM. New matchiline
= old matchlines | new content. Use the entry key as
write address, write this new matchiline into the CAM.
At the same time, write the corresponding value into
value store at the write index. Set the corresponding bit
in the vld bitmap to ‘0’ to indicate the address is now in
use.

Fig. 7 State structure across EM pipelines.

• Query: During a query, the key is used as the read
address to read thematchlines stored inCAM.Apriority
encoder is used to encode thematchlines and obtain the
matching index. If the address space is in use, read the
corresponding value stored in this address space from
the value store.

• Delete: After completing the query operation, clear the
content of corresponding bit in matchlines at the key’s
address in CAM and also clear the content at the cor-
responding index of the value store. Set corresponding
bit in bitmap to ‘1’, indicating that it can be used again.

3.4 State Structure across Pipelines

In addition to entry structure stored in EM table, a custom
data structure is maintained and transferred among pipelines
to record the status and data path of each operation, here we
call it state structure. As shown in Fig. 7, this state structure
has a length of 8 bits, and each sub-field is defined as follows:

• [0]: Succeed – Indicates whether the operation of an
entry is successful. It is set to 1 if the entry has been
successfully inserted or if a query has been successful.

• [2:1]: Option Code – Specifies the operations to be
performed on this entry. 2’b00 indicates no operation,
2’b01 indicates insertion, 2’b10 indicates deletion, and
2’b11 indicates query.

• [6:3]: Pipeline State – A 4-bit bitmap represents the
status ofwhether pipelines or tables have been accessed.
1’b0 indicates that the table has been accessed, and
1’b1 indicates that table has not been accessed. For
example, 4’b1011 indicates that the entry is entered
from Pipe 2 and the table in Pipe 2 has been accessed.
If further access is needed, the next step is to jump to
Pipe 3 → Pipe 0 → Pipe 1 for access until operate
succeed or all pipelines have been accessed. For table
entries that have not been successfully operated in hash
tables, this field will be restored to its initial state of
4’b1111 before entering CAM tables.

• [7]: To CAM - Determines whether to insert an entry
into the CAM when insertion fails in all hash tables.
1’b0 means the entry can be directly discarded when
insertion fails in hash tables, while 1’b1 means the
entry should still be inserted into the CAM if needed.

As a key is queried or a Key-Value is inserted into the
EM, the hash table or CAM table performs the operation
based on its Option Code. If the current pipeline executes
successfully, it directly jumps out of the table and enters the
Reordermodule. Otherwise, if there is another pipeline table

392
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

that has not been accessed according to the Pipeline State, it
continues to jump to the next pipeline table for corresponding
operation.

Once the hash table or CAM table of each pipeline
completes its operation, it modifies the corresponding bit in
thePipeline State of the pipeline for that pipeline and updates
the Succeed bit based on the operation success. Additionally,
Reorder would control the exit time of each entry according
to its Pipeline State, which ensures the processing latency of
each entry is equal.

For a query entry, the state structure is propagated along
the query entry until the matching result gets used. However,
when inserting an entry, once the insertion is successful, the
structure will not propagate backwards further.

3.5 Rearrange Out-of-Order

According to the previous design, when an entry completes
the query operation in a hash table set or a CAM table,
it will carry its state structure away from the table to allow
more new entries to access thematching table for processing.
Since each entry may not need to access all hash table sets
or CAM tables, the operation latency vary from entry to
entry. This would result in out-of-order and congestion at the
out-ports of the EM table. Additionally, in network packet
processing applications, it is usually necessary to maintain
packet sequence.

To ensure that the sequence of packets entering and leav-
ing the pipeline is not disrupted, and that the query latency of
each entry is consistent, a reordermodule is introduced to re-
store the order of processed entries and make corresponding
delay for each entry.

As shown in Fig. 8, there are four channels in reorder
module, and each corresponds to one channel in the EM
table. Taking the hash table as an example, each queried
entry carries its status structure from the current hash table
set into the reorder module. The parsing unit parses its
pipeline state field to find out which pipeline the entry enters
the matching table from and how many hash table set it has
been accessed. The module of path select dispatches the
matching result back the pipeline it entered. Then delay
select module selects an appropriate additional delay for
this entry and outputs it from the corresponding outport of
reorder module.

After being processed by the reordermodule, the query
latency of each entry is consistent and it is equal with the
worst-case delay, and the corresponding matching results
can still be returned to its own pipeline after cross-pipeline
lookups, which ensures the sequence of packets in each
pipeline in the later processing.

As illustrated in Fig. 9, the girds with the same color
enter into the table simultaneously, and the colored grid
means a key has completed its operation. For example, K1,
K2, K3 and K4 are all green because they all entered into the
EM table at the first time. K1 completed its operation in its
first table setH0, but K2, K3 and K4 not. They went through
2, 3 and 4 tables to complete the operation respectively. Then

Fig. 8 Architecture of reorder.

Fig. 9 Timeline of reorder operation.

they entered the reorder module from the channel which they
complete operation. After reordering, these four keys exited
the EM table simultaneously.

The keys entered from a same pipeline also keep their
sequence after reordering. K4, K7 and K9 entered from
H3 table set at different time. Although they have different
processing latency in hash tables, they still maintain their
sequence after reordering.

4. Analysis

Here we analyze the hash collision rate, the capacity CAM
required and the issue of consistency. Table 1 lists the vari-
able abbreviations that will be used later and their meanings.

4.1 Hash Collision Rate

There are P hash table sets in the entire EM table, and each
hash table set containsM hash table blocks with the depth of

SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
393

Table 1 Tabel of abbreviation.

Fig. 10 Simulation results under different hash table block’s number and
depth. (a) The number of entries inserted into hash tables successfully. (b)
The number of failed entries which are not inserted into hash tables. (c)
The utilization rate of the entire hash table. (d) The collision rate of the
entire hash table.

HD. Hence, there are P×M hash table blocks. We simulated
the hash collision rate under different hash table block’s
number and depth. The probability of each key hashing
to a particular location is uniform [21], so uniform random
function acts as hash function unit to generate insert index
in simulation. 1000 simulation experiments were conducted
for each case and calculated the mean value. In each time,
P × M × HD entries are inserted into the hash tables.

The simulation results are shown in Fig. 10. The
Fig. 10(a) shows the number of successful inserted entries
and Fig. 10(b) shows the number of failed entries under
different table numbers and different table depths, which
provide us a reference to choose the depth of CAM under
different cases. It can be seen from Fig. 10(c) and Fig. 10(d)
that with the increase of the number of hash table blocks,
the hash table utilization rate (load factor) would increase
and the collision rate would decrease. When the number of
entries inserted into all hash tables is the same as the total
number of address spaces in hash tables, the collision rate
of entire hash table is almost unaffected by the depth of each
hash table block, but mainly determined by the number of
hash table blocks. When the number of hash table blocks

exceeds 64, the hash collision rate drops below 1%.

4.2 CAM Capacity

Assuming that the hash collision rate is Rcollison, there are
P hash table sets, and each hash table set has M hash table
blocks with the depth of HD. Then there are Hdepth (=
P × M × HD) address spaces in the entire hash table. After
inserting Hdepth entries into hash tables, there would be
Ncollison (= Rcollison × Hdepth) entries cannot be inserted
into the hash table finally.

Hence, the capacity of CAM Cdepth required should be
equal the number of conflicted entries.

Cdepth = Ncollision = Rcollision × (P × M × HD). (2)

The CAM on each channel should be CD, and

CD =
Cdepth

P
. (3)

4.3 Consistency

Due to the latency in hash computation and SRAM
read/write operations, there are two extreme scenarios where
consistency issues may occur: (i) a queried key is the same
as an inserting key; (ii) in a hash table set, a key is being
inserted, the new inserted key takes the insert address of the
inserting key as its candidate address.

For the former, if the same search key accesses the
matching table during the writing process of an entry, it may
result in incorrect query results. For the latter, the status
of the inserted address is updated to the occupied state only
after the entry is inserted completely. During this insertion
period, the address space is still considered to be selected
for subsequent insert entries, which may lead to a collision
between two entries when selecting an address.

However, the probability and impact of these two sce-
narios are negligible. Firstly, compared with query opera-
tion, insertion operation is generally infrequent. Moreover,
it is extremely rare for multiple collisions of a single address
to occur in such a vast depth of table, especially within a very
short period of time. The first case has been discussed to
be negligible in prior work [10]. In the second case, entries
can be inserted from different pipelines in the way of round-
robin, or new entries can be inserted after confirming that
the previous entry has completed the insertion operation.

5. Implementation and Evaluation

5.1 Implementation

We implement our design on a Alveo U250 [22] FPGA
device, which has 1,728,000 LUTs, 3,456,000 Flip-flops,
2688 BRAM36Kmemory blocks and 1280 URAMmemory
blocks. In order to make a trade-off between latency and
throughput, the EM table has a total of 4 channels in our
implementation, each channel has a hash table set and an

394
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

auxiliary CAM based EM. Each hash table set has 64 hash
table blocks with a depth of 4K. Based on the hash collision
rate, it can be determined that 4K CAM entries are sufficient
to store the collision entries of the hash table. Therefore, the
CAM depth of each pipeline is 1K. The total EM can store
1048K (4*64*4096=1048576) entries.

5.2 Memory Utilization

The SRAM storage resources on FPGA are independent
units, and each SRAM unit must be used by block. We
utilized URAMs to implement hash table and transposed
BRAMs to implement CAM. Here, each URAM block is
configured as a 4K*72b SRAM and each BRAM36K block
is configured as a 512*72b SRAM. The symbol of d∗e rep-
resents rounding up.

The number of URAMs used by each hash table block
is

HT BUN =
⌈

HD
4096

⌉
×

⌈
K + V + 1

72

⌉
. (4)

The number of URAMs used by each hash table set is

HTSUN = M ×
(⌈

HD
4096

⌉
×

⌈
K + V + 1

72

⌉)
. (5)

The number of BRAM36Ks used by each CAM based
EM table is

CAMBN =

⌈
K

log512
2

⌉
×

⌈
CD
72

⌉
+

⌈
CD
512

⌉
×

⌈
V
72

⌉
. (6)

The total memory blocks consumed by the entire EM
table is TUN URAM blocks and TBN BRAM36K blocks, in
which

TUN = P ×
(
M ×

(⌈
HD
4096

⌉
×

⌈
K + V + 1

72

⌉))
, (7)

and

T BN = P ×

(⌈
K

log512
2

⌉
×

⌈
CD
72

⌉
+

⌈
CD
512

⌉
×

⌈
V
72

⌉)
. (8)

Table 2 shows the resource utilization for different
widths of key and value in our implementation. In entire
EM Tables, there are totally 1048K address spaces in hash
tables and 4K address spaces to store conflicted entries in
CAM-based EM tables. In general, the logical resource oc-
cupation remains within a reasonable range, which reserves
enough resource and frequency space for the implementa-
tions of other on-board applications. The utilization of stor-
age resources is directly proportional to the width of keys or
values. However, in some cases, because of the SRAMmust
be used in the unit of an entire block, there may be storage
waste, which is inevitable in FPGA implementations. In ad-
dition, when the depth of a matching table remains constant,
increasing the width may lead to a decrease in achievable

Table 2 Resource utilization of 1048K entries exact matching table on
U250 FPGA.

frequency. This is because increasing the width requires
more on-board resources and may result in more complex
routing and longer signal propagation paths. This increases
wire delay and limits the operating frequency of the entire
matching table.

5.3 Performance Evaluation

For each hash table set, its collision rate is rcollison, which
alsomeans the probability of transferring fromone hash table
set to its adjacent channel after the insertion failure. As can
be seen from Fig. 10(d), when there are a larger number
of hash table blocks, almost all entries can be successfully
inserted into its first hash table set. Taking an example when
each hash table set has 64 hash table blocks (i.e., M=64),
the collision rate rcollison is approximately 0.00785, which
means the entries rarely moves to other channels to insert.
Hence, the speed of insertion would be effectively enhanced
by multiple parallel pipeline channels.

For queries, the total number of address spaces in each
hash table set is equal, so the depth of each hash table set is 1

P
of the entire table (here do not consider the minimal number
of entries in CAM), and the probability of a successful query
for each table entry in the current table is 1

P . On average,
the expected number of hash table sets to be queried for each
table entry can be denoted asEp. Therefore, in average cases,
it is equivalent to having P

Ep channels working in parallel in
our EM table.

The expected number of tables to be queried for each
entry is

Ep =
1
P
+ 2

1
P

(
1 −

1
P

)
+ · · · + i

1
P

(
1 −

1
P

) i−1
+ · · ·

+ (P − 1)
1
P

(
1 −

1
P

)P−2
+ P

(
1 −

1
P

)P−1
, (9)

=

P−1∑
i=1

(
i
P

(
1 −

1
P

) i−1
)
+ P

(
1 −

1
P

)P−1
. (10)

SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
395

Fig. 11 Throughput under different EM configuration. (a) Throughput
of operations. (b) Throughput of packets with length of 64B.

For the entire EM table, although each operation has a
certain latency, both insert operations and query operations
are pipelined. Therefore, the EM table can do P

Ep opera-
tions per clock cycle on average. Therefore, the operation
throughput of the EM table is

Operation T hroughput =
P

E p
∗ Freq. (11)

For packets, the theoretical throughput that can be
achieved is

T hroughput =
P

E p
∗ Freq ∗ (Pkt Len + 20)B. (12)

The additional 20 bytes are the extra overhead of packet
transferring in network, which includes: 12 bytes inter frame
gap (IFG) which is the minimum frame gap of Ethernet pack-
ets (IEEE 802.3), 7 bytes preamble for clock synchronization
and 1 byte start of frame delimiter (SFD) for identifying the
start of the frame.

In our implementation, the number of pipelines is 4.
When P is 4, E p(P = 4) ≈ 2.73, and P

Ep ≈ 1.46. Therefore,
the EM table can handle 1.46 operations per clock cycle on
average. According to the implementation frequency of EM
in Table 2, we can calculate the operation throughput and
supported packet throughput of EM table in different cases.

Figure 11 shows the number of query operations that
EM can handle per second and the corresponding 64B packet
throughput under different conditions. A smaller EM table
is easy to achieve higher throughput because it could reach a
higher working frequency. Overall, the entire EM table can
process more than 200 million of operations per second, and
can reach a throughput of about 125 Gbps for 64B packets.

6. Related Work and Discussion

Exact matching table is a research hotspot and is widely used
in database, key-value store and packet classification etc.,
and hash-based exact matching table is a mainstreammethod
on FPGA implementation. Researchers mainly focusing on
scale expansion, hash collision handling and throughput en-
hancement of hash table on FPGA, which are also our main
work in this paper.

With the continuous expansion of the network scale, the
size of the matching table is also increasing. Although hash
table is a storage efficient structure, the implementation of
huge matching tables on FPGA would still encounter prob-
lems such as implement difficulties, resource constraints,
and frequency reduction etc. Besides this, solving the hash
collision problem is one of the key challenges to achieve
accurate matching tables. Researchers use different meth-
ods to reduce collisions, such as using better hash functions,
open addressing methods, chain methods, etc. Implement-
ing collision resolution algorithmonFPGAneeds to consider
the balance between hardware resource utilization efficiency
and throughput. To increase throughput, the researchers
explored a variety of approaches. For example, parallel ac-
cess is achieved by querying and manipulating multiple hash
buckets in parallel.

Y.Z. Li [16] proposed a non-collision hash scheme us-
ing bloom filter (BF) and CAM to ensure that each lookup
accesses memory at most once. An additional CAM is used
to store the conflicting entries of hash table. And a bloom
filter to pre-detect if an entry is in hash table ensures that
each lookup accesses hash table or CAM at most once. It
achieves better worst-case performance and has greater flex-
ibility to quickly insert or query entries. However, bloom
filter has some problems such as the difficulty of deleting,
and it consumes a lot of resources when implementing a
large matching table, which is not feasible in practice.

M. Sha [5] proposed to solve the cuckoo hash conflicts
by using a set of distributed RAM as auxiliary storage, which
is actually a small CAM implemented by distributed RAMs
and registers. However, it has limited scalability especially
under a bigger depth requirement ofCAMwhen thematching
table has huge depth. Additional, there may be uncertainty
in the insertion time in this design because of the cuckoo
hashing and the entries in extended table may be rewritten
back into the hash table.

Yang et al. [10] proposed FASTHash to optimize hash
table throughput through multiple parallel pipeline designs.
In this design, it carries out memory replication on each
pipeline, which means the tables in each pipeline are the
same. Although it improves the throughput of the hash table,
it consumes great storage resources to store the same rules
multiple times, and it is infeasible to do memory replication
on resource-limited FPGA when the size of the matching
table is very huge. In addition, although the design reserves
multiple slots for each address space to avoid hash colli-
sion, it does not solve the hash conflict more thoroughly. In
some cases, there will still be entries that cannot be inserted
successfully.

Salvatore Pontarelli Pedro Reviriego et al. [11] com-
pared serial, parallel and parallel-pipeline hash table imple-
mentations, and proposed parallel d-pipeline implementa-
tion which increases the throughput by accessing the tables
in parallel. However, the hash collision in cuckoo hashing
does not further be solved in this design.

W.Q. Wu et al. [12] introduced CAM into d-Pipeline to
address hash collision further and kept the high throughput

396
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Table 3 Comparison with other methods.

of parallel hash tables. However, the structure has only one
CAM unit after multiples hash tables. When load factor of
hash table is high, the insertion of hash table is difficult and
multiple conflicted entries need to access CAM simultane-
ously. Moreover, the CAM it used needs 16 clock cycles
to finish a write operation. Limited by the writing speed of
CAM, if there is entry to be written to CAM, the hash table
needs to stall and wait its completion. The CAM cannot be
adapted to the parallel hash tables with high throughput. In
addition, the out-of-order problem is not considered in the
design, and it is not applicable in some scenarios that require
the sequence of network packets.

Table 3 shows the comparison of our work with exist-
ing methods. Based on resource considerations, we did not
adopt the bloom filter in our design like BF-HASH-CAM
[16]. Compared to [5], it does not replace the existing en-
try in insertion when collision occurs in our design, which
avoids the uncertain insertion latency caused by cuckoo hash-
ing. By sharing the rule matching table among multiple
pipeline channels, our method avoids storage replication in
FASTHash [10] and improves throughput. At the same time,
the load factor is enhanced by increasing the number of hash
table blocks, and hash conflicts are handled by auxiliary
CAM units. In addition, for the network packet processing
scenario, this paper specially considers the out-of-order re-
covery in the multiple parallel pipeline channels, which is
not considered in the design of d-Pipeline [11] and [12].

Actually, there are several dedicated SmartNICs prod-
ucts or solutions to offload SDN packet processing these
years, such as Nvidia’s ConnectX series [23], Xilinx’s Alveo
U25 [24] and SN1000 [25] SmartNICs, Microsoft’s Blue-
bird [26] etc. The proposed matching table is an platform-
independent module, it could be embedded into these sys-
tems to support SDN packet processing as well.

7. Conclusions

In summary, this paper presented a large-scale high-
throughput collision-free EM table which shares rule ta-
bles and with out-of-order recovery among multiple parallel
pipelines for the network packet application based on FPGA.
By multiple channels working parallelly and sharing their
rule tables, the throughput of the entire table is increased by
about 1.5 times without storage replication. All matching
results would be reordered to ensure the operation sequence
and the constant processing latency in each pipeline. More-
over, it reduces the collision rate through multiple hash table
blocks, and stores conflicted entries into auxiliary CAM ta-

bles.The implemented exact match table supports 200 mil-
lion query operations per second, which is enough to support
exceeding 100 Gbps throughput even for 64B packets.

Acknowledgments

This research was funded by National Key Research and
Development Program of China: Software-defined inter-
connecting chip and supporting software kit development
(Project.No. 2022YFB2901004).

References

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol.44, no.3, pp.87–95, July 2014.

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F.Mujica, andM. Horowitz, “Forwardingmetamorphosis: Fast
programmable match-action processing in hardware for SDN,” ACM
SIGCOMMComput. Commun. Rev., vol.43, no.4, pp. 99–110, 2013.

[3] R. Shubbar andM. Ahmadi, “Fast 2D filter with low false positive for
network packet inspection,” IET Networks, vol.6, no.6, pp.224–231,
2017.

[4] P. Reviriego, G. Levy, M. Kadosh, and S. Pontarelli, “Algorithmic
tcams: Implementing packet classification algorithms in hardware,”
IEEE Commun. Mag., vol.60, no.9, pp.60–66, 2022.

[5] M. Sha, Z. Guo, K. Wang, and X. Zeng, “A high-performance and
accurate FPGA-based flow monitor for 100Gbps networks,” Elec-
tronics, vol.11, no.13, p.1976, 2022.

[6] M. Sha, Z. Guo, and M. Song, “A review of FPGA’s application
in high-speed network processing,” J. Network New Media, vol.10,
pp.1–11, 2021.

[7] M. Irfan, A.I. Sanka, Z. Ullah, and R.C. Cheung, “Reconfigurable
content-addressable memory (CAM) ON FPGAs: A tutorial and
survey,” Future Generation Computer Systems, vol.128, pp.451–465,
2022.

[8] J. Carter and M. Wegman, “Universal classes of hash functions (ex-
tended abstract),” Proc. ninth Annual ACM Symposium on Theory
of Computing, STOC’77, pp.106–112, 1977.

[9] R. Pagh and F.F. Rodler, “Cuckoo hashing,” J. Algorithms, vol.51,
no.2, pp.122–144, 2004.

[10] Y. Yang, S.R. Kuppannagari, A. Srivastava, R. Kannan, and V.K.
Prasanna, “FASTHash: FPGA-based high throughput parallel hash
table,” Proc. 35th International Conference, ISC High Performance
2020, High Performance Computing, Frankfurt/Main, Germany,
pp.3–22, Springer, June 2020.

[11] S. Pontarelli, P. Reviriego, and J.A. Maestro, “Parallel d-pipeline:
A cuckoo hashing implementation for increased throughput,” IEEE
Trans. Comput., vol.65, no.1, pp.326–331, 2015.

[12] W.-Q. Wu, M.-T. Xue, T.-Q. Zhu, Z.-G. Ma, and F. Yu, “High-
throughput parallel SRAM-based hash join architecture on FPGA,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.67, no.11, pp.2502–
2506, 2020.

SONG et al.: HIGH-THROUGHPUT EXACT MATCHING IMPLEMENTATION ON FPGA WITH SHARED RULE TABLES AMONG PARALLEL PIPELINES
397

[13] M. Kekely and J. Korenek, “Mapping of P4 match action tables to
FPGA,” 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), IEEE, pp.1–2, 2017.

[14] D.-H. Le, K. Inoue, andC.-K. Pham, “Design a fast CAM-based exact
pattern matching system on FPGA and 0.18µm CMOS process,”
IEICE Trans. Fundamentals, vol.E96-A, no.9, pp.1883–1888, Sept.
2013.

[15] Z. István, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table
design for 10GBPS key-value stores on FPGAS,” 2013 23rd Interna-
tional Conference on Field Programmable Logic and Applications,
IEEE, pp.1–8, 2013.

[16] Y. Li, “Non-collision hash scheme using Bloom filter and CAM,”
2009 Second Pacific-Asia Conference on Web Mining and Web-
based Application, IEEE, pp.55–58, 2009.

[17] M.Kekely, L. Kekely, and J. Korenek, “Memory aware packet match-
ing architecture for high-speed networks,” 2018 21st Euromicro Con-
ference on Digital System Design (DSD), IEEE, pp.1–8, 2018.

[18] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Trans.
Comput., vol.46, no.12, pp.1378–1381, 1997.

[19] H. Krawczyk, “LFSR-based hashing and authentication,” Proc. 14th
Annual International Cryptology Conference, Advances in Cryptol-
ogy—CRYPTO’94, Santa Barbara, California, USA, pp.129–139,
Springer, Aug. 1994.

[20] W. Jiang, “Scalable ternary content addressable memory implemen-
tation using FPGAs,” Architectures for Networking and Communi-
cations Systems, IEEE, pp.71–82, 2013.

[21] G.H. Gonnet, “Expected length of the longest probe sequence in hash
code searching,” J. ACM (JACM), vol.28, no.2, pp.289–304, 1981.

[22] Xilinx, “Alveo u200 and u250 data center accelerator cards data
sheet (ds962),” Online, 2023, https://docs.xilinx.com/r/en-US/ds
962-u200-u250

[23] Nvidia, “ConnectX-7 400G Adapters,” Online, 2023, https://nvdam.
widen.net/s/csf8rmnqwl.infiniband-ethernet-datasheet-connectx-7
-ds-nv-us-2544471

[24] Xilinx, “AlveoU25ProductBrief,” Online, 2023, https://www.xilinx
.com/content/dam/xilinx/publications/product-briefs/alveo-u25-pro
duct-brief.pdf

[25] Xilinx, “Alveo SN1000 SmartNICs Data Sheet (DS989),” Online,
2023, https://docs.xilinx.com/v/u/en-US/ds989-sn1000

[26] M. Arumugam, D. Bansal, N. Bhatia, J. Boerner, S. Capper,
C. Kim, S. McClure, N. Motwani, R. Narasimhan, U. Panchal,
T. Pimpo, A. Premji, P. Shrivastava, and R. Tewari, “Bluebird: High-
performance SDN for bare-metal cloud services,” 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), Renton, WA, pp.355–370, USENIX Association, April
2022.

Xiaoyong Song received the B.S. degree
from Beijing University of Technology, Beijing,
China, in 2019. He is currently pursuing the doc-
tor’s degree with the School of Electronic, Elec-
trical and Communication Engineering, Univer-
sity of Chinese Academy of Sciences, Beijing.
His current research interest includes FPGA net-
work acceleration, and matching table etc.

Zhichuan Guo received the B.S. degree
from Wuhan University in 1996, and the Ph.D.
degree from the University of Science and Tech-
nology of China in 2006. From 1996 to 2003, he
served as an Electronics Engineer with the 13th
Research Institute of China Electronics Technol-
ogy Group Corporation and a SDH hardware
R&D system engineer of optical networks at
Huawei. In 2006, he joined with the Institute of
Acoustics, Chinese Academy of Sciences, Bei-
jing, China. Now he is a Professor of CAS en-

gaging in field programmable gate array (FPGA)-based code acceleration,
VLSI, and security.

Xinshuo Wang received the B.E. de-
gree from Chongqing University of Posts and
Telecommunications, Chongqing, China, in
2021. At present, he is studying for a doctor-
ate degree in the school of electronic. electrical
and communication engineering of the Univer-
sity of Chinese Academy of Sciences in Beijing,
focusing on the field of FPGA network acceler-
ation.

Mangu Song is currently working at the
Institute of Acoustics, Chinese Academy of Sci-
ences (IACAS), as a research assistant. She re-
ceived her M.Sc degree in electronics and com-
munication engineering from the School of Mi-
croelectronics, Chinese Academy of Science,
Beijing, China in 2017. Her current research
interests include FPGA-based code acceleration
and network security.

398
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

PAPER
PopDCN: Popularity-Aware Dynamic Clustering Scheme for
Distributed Caching in ICN∗

Mikiya YOSHIDA†a), Yusuke ITO††b), Yurino SATO†††c), and Hiroyuki KOGA††d), Members

SUMMARY Information-centric networking (ICN) provides low-
latency content delivery with in-network caching, but delivery latency
depends on cache distance from consumers. To reduce delivery latency,
a scheme to cluster domains and retain the main popular content in each
cluster with a cache distribution range has been proposed, which enables
consumers to retrieve content from neighboring clusters/caches. However,
when the distribution of content popularity changes, all content caches may
not be distributed adequately in a cluster, so consumers cannot retrieve them
from nearby caches. We therefore propose a dynamic clustering scheme to
adjust the cache distribution range in accordance with the change in content
popularity and evaluate the effectiveness of the proposed scheme through
simulation.
key words: ICN, distributed caching, dynamic clustering

1. Introduction

Information-centric networking (ICN) [3], [4] has been at-
tracting attention as a new architecture that uses network
caching to satisfy the requirements (e.g., ultra-low latency,
ultra-high reliability, andmassive connectivity) for emerging
services such as IoT-like automation, robotics, and industrial
automation [5], [6]. In ICN, a consumer sends interest pack-
ets containing content names to request content. A content
router (CR), which is an intermediate router receiving the
interest packets, forwards the packets to a producer on the
basis of a routing table called a forwarding information base
(FIB). The producer then returns data packets of the re-
quested content with the reverse path to consumers. The
CRs cache data packets on their content store (CS) during
forwarding, so they can return caches to consumers instead
of the producer if they store the requested data. Namely, this
in-network caching, which can satisfy the future requests of
consumers, significantly reduces the network load and im-
proves content delivery efficiency. To take full advantage of

Manuscript received September 21, 2023.
Manuscript publicized January 30, 2024.
†The author is with the Center for Information Technology and

Management, Okayama University, Okayama-shi, 700-8530 Japan.
††The authors are with the Graduate School of Environmental

Engineering, The University of Kitakyushu, Kitakyushu-shi, 808-
0135 Japan.
†††The author iswith theDepartment of Control Engineering, Na-

tional Institute of Technology (KOSEN), Sasebo college, Sasebo-
shi, 857-1193 Japan.
∗Earlier version of this paper was presented at ACM ICN2022

and APSIPA ASC2022 [1], [2].
a) E-mail: m-yoshida@okayama-u.ac.jp
b) E-mail: y-ito@kitakyu-u.ac.jp
c) E-mail: y-sato@sasebo.ac.jp
d) E-mail: h.koga@kitakyu-u.ac.jp
DOI: 10.23919/transcom.2023EBP3152

in-network caching, an efficient content caching scheme is
needed, and various schemes have been proposed.

Simple content caching makes a cache decision on in-
dividual CRs, while distributed content caching distributes
content by considering nearby caches to satisfy content re-
quests. Distributed caching solves a cache efficiency prob-
lem that simple content caching causes cache duplication for
a small amount of highly popular content over neighboring
CRs. However, if the cached required content is distributed
over a large range, delivery latency may increase.

Therefore, cluster-based distributed caching schemes
have been proposed [7], [8] to control a distributed range.
These schemes group CRs into clusters in a domain∗∗ and
retain the main popular content in each cluster using a dis-
tributed caching manner. This aims to avoid cache dupli-
cation among CRs in the cluster, enabling the caches of
each content to be distributed within it. As a result, the
delivery latency can be controlled by cluster size, and it
enables consumers to retrieve content efficiently from the
originating clusters. However, a too-small distribution range
decreases cache utilization and causes delivery delays due to
the delivery from producers, while a too-large distribution
range increases cache utilization but may cause delivery de-
lays due to long cache delivery. Therefore, we believe that
the adequate cache distribution range should be determined
in accordance with content popularity on the basis of such
trade-off factors. In a practical environment, the distribution
of content popularity changes over time, so it is necessary to
determine the distribution range depending on the situation.

We therefore propose a dynamic clustering scheme to
adjust the cache distribution range, i.e., cluster size, in ac-
cordance with the change in content popularity, considering
cache utilization and delivery latency. Our scheme controls
the cluster size effectively using a simple threshold-based
algorithm based on the number of cache updates on CRs in a
cluster. Moreover, we evaluate the effectiveness of the pro-
posed scheme compared with conventional schemes through
simulation in a situation where content popularity changes.

The main contributions of this paper, updated from
previous papers [1], [2], are as follows:

• We discuss recent studies that utilize clustering tech-
niques in ICN.

• We evaluate the proposed scheme compared with con-
ventional schemes in detail and discuss the effective

∗∗In this paper, the term ‘domain’ refers to a large-scale network
consisting of one or more ISPs.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
399

threshold settings.
• We investigate the effectiveness of the proposed scheme
in practical network topologies.
The rest of this paper is organized as follows. In Sect. 2,

we describe our motivation for this study through a discus-
sion of related works. In Sect. 3, we describe our scheme. In
Sect. 4, we describe the simulation model and evaluation de-
tails. In Sect. 5, we evaluate the performance of our scheme
in comparisonwith conventional schemes. Finally, in Sect. 6,
we summarize our findings and conclude the paper.

2. Related Work

In this section, we describe an issue of this study through
discussions of various content caching schemes to improve
content delivery efficiency.

2.1 Distributed Caching

Simple caching schemes such as LCE [3] and Prob(p) [9]
make a cache decision on individual CRs. This may cause
cache duplication for a few high-popular contents over neigh-
boring CRs because more frequently requested content is
likely to be cached. This becomes useless for other con-
tent requests. Therefore, distributed caching schemes have
been proposed such as MCD [10], WAVE [11], MuNCC
[12], and Hash-routing [13], which distribute various con-
tent considering nearby caches to satisfy various content re-
quests. The key idea ofMCDandWAVEschemes is that each
CR moves requested caches to downstream CRs. Namely,
the CR caching the requested content sends its cache to the
downstreamCR and removes it from itself, so that each cache
is not duplicated on the default path, i.e., the shortest path to
consumers. However, it is unable to avoid cache duplication
among neighboring CRs outside the default path.

In contrast, in MuNCC and proposed in [14] schemes,
each CR shares cache summaries that are formed using a
Bloom filter among neighboring CRs to avoid cache duplica-
tion. When a data packet arrives, a CR determines whether it
caches it or not depending on the cache summaries of neigh-
boring CRs. The Hash-routing scheme distributes content
to CRs using a hash function that maps content identifiers
to each CR of the domain, without additional functionality
such as shared cache summaries. In particular, when an edge
router in the domain receives a request, it calculates the hash
value from the received content identifier and forwards it to
the responsible CR. Similarly, each CR caches the respon-
sible content whose hash value matches its identifier during
forwarding. As a result of this approach, since the cache
location of each content is limited to one CR over a domain,
it can avoid cache duplication among CRs. However, if the
cached required content is distributed over a large range,
delivery latency may increase.

2.2 Cluster-Based Distributed Caching

To control the cache distribution range considering deliv-

ery latency, network clustering-based distributed caching
schemes for ICN have been proposed [7], [8], [15], [16].
These schemes group CRs into clusters in a domain and
retain the main popular content in each cluster using a Hash-
routing-like distributed caching manner. The delivery la-
tency can thus be controlled by cluster size, enabling con-
sumers to retrieve content efficiently from the originating
clusters. As a scheme similar to the aforementioned ones, the
HCC [17] scheme has also been proposed. It centrally man-
ages the distributed caches by a cluster header constructed
in each cluster. The cluster header calculates the content
popularity and importance of each node on the basis of in-
formation collected from the cluster, and then assigns the
more popular content to the more important node to improve
cache efficiency and delivery latency.

However, the amount of content that can be cached in
the cluster depends on the cluster size. In other words, a
smaller cluster size is insufficient to reduce delivery latency
since it cannot cache necessary content sufficiently in the
cluster. As mentioned before, in this study, we believe that
it is necessary to determine the adequate cache distribution
range in accordance with content popularity on the basis of
the following trade-off factors. A too-small cache distribu-
tion range against the amount of main popular content will
not retain sufficient caches, so it decreases cache utilization
and causes delivery delays due to the delivery from produc-
ers. A too-large cache distribution range can satisfy most
user requests within the cluster but causes delivery delays
due to the delivery from widely distributed caches. In a
practical environment, the distribution of content popularity,
i.e., the amount of main popular content, will change over
time [18], so it is necessary to determine the distribution
range adequately depending on the situation.

3. Proposed Scheme

We propose a dynamic clustering scheme to adjust the cache
distribution range in accordance with the change in content
popularity. This scheme is an extended version of our previ-
ous work [7] that formed a fixed size of clusters. In this sec-
tion, we explain the operation of the proposed scheme. We
first explain the main points of the previous work in Sect. 3.1,
and then explain the extension in detail in Sect. 3.2.

3.1 Cluster-Based Cache Distribution Scheme

To improve delivery latency and cache efficiency, we have
proposed the cluster-based cache distribution scheme. It
groups CRs into clusters in a domain and retains the main
popular content in each cluster using a distributed caching
manner, enabling consumers to retrieve content from the
originating clusters. Furthermore, it can also retrieve caches
from closer CRs by advertising cache information among
CRs. In the following, we explain two functions of cluster-
based distributed caching and advertisement-based routing.

The distributed caching approach uniformly distributes
chunks of individual content to all CRs in each cluster, as

400
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 1 Cache placement.

shown in Fig. 1. This approach improves cache efficiency
by avoiding cache duplication in the cluster, leading to more
cached content in it. Furthermore, transmission efficiency
can also be improved by multi-path cache delivery from
multiple CRs (i.e., load balancing).

To uniformly distribute chunks in a cluster, this scheme
partitions a domain into clusters of the same size and assigns
unique identifiers (CRIDs) to each CR in advance. To avoid
cache redundancy among CRs in a cluster, it uses a hash
function that maps chunk identifiers to CRIDs. Specifically,
when a CR receives a chunk, it caches it as a responsible
one if the hash value calculated from the received chunk
identifier matches its own CRID. The Least Recently Used
(LRU) cache replacement algorithm is used for spaces on
the CS. In this study, each cluster is assumed to be a square
shape. The cluster size is defined as the number of CRs on
one side (as shown in Fig. 1 is 2), which affects the cache
efficiency and distance from consumers. Note that the shape
of clusters is not important because the main popular content
will be retained in clusters if CRIDs are properly assigned
within clusters in any topologies. For example, it can be
accomplished by defining the cost as the distance between
a CR and the nearest CR with a different CRID and solving
the problem of minimizing the total cost. This will ensure
that each CRID is assigned almost uniformly without bias
according to the cluster size, i.e., the number of CRIDs to be
assigned. Since each CR is neighboring to CRs with a CRID
different from its own, each cluster is nearly a circle shape.

Even if caches are uniformly distributed within a clus-
ter, consumers may not efficiently retrieve all chunks of the
requested content from the originating cluster. This is be-
cause not all chunks will be cached due to the limitation of
total cache capacity in a cluster, or there may be caches on
closer CRs in neighboring clusters than those in the originat-
ing cluster. Therefore, requests should be forwarded to the
nearest caches even those not in the originating clusters re-
gardless of cluster boundaries for efficient content delivery,
so the advertisement-based routing approach is used, which
forwards interest packets to nearby caches on the basis of the
advertised cache information.

To achieve this behavior, each CR informs neighbor-
ing CRs of their own responsible cache status. Specifically,

Fig. 2 Cache information advertisement.

CRs that newly cache or discard responsible chunks adver-
tise the cache information (newly cached/discarded) in the
flooding manner shown in Fig. 2. The CR receiving the ad-
vertised packet updates its FIB entry with the received cache
information. Considering the overhead of this operation,
the flooding range should be limited but would affect the
content retrieval efficiency, which is defined as the flood-
ing limit parameter (as shown in Fig. 2 is 2). This opera-
tion is performed only when responsible chunks are cached
or discarded, thereby reducing the overhead compared with
conventional schemes flooded for all cached chunks such as
proposed in [19]. Moreover, to reduce the load caused by
flooding, our scheme simply discards and does not forward
the flooding packets when it can be determined that neigh-
boring CRs do not need to update their FIB. Let us explain
this process using the example shown in Fig. 2. When CR A
caches responsible chunks, it advertises its cache information
to neighboring CRs (gray-colored range). After that, when
CRB caches the same chunk, it can decide not to flood to CR
C and advertises the cache information to neighboring CRs
except it (red-colored range). This is because CR B has an
FIB entry with metric of 2 hops for the chunk by advertised
information fromCRC and it indicates that CRC already has
a valid metric of 1 hop that does not need updating. Namely,
if the CRs already have FIB entries of plus 2 hops or fewer
metrics than the flooding one, it does not need to advertise
it in that direction. Note that this scheme increases over-
heads including cache information sharing and FIB entry
increases to improve acquisition efficiency compared to on-
path routing schemes as an inherent issue of off-path routing
schemes. To resolve this issue (overheads caused by off-path
extension), several solutions (e.g., a Bloom filter approach
[12], [14], [20]) have been proposed, while we focus on re-
ducing delivery latency by adjusting cache distribution range
while considering only communication overheads caused by
flooding in this study so that wewill leave this issue for future
work.

3.2 Popularity-Aware Dynamic Clustering Scheme

As previously mentioned, the cluster size, i.e., cache distri-
bution range, should be adequately determined in accordance

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
401

Fig. 3 Operation of dynamic clustering.

with content popularity. In a practical environment, the dis-
tribution of content popularity changes over time, so it is
necessary to determine the distribution range depending on
the situation. We therefore propose a dynamic clustering
scheme to adjust the cache distribution range in accordance
with the change in content popularity, considering cache uti-
lization and delivery latency. Our scheme controls the clus-
ter size effectively using a simple threshold-based algorithm
based on the number of cache updates in the cluster.

To discuss the adequate cluster size, we focus on the
frequency of cache updates in a cluster. This is because this
metric is useful to estimate whether the current cluster size
is suitable to cache the main popular content. When the
frequency of cache updates is high, it indicates that caches
are updated by incoming data packets from outside the clus-
ter. Namely, requested content cannot be retrieved inside the
cluster as well as the cluster size is too small. A low fre-
quency of cache updates indicates that caches are not updated
since requested content can be retrieved inside the cluster.
Namely, the cluster size may be decreased to reduce deliv-
ery latency. Thus, we consider that the frequency of cache
updates in a cluster would fall into a certain range with the
appropriate cluster size.

From the aforementioned strategy, the proposed scheme
adjusts the cluster size using a simple threshold-based algo-
rithm based on the frequency of cache updates. Specifically,
it uses the number of cache updates in a cluster as a metric,
and decreases/increases the cluster size when the metric falls
below or exceeds lower/upper thresholds. Figure 3 explains
how the proposed scheme migrates to the adequate cluster
size in accordance with the change in content popularity. Let
us consider a t-second scenario when the content popularity
will disperse after x seconds, and then heavily concentrate
after y seconds. In phase 1 until x seconds, we assume that
each cluster, which represents the domain divided into four
parts, can store most of the popular content, so the frequency
of cache updates fits between the upper and lower thresholds.
Namely, the current cluster size is adequate. In phase 2 from
x to y seconds when the content popularity disperses, the
frequency of cache updates increases and exceeds the upper

threshold because the current cluster size cannot retain the
popular content sufficiently. Therefore, the cluster size is
increased by one level to store them, and therefore the fre-
quency of cache updates decreases and falls within the upper
and lower thresholds. In phase 3 after y seconds when the
content popularity is heavily concentrated, the cache update
frequency decreases and falls below the lower threshold be-
cause the current large cluster size has exceeded the sufficient
cache capacity compared with the amount of main popular
content. Therefore, it attempts to improve the delivery la-
tency by decreasing the cluster size by one level. However,
this cluster size still has an excessive cache capacity, so the
frequency of cache updates remains below the lower thresh-
old. Therefore, the cluster size is decreased by one more
level, and therefore the frequency of cache updates increases
and falls within the upper and lower thresholds. Through
these procedures, the cluster size can be migrated to the ad-
equate cluster size in accordance with the change in content
popularity.

To achieve this function, we assume that a controller is
located in a domain and each CR notifies the controller with
the number of cache updates. The controller calculates the
total number of cache updates separately in each cluster by
the information received from each CR. When at least one
of the calculated values falls below or exceeds lower/upper
thresholds, it reassigns a new CRID and hash function to
each CR to decrease/increase cluster size. The cluster size
is not changed for a certain period, which is defined as the
reclustering interval parameter, immediately after recluster-
ing to mitigate the effect of the heavy fluctuation of cache
updates. We believe that such information sharing between
the controller and CRs can be achieved by a mechanism like
software defined networking (SDN) and the detailed design
of the scheme will be left as future work.

4. Simulation Model

We evaluated the proposed scheme focusing on the effec-
tiveness of retrieving content from nearby clusters/caches
in a large domain environment where content popularity

402
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 4 Simulation model.

Table 1 Simulation parameters.

changes through simulations using Network Simulator ns-3
ver. 3.30.1 [21] with the implementation of our scheme. We
used a simple grid topology with multiple paths to elimi-
nate the effects of cluster shape and content cache placement
within clusters as shown in Fig. 4(a) to enable us to focus
on the essential effect of dynamically changing cluster size.
One producer and 12 consumers were located on the upper
and lower sides of the grid (12 × 12) of CRs, respectively.
The parameters used in the simulation are summarized in
Table 1. The default path is the shortest path to the producer
(13 hops from each consumer) and it was set to the FIB of
each CR. The ratio of the CS size on CR to the amount of
content was set to approximately 1.5% on the basis of com-
parative papers [8], [22]. The flooding limit was set to 6,
which was the best value in terms of cost performance be-
tween overhead and efficiency in a preliminary evaluation.
As mentioned before, the proposed scheme needs to share
information among CRs via the controller, which can be
achieved by a number of mechanisms like SDN, and we ig-
nore its effect in this simulation since the exchange of shared
information is very infrequent and small compared with data

delivery. Each CR notifies the controller of the number of
cache updates at 1 second intervals.

Each consumer sent interest packets to request content
toward the producer at normal distribution intervals with an
average value of 0.3 seconds. The requested content was de-
termined on the basis of the content popularity, in which P2P
content was generally known to follow a Zipf-mandelbrot
distribution [23]. In this distribution, the degree of bias de-
pends on the parameters α and q. α is the skewness factor
that controls the slope of the curve, while q(≥ 0) is known as
the plateau factor that determines the flatness of the curve.
In this simulation, we gave q a fixed value of 5 and changed
the content popularity with α to avoid the complexity of the
discussion. Furthermore, we assumed no packet loss occurs
so we can focus on the fundamental characteristics of the dy-
namic clustering approach. The simulation was performed
for 270 seconds. We set the Zipf parameter α to 1.0 at the
start of the simulation as shown in Fig. 4(b). α changed to
0.6 at 30 seconds after the simulation started, in which a
wider range of content is requested, to 1.8 at 90 seconds,
to concentrate on the requested content, and after that, it
decreases by 0.4 every 60 seconds back to 1.0.

In this simulation, we compared and evaluated the effec-
tiveness of five representative schemes: LCE (LRU), Hash-
routing [13], Hash-routing + cluster [8], conventional (Static)
[7], and proposed (Dynamic). Furthermore, the average
number of hops needed to retrieve content, cache hit rate,
and advertisement rate were used as evaluation indices to
discuss the effectiveness of our scheme. Note that the Hash-
routing + cluster scheme uses the k-split algorithm with the
number of hops as similarity metrics for clustering and forms
k clusters. The average number of hops focused on content
retrieval time, which was defined as the total number of hops
during the timewhen all consumers retrieved content divided
by the total number of requests for all consumers. The cache
hit rate focused on cache efficiency, which was defined as
the total number of cache hits on all CRs divided by the to-
tal number of requests for all consumers. The advertisement
rate focused on communication overhead, which was defined
as the amount of advertisement packets divided by the total
amount of traffic. In this study, we assumed the average
name length is 30 bytes, and the size of the advertisement
packet which includes the content name, the flooding limit,
and the flag bit that indicates the cache information (newly
cached/discarded), is the same as the Interest packet.

5. Simulation Results

In this section, we first show the effectiveness of our scheme
compared with the conventional schemes. Then, we inves-
tigate how each parameter including the lower/upper thresh-
olds and reclustering interval affects our scheme. Finally,
we investigate the effect of the change interval of Zipf α and
network topology to reveal the environmental tolerance and
practicality of our scheme.

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
403

Fig. 5 Estimation of adequate thresholds.

5.1 Evaluation of Effectiveness Based on Estimation of
Adequate Thresholds

In this section, we first discuss the basis for determining
threshold values of the proposed scheme through quantitative
evaluations and estimate the effective lower/upper threshold
values, which is a key point of the proposed scheme. As
mentioned in Sect. 3.2, given an adequate cluster size, the
number of cache updates in the cluster falls into a certain
range. We believe that the adequate cluster size can be
determined in accordance with the distribution of content
popularity. Figure 5 shows the average number of hops and
cache updates in the cluster when α varies from 0.5 to 2.0.
From Fig. 5(a), we can see that the adequate cluster size is 6
when α is less than 0.9, 4 for α of 1.0–1.1, 3 for α of 1.2–1.6,
and 2 for α of 1.7 or larger, respectively, since these cluster
size achieve the smallest number of hops for each content
popularity. Correspondingly, the number of cache updates
in the cluster falls into a certain range when the adequate
cluster size is given as shown in Fig. 5(b). Specifically, it
is approximately 50 or more for the adequate cluster size of
6 (α = 0.9 or less), 90–280 for the size of 4 (α = 1.0–1.1),
50–270 for the size of 3 (α = 1.2–1.6), and 250 or less for
the size of 2 (α = 1.7 or above), respectively. From the
aforementioned results, if the number of cache updates in
the cluster is approximately 50 and more or 280 and less, the
given cluster size will be adequate. Namely, the lower/upper
threshold values can be set on the basis of the number of
cache updates.

On the basis of the aforementioned discussion, we now
show the simulation results and discuss the effectiveness
of the proposed scheme as compared with the conventional
schemes. Here, the lower/upper threshold values were set

to 50/280, the reclustering interval was set to 3 seconds,
and the initial cluster size of Hash-routing + cluster (HRC),
conventional (Static), and proposed (Dynamic) schemes was
set to 4, which was the appropriate value for an α of 1.0
at the start of the simulation. Figure 6 shows the average
number of hops, cache hit rate, and cluster size as a function
of time. From Figs. 6(a) and (b), the LCE scheme shows
the worst performance among the other schemes because it
causes duplicate caches on nearby CRs. The Hash-routing
(HR) scheme improves the performance, especially cache
efficiency, compared with the LCE scheme due to no du-
plicate cache occurrences, but the average number of hops,
i.e., delivery latency is not good because the caches are dis-
tributed widely. The Hash-routing + cluster (HRC) scheme
improves the performance compared with the HR scheme
due to controlling the cache distribution range at the cost of
a little cache efficiency. The conventional (Static) scheme us-
ing advertisement-based routing improves the performance
compared with the HRC scheme due to the avoidance of de-
tour routing caused by the false-positive problem with the
HR scheme as well as the effect of retrieving nearby caches
regardless of cluster boundaries. The proposed (Dynamic)
scheme further improves the delivery latency while main-
taining the cache hit rate compared with the conventional
(Static) scheme in almost all ranges of time because it ad-
justs the cluster size to an adequate value.

Next, let us take a look at adjusting the cluster size of
the Dynamic scheme focusing on three periods where the
content popularity changes. First, in the period of 30–90
seconds, a wider range of content becomes to be requested,
so that the cluster size is adjusted to a larger value (it is 6,
which is an adequate value when α = 0.6 (Fig. 5(a)) due to
the high frequency of cache updates as shown in Fig. 6(c).
It improves the cache hit rate as well as delivery latency,
although it takes time to distribute new caches in the clus-
ter. Second, in the period of 90–150 seconds, the requested
content becomes to be concentrated, so that the cluster size
is adjusted to a smaller value (it is 2, which is an adequate
value when α = 1.8) due to the low frequency of cache up-
dates. It improves the delivery latency, although it takes time
to discard unnecessary caches from the cluster, and comes
at the cost of a slight decrease in cache hit rate. Finally, in
the period of 150–270 seconds, similar to 30–90 seconds the
requested content becomes to be a wider range gradually, so
that the cluster size is adjusted to larger values (they are 3
and 4, which are adequate values when α = 1.4 and 1.0, re-
spectively). It improves delivery latency while maintaining
a high cache hit rate. This adjustment of cluster size is per-
formed by searching for the cluster size that keeps the number
of cache updates in the range of 50 to 280. Therefore, the
proposed scheme can adapt effectively to the environment
where content popularity changes.

5.2 Effect of Thresholds

Next, we investigate the effect of the thresholds. Figures 7(a),
(b), and (c) show the average number of hops, cache hit rate,

404
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 6 Effectiveness of our scheme.

Fig. 7 Effect of thresholds.

Fig. 8 Estimated and adequate thresholds.

and advertisement rate, respectively, when the lower/upper
thresholds vary. Here, the reclustering interval was set to
3 seconds. Figures 7(a) and (b) indicate that the upper and
lower threshold values should be set to an appropriate range
(neither too large nor too small) to reduce delivery latency
and maintain the high cache hit rate. When the upper thresh-
old value is too large, it is difficult to migrate to a larger
cluster size despite high frequent cache updates. As a result,
it worsens cache efficiency as well as delivery latency. When
the upper threshold value is too small, it is easy to migrate
to a larger cluster size despite low frequent cache updates.
As a result, it improves cache efficiency but increases deliv-
ery latency because the caches are widely distributed. The
lower threshold observes a similar trend. Consequently, the
adequate threshold values should be determined on the ba-
sis of the delivery latency and cache hit rate considering
these trade-offs. The adequate lower/upper thresholds are
70/100 in this simulation environment, which achieves the
lowest number of hops (Fig. 7(a)) and the high cache ef-
ficiency (Fig. 7(b)). Furthermore, the adequate cluster size
does not cause frequent cache updates and reduces the flood-
ing of advertisement packets for dynamic FIB updates, so the

proposed (Dynamic) scheme with adequate thresholds also
improves the advertisement rate, i.e., communication over-
head, to approximately 2% of the total amount of traffic
(Fig. 7(c)).

Here, it is noted that the estimated threshold values and
adequate ones are largely different. This indicates that it
should aggressively migrate to various sizes of clusters with
the setting of larger/smaller lower/upper threshold values to
maintain cache hit rates in the environment where the con-
tent popularity changes significantly. Figure 8 shows the
average number of hops, cache hit rate, and change of cluster
size in the conventional (Static) scheme and proposed (Dy-
namic) scheme with the estimated (50/280) and adequate
(70/100) threshold values. Figure 8(c) clearly shows that
the proposed scheme with adequate thresholds can more fre-
quently migrate closer to the appropriate cluster size than
that with estimated thresholds. Moreover, Fig. 8(a) and
(b) show that such migration quickly improves the deliv-
ery latency and cache hit rate when the content popularity
changes. Consequently, although the proposed scheme with
estimated thresholds achieves good performance, it can be
further improved by setting adequate thresholds on the basis

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
405

Fig. 9 Effect of reclustering intervals.

Fig. 10 Effect of change intervals of Zipf α.

of the aforementioned trade-offs as well as detecting sensi-
tive changes in content popularity to quickly adjust the clus-
ter size with appropriate cache distribution. However, the
adequate threshold values may need to be adjusted dynam-
ically in accordance with network conditions (the topology,
frequency of requests, etc.), which will be tackled in future
work.

5.3 Effect of Reclustering Intervals

We investigate the effect of reclustering intervals. Figure 9
shows the average number of hops, cache hit rate, and ad-
vertisement rate when the reclustering interval varies. Here,
the lower/upper thresholds were set to 70/100 (adequate val-
ues in this environment). Figure 9(a) shows that shorter
reclustering intervals improve delivery latency except for
too-short ones. This is because the shorter intervals can
quickly migrate to the adequate cluster size and improve
cache hit rates as shown in Fig. 9(b). However, too-short
intervals inhibit migration to the adequate cluster size due
to heavy cache updates immediately after reclustering. In
addition, Fig. 9(c) shows that shorter reclustering intervals
improve the overhead. This is because unnecessary cache
updates are reduced by quickly migrating to the adequate
cluster size. Consequently, the reclustering interval should
be set to an adequately short value, which is 3 seconds in
this environment.

5.4 Effect of Change Intervals of Zipf

We investigate the effect of change intervals of Zipf α to
show the environmental tolerance. For example, when the
change intervals are set to 20 seconds, 30 seconds after the
simulation starts with Zipf α of 1.0 and a cluster size of 4,

Zipf α sequentially changes to 0.6, 1.4, 1.8, and 1.0 every
20 seconds, and these changes are repeated for 240 seconds
(until the end of simulation). Figure 10 shows the average
number of hops, cache hit rate, and advertisement rate when
the change intervals of Zipf α vary. Here, the thresholds of
lower/upper were set to 70/100, and the reclustering interval
was set to 3 seconds (adequate values in this environment).
From Fig. 10, the proposed (Dynamic) scheme always im-
proves the delivery latency, cache hit rate, and overhead com-
pared with the conventional (Static) scheme in a wide range
of change intervals. This is because the proposed scheme
can adapt cluster sizes smoothly to environments where the
content popularity changes frequently.

5.5 Effect of Network Topology

Finally, we evaluate the proposed and conventional schemes
comparatively in a practical network topology. We used the
Interoute topology of 110 nodes from the Internet Topology
Zoo [24] on the basis of comparative paper [8]. Since the
dataset shows the relationship of pop-level routers, we de-
fined each node as CR and placed producers and consumers
on each CR. Content was randomly placed on each producer.
Each consumer sent interest packets requesting content to-
ward the producer at normal distribution intervals with an
average value of 1.0 seconds. The Dynamic scheme used
the clustering algorithm described in Sect. 3.1 and its ini-
tial cluster size was set to approximately 4 (16 CRs in each
cluster). The HRC scheme formed 6 clusters by the k-split
algorithm. These settings were the appropriate value for an
α of 1.0 at the start of the simulation. The Dynamic scheme
can migrate the cluster size, which consists of 4, 9, 16, 36, or
110 CRs in each cluster, during the simulation. The reclus-
tering interval was set to 3 seconds, the flooding limit was set

406
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 11 Effect of network topology.

to 6, and the lower/upper threshold values were set to 70/130,
which were the appropriate values in this simulation. Other
simulation parameters shall conform to Table 1.

Figure 11 shows the average number of hops and cache
hit rate as a function of time. It indicates that the trend is
almost the same as the results for the grid topology shown in
Sect. 5.1, and theDynamic scheme alwaysmaintains the high
cache hit rates and reduces the average number of hops. In
addition, regarding communication overheads, the Dynamic
scheme achieves smaller advertisement rates of 4.37% than
the Static scheme of 6.07%. Therefore, the proposed scheme
is effective even in practical network topologies.

6. Conclusion

Weproposed a dynamic clustering scheme to adjust the cache
distribution range in accordance with the change in content
popularity. Our scheme adjusts the cluster size effectively
using a simple threshold-based algorithm based on the num-
ber of cache updates in the cluster. Simulation evaluations
have indicated that the proposed scheme can reduce the de-
livery latency while consistently maintaining a high cache
hit rate in a large domain environment where content pop-
ularity changes. In future work, we will investigate more
flexible clustering schemes considering content attributes in
practical topologies.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant-
in-Aid for Scientific Research (C) Number 21K11872.

References

[1] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Popularity-aware

dynamic-clustering scheme for distributed caching in ICN,” Proc.
ACM ICN2022, pp.192–193, Sept. 2022. DOI: 10.1145/3517212.
3559482

[2] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Performance evaluation of
popularity-aware dynamic-clustering scheme for distributed caching
in ICN,” Proc. APSIPA ASC2022, pp.185–190, Nov. 2022.

[3] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” Commun. ACM, vol.55,
no.1, pp.117–124, Jan. 2012. DOI: 10.1145/2063176.2063204

[4] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K.C. Claffy,
P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang, “Named data
networking,” ACM SIGCOMM Comput. Commun. Rev., vol.44,
no.3, pp.66–73, July 2014. DOI: 10.1145/2656877.2656887

[5] S. Arshad,M.A.Azam,M.H.Rehmani, and J. Loo, “Recent advances
in information-centric networking-based internet of things (ICN-
IoT),” IEEE Internet Things J., vol.6, no.2, pp.2128–2158, April
2019. DOI: 10.1109/JIOT.2018.2873343

[6] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S.
Al-Ahmadi, “Named data networking: A promising architecture for
the internet of things (IoT),” International Journal on Semantic Web
and Information Systems, vol.14, no.2, pp.86–112, April 2018. DOI:
10.4018/IJSWIS.2018040105

[7] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “A cluster-based cache
distribution scheme in content-centric-networking,” Proc. ACM
ICN2018, pp.196–197, Sept. 2018. DOI: 10.1145/3267955.3269012

[8] V. Sourlas, I. Psaras, L. Saino, and G. Pavlou, “Efficient hash-routing
and domain clustering techniques for information-centric networks,”
Elsevier Computer Networks, vol.103, pp. 67–83, July 2016. DOI:
10.1016/j.comnet.2016.04.001

[9] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnec-
tion of LRU caches and its analysis,” Elsevier Performance Eval-
uation, vol.63, no.7, pp.609–634, July 2006. DOI: 10.1016/j.peva.
2005.05.003

[10] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hi-
erarchical web caches,” Proc. IEEE IPCCC2004, pp.445–452, April
2004. DOI: 10.1109/PCCC.2004.1395054

[11] K. Cho, M. Lee, K. Park, T.T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” Proc. IEEE INFOCOM2012 Workshops,
pp.316–321, May 2012. DOI: 10.1109/INFCOMW.2012.6193512

[12] T. Mick, R. Tourani, and S. Misra, “MuNCC: Multi-hop neighbor-
hood collaborative caching in information centric networks,” Proc.
ACM ICN2016, pp.93–101, Sept. 2016. DOI: 10.1145/2984356.
2984375

[13] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for infor-
mation centric networking,” Proc. ACM ICN2013, pp.27–32, Aug.
2013. DOI: 10.1145/2491224.2491232

[14] J.H. Mun and H. Lim, “Cache sharing using Bloom filters in named
data networking,” Journal of Network and Computer Applications,
vol.90, pp.74–82, July 2017. DOI: 10.1016/j.jnca.2017.04.011

[15] C. Li and K. Okamura, “Cluster-based in-networking caching for
content-centric networking,” International Journal of Computer Sci-
ence and Network Security, vol.14, no.11, pp.1–9, 2014. http://
paper.ijcsns.org/07_book/201411/20141101.pdf

[16] B. Alahmri, S. Al-Ahmadi, and A. Belghith, “Efficient pooling and
collaborative cache management for NDN/IoT networks,” IEEE Ac-
cess, vol.9, pp.43228–43240, March 2021. DOI: 10.1109/ACCESS.
2021.3066133

[17] H. Yan, D. Gao, W. Su, C.H. Foh, H. Zhang, and A.V. Vasilakos,
“Caching strategy based on hierarchical cluster for named data net-
working,” IEEE Access, vol.5, pp.8433–8443, March 2017. DOI:
10.1109/ACCESS.2017.2694045

[18] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: Why it
matters and how to model it,” SIGCOMM Comput. Commun. Rev.,
vol.43, no.5, pp.5–12, Oct. 2013. DOI: 10.1145/2541468.2541470

[19] W. Wong, L. Wang, and J. Kangasharju, “Neighborhood search

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING IN ICN
407

and admission control in cooperative caching networks,” Proc.
IEEE GLOBECOM2012, pp.2852–2858, Dec. 2012. DOI: 10.1109/
GLOCOM.2012.6503549

[20] S. Nayak, R. Patgiri, and A. Borah, “A survey on the roles of Bloom
filter in implementation of the named data networking,” Elsevier
Computer Networks, vol.196, art. no.108232, Sept. 2021. DOI: 10.
1016/j.comnet.2021.108232

[21] G.F. Riley and T.R. Henderson, “The ns-3 network simulator,” Mod-
eling and Tools for Network Simulation, K. Wehrle, M. Güneş, and
J. Gross, eds., pp.15–34, Springer, Berlin, Heidelberg, 2010. DOI:
10.1007/978-3-642-12331-3_2

[22] A. Ioannou and S.Weber, “A survey of caching policies and forward-
ingmechanisms in information-centric networking,” IEEECommun.
Surveys Tuts., vol.18, no.4, pp.2847–2886,May 2016. DOI: 10.1109/
COMST.2016.2565541

[23] M. Hefeeda and O. Saleh, “Traffic modeling and proportional par-
tial caching for peer-to-peer systems,” IEEE/ACM Trans. Netw.,
vol.16, no.6, pp.1447–1460,March 2008.DOI: 10.1109/TNET.2008.
918081

[24] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE J. Sel. Areas Commun., vol.29,
no.9, pp.1765–1775, Oct. 2011. DOI: 10.1109/JSAC.2011.111002

Mikiya Yoshida received the B.E. degree in
Information Science and Electrical Engineering
from the Kyushu Sangyo University, Japan, in
2017, and his M.E. degree in Information En-
gineering from the University of Kitakyushu,
Japan, in 2019. He is now a doctoral student
at the University of Kitakyushu, Japan. His re-
search interests include network architecture and
information-centric networking.

Yusuke Ito received theB.E., M.E., andD.E.
degrees in Information and Media Engineering
from the University of Kitakyushu, Japan in
2014, 2016, and 2019, respectively. From 2019
to 2022, he was an Assistant Professor at the
Tokyo University of Science. Currently, he is a
Lecturer in the Department of Information Sys-
tems Engineering, Faculty of Environmental En-
gineering, The University of Kitakyushu, Japan.
His research interests include network architec-
ture and edge cloud computing.

Yurino Sato received the B.E., M.E., and
D.E. degrees in Information and Media En-
gineering from the University of Kitakyushu,
Japan in 2012, 2014, and 2019, respectively. She
has been an assistant professor since April 2018
in the Department of Control Engineering, Na-
tional Institute of Technology (KOSEN), Sasebo
College, Japan. Her research interests include
network architecture, transport protocol, and for-
ward error correction.

Hiroyuki Koga received the B.E., M.E.,
and D.E. degrees in Computer Science and Elec-
tronics from the Kyushu Institute of Technology,
Japan in 1998, 2000, and 2003, respectively.
From 2003 to 2004, he was a postdoctoral re-
searcher in the Graduate School of Information
Science, Nara Institute of Science and Technol-
ogy. From 2004 to 2006, he was a researcher
in the Kitakyushu JGN2 Research Center, Na-
tional Institute of Information and Communica-
tions Technology. From 2006 to 2009, he was an

assistant professor in the Department of Information and Media Engineer-
ing, Faculty of Environmental Engineering, The University of Kitakyushu,
and has been an associate professor in the same department since April
2009. His research interests include performance evaluation of computer
networks, mobile networks, and communication protocols.

408
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

PAPER
Traffic Reduction for Speculative Video Transmission in Cloud
Gaming Systems

Takumasa ISHIOKA†a), Tatsuya FUKUI††, Toshihito FUJIWARA††, Satoshi NARIKAWA††, Nonmembers,
Takuya FUJIHASHI†, Shunsuke SARUWATARI†, and Takashi WATANABE†, Members

SUMMARY Cloud gaming systems allow users to play games that re-
quire high-performance computational capability on their mobile devices
at any location. However, playing games through cloud gaming systems
increases the Round-Trip Time (RTT) due to increased network delay. To
simulate a local gaming experience for cloud users, we must minimize
RTTs, which include network delays. The speculative video transmission
pre-generates and encodes video frames corresponding to all possible user
inputs and sends them to the user before the user’s input. The speculative
video transmission mitigates the network, whereas a simple solution sig-
nificantly increases the video traffic. This paper proposes tile-wise delta
detection for traffic reduction of speculative video transmission. More
specifically, the proposed method determines a reference video frame from
the generated video frames and divides the reference video frame into mul-
tiple tiles. We calculate the similarity between each tile of the reference
video frame and other video frames based on a hash function. Based on
calculated similarity, we determine redundant tiles and do not transmit them
to reduce traffic volume in minimal processing time without implementing
a high compression ratio video compression technique. Evaluations using
commercial games showed that the proposed method reduced 40–50% in
traffic volume when the SSIM index was around 0.98 in certain genres,
compared with the speculative video transmission method. Furthermore, to
evaluate the feasibility of the proposed method, we investigated the effec-
tiveness of network delay reduction with existing computational capability
and the requirements in the future. As a result, we found that the proposed
schememaymitigate network delay by one to two frames, evenwith existing
computational capability under limited conditions.
key words: cloud gaming, low latency, speculative video transmission,
traffic reduction

1. Introduction

As networks become more sophisticated, there is a growing
interest in cloud gaming services [1]. A cloud gaming ser-
vice enables high-end games on low-end devices by running
games on a cloud server equipped with a GPU to replace
the graphics rendering process [2]. High-end games require
complex processing with dedicated GPU cards installed in
high-performance PCs or game consoles. Using cloud gam-
ing services, users can play high-end games from anywhere
with mobile terminals like smartphones.

Cloud gaming systems necessitate interactive operation
over the network. Typical video transmission for cloud gam-

Manuscript received June 26, 2023.
Manuscript revised October 12, 2023.
Manuscript publicized January 30, 2024.
†The authors are with Graduate School of Information Science

and Technology, Osaka University, Suita-shi, 565-0871 Japan.
††The authors are with NTT Access Network Service Systems

Laboratories, NTT Corporation, Musashino-shi, 180-8585 Japan.
a) E-mail: ishioka.takumasa@ist.osaka-u.ac.jp
DOI: 10.23919/transcom.2023EBP3108

ing services is request-and-response. Specifically, a user de-
vice sends input to the cloud server, and the server sends back
video frames corresponding to the received input. This gen-
erated video frame is subsequently compressed using video
coding technology and transmitted to the user. The user
decodes the received video frame and displays the video
frame. However, a significant problem with the cloud gam-
ing system is an increase in the round-trip time (RTT). RTT
is the delay from sending the user’s input to displaying the
corresponding video frame on the user’s device. The cloud
gaming server must wait for the input to return the video
frames, increasing the network delay. The network delay is
the sum of the packet delivery time from the user’s device
to the server and vice-versa, and it is a part of the RTT.
Here, the packet delivery time represents the delay when the
first bit leaves the sender until the last is received. Any in-
crease in the RTT negatively impacts the quality of the user
experience, thus posing a major challenge in gameplay [3].

Many discussions have addressed the issue of RTT on
cloud gaming systems. The RTT has a significant effect
on the gaming experience [4]. It’s a crucial factor in some
games, and the demands can change based on the target
game’s features [5]. Beyond reducing propagation delay, sev-
eral aspects, like reducing transmission delay through video
quality optimization, application optimization, and more,
have been explored to cut down on system-wide latency.
Table 1 lists major research topics related to cloud gaming
response time and traffic issues. Certain studies have used
platform techniques, like mobile edge computing, to shrink
response time [6]. Numerous studies focused on platform
optimization, which includes dynamically adjusting video
quality [7], optimizing cloud resources [8], [9], and creating
cloud-native games [10], [11]. However, simply reducing
latency does not provide an experience identical to playing
a game locally. We need to eliminate any network delays
to make the user’s experience match that of playing a game
locally.

Some studies suggest speculative video transmission
methods to minimize the RTT. Speculative video transmis-
sion is an approachwhere video data is transmitted efficiently
by utilizing input predictions. This approach predicts the
next potential input based on the user’s past inputs or gen-
eral input patterns and accordingly pre-renders and transmits
the frames. For example, in [12], the cloud server creates
in advance and encodes video frames corresponding to all
potential user inputs within one frame, then sends them all

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

ISHIOKA et al.: TRAFFIC REDUCTION FOR SPECULATIVE VIDEO TRANSMISSION IN CLOUD GAMING SYSTEMS
409

Table 1 Major research topics on response time and traffic challenges in cloud gaming.

to the user. The speculative video transmission aims to mit-
igate the network delay. In other words, we aim for the
perceived network delay to be zero. The perceived network
delay is essentially how a user experiences the network de-
lay. By transmitting video frames speculatively, the proposed
scheme makes the user perceive the network delay as zero,
even if there’s an inherent delay.

A key issue in realizing speculative video transmission
is significant video traffic when the number of the user’s
potential inputs in each frame is large. For example, when
the network delay is d [s] and the frame rate is f [fps], the
server lists the potential inputs in future n = dd · f e frames.
The server then renders the video frames according to the
potential inputs and transmits the video frames to the user.
Since the video frames corresponding to the listed potential
inputs are buffered on the user’s device before his/her in-
put, the network delay can be regarded as zero. The server
then renders the video frames according to the listed po-
tential inputs and transmits the video frames to the user.
Current request-and-response transmissions commonly use
differential coding methods such as H.264/Advanced Video
Coding (AVC) [13] and H.265/High Efficiency Video Cod-
ing (HEVC) [14]. However, each speculative video frame
contains the effects of prediction errors and uncertainty in
prediction data. It is desirable to mitigate the impact of accu-
mulated prediction errors and the uncertainty of prediction
data by processing each frame independently. Therefore,
in speculative video transmission, intra-coding, a coding
method that processes each frame independently, is a more
appropriate approach than the existing differential coding
methods. If one simply uses intra-coding alone, it would be
challenging to achieve sufficient compression rates to coun-
teract the increase in traffic volume caused by speculative
processing. The proposed method aims to reduce traffic
volume by focusing on the similarities between speculative
frames at the same time slot, utilizing intra-coding as a base.

As a method focusing on the similarities between spec-
ulative frames within the same time slot, this paper proposes
a tile-wise delta detection approach. In this approach, the
cloud server generates the video frames based on the user’s
potential input and selects one video frame as the reference
frame. It then partitions these generated video frames into
multiple tiles. Instead of encoding and transmitting all tiles
uniformly, the system sends only those that have notable
differences from the tiles of the reference frame. Further-
more, this tile-wise delta detection approach utilizes a hash
function to estimate the similarity between the tiles of the
reference frame and the generated videos. This approach
achieves a low computational cost while maintaining certain
similarity estimation accuracy.

To evaluate the effectiveness of the proposed method,
we adopted several commercial games, including first-
person, third-person, and omniscient games, for comparison.
From the evaluations, the proposedmethod reduces the video
traffic for speculative video transmission irrespective of the
game genre. Depending on the game genres, we achieve
high reductions especially. In addition, we discuss the feasi-
bility of the proposed method considering the computational
capability of the cloud server.

The contributions of this study are as follows:

1. We design tile-wise delta detection for cloud gaming
services to simultaneously achieve network delay miti-
gation and traffic reduction while keeping video quality.

2. We adopt a hash-based similarity calculation to esti-
mate the similarity between the tiles with a low compu-
tational cost.

3. We develop a speculative video transmission system to
empirically evaluate the effectiveness and feasibility of
the proposed method.

4. We use three genres of commercial games for evalu-
ations, i.e., first-person, third-person, and omniscient

410
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

games, to further discuss the effectiveness of the pro-
posed method in practical game videos.

5. We simulated the computational capability required to
implement the proposed method and discussed the fea-
sibility.

2. Proposed Method

2.1 Overview

Figure 1 shows an overview architecture of the proposed
method. The cloud gaming server generates all potential
input patterns for the user according to the number of spec-
ulative frames and input patterns per frame. The system
renders the video frames according to the potential input
patterns and the current game state. It divides each rendered
video frame intomultiple tiles and selects one video frame as
the reference to calculate the similarity between other video

frames using a hash function. It calculates the similarity for
each tile. Based on the similarity, the tiles with high simi-
larity are not encoded and transmitted to the user. The user
uses the same tiles in the reference video frame, whereas
the tiles with low similarity are encoded and transmitted to
the user. Each user decodes the video frame corresponding
to the actual input and displays it on the screen. The cloud
gaming server begins the transmission of the video frames,
considering the network delay. The network delay appears
to be zero from the user’s perspective. In addition, each user
sequentially sends his/her input to the cloud gaming server
to update the current game state.

Figure 2 shows the data flow between the cloud gaming
server and the user’s device. We consider the number of
speculative frames n to be two based on the network delay
and the frame rate. At the time instance t0, the user’s device
sends an input to the cloud gaming server. The cloud gaming
server has already received the input for t−1 from the user’s
device and updates the game state based on the received

Fig. 1 Proposed cloud gaming system architecture.

Fig. 2 Data flow between server and client.

ISHIOKA et al.: TRAFFIC REDUCTION FOR SPECULATIVE VIDEO TRANSMISSION IN CLOUD GAMING SYSTEMS
411

input. Let A be the number of the potential input patterns in
each frame. In this case, the cloud gaming server generates
A2 potential input patterns and prepares multiple game states
for t1 by speculatively updating the game state for each input.
It then renders video frames of the game states for t1 and
sends the video frames to the user’s device, followed by
the proposed tile-wise delta detection. The user’s device
displays the video frames with a negligible RTT based on
the user’s true input at t1. The above operations are repeated
in every frame.

2.2 Tile-Wise Delta Detection

Figure 3 shows the overview of the proposed tile-wise delta
detection. The cloud gaming server with speculative video
transmission generates video frames for user potential input
patterns. The speculative video transmission canmitigate the
network delay by pre-sending the generated video frames to
the user, whereas it will cause large video traffic. In the
proposed method, we detect redundant frames with respect
to the reference frame. It then calculates the similarity be-
tween the reference video frame and the other tiles. For the
similarity calculation, the cloud gaming server partitions the
reference video and other video frames into M vertical tiles
and N horizontal tiles. Figure 3 presents an example for
the case where M = 4 and N = 4. We identify redundant
tiles relative to the reference frame to reduce the video traffic
generated by video frames.

Our proposed method employs perceptual hash
(pHash) [15] to calculate the similarity based onDiscrete Co-
sine Transform (DCT) between tiles. The pHash is a widely

utilized image similarity estimation algorithm. It prioritizes
extracting the features in the low-frequency components eas-
ily perceived by humans, thereby enabling the extraction of
perceptible differences. Despite requiring longer computa-
tional time compared to average hash (aHash) and difference
hash (dHash), pHash demonstrates robustness against image
reduction and blur [16]. Considering that certain games may
generate high-quality images or motion blur, we argue that
pHash is our method’s most appropriate image similarity es-
timation algorithm. The procedure to compute the pHash
value for each tile is as follows.
1. Converts a video frame to a grayscale image with the

same luminance as the original color image.
2. Resize the grayscale image to 32 × 32 [pixels].
3. Perform a discrete cosine transform (DCT) for the re-

sized tiles and extract the DCT coefficients over an
8 × 8 [pixels] region. It selects 64 low-frequency DCT
coefficients.

4. Obtain the median of the extracted DCT coefficients
and convert them to binary based on the average value.
Finally, we obtain a 64-bit hash value.

The system then uses the pHash values corresponding to each
tile in the reference video frame and the hash values of tiles in
other video frames to determine similar and dissimilar tiles
according to Hamming distance. The maximum possible
Hamming distance is 64.

2.3 Number of Speculative Frames Relative to Computa-
tional Capability

The speculative video transmission can mitigate the network

Fig. 3 Overview of the proposed tile-wise delta detection.

412
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

delay from the user’s perspective by sending the video frames
of possible user’s future input patterns. In the proposed
scheme, the cloud gaming server lists the user’s potential
inputs in future frames and renders the video frames. The
cloud gaming server generates the video frame and performs
tile-wise delta detection on a frame-by-frame basis. Accord-
ingly, the latency requirement depends on the frame rate of
cloud gaming services. We consider the frame rate of 60 fps;
thus, the requirement is 16.6 ms.

Let CS [Hz] be the total operating frequency of the
central processing unit (CPU) in the cloud gaming server,
PS [cycles] be the total number of cycles of speculative
game execution processes, and f [fps] be the frame rate.
Here, A denotes the number of the potential input patterns in
each frame. In this case, the possible number of speculative
frames n̂ [frames] that can be speculatively processed is
subject to the following restrictions:

n̂ =
⌊
logA

(
CS

f · PS

)⌋
(1)

Let PG be the number of game execution process cycles per
frame, PS can be determined as follows:

PS = PG · An̂ (2)

Therefore, n̂ relative to the total operating frequency of the
CPU is as follows:

n̂ =
⌊
1
2

logA

(
CS

f · PG

)⌋
(3)

Here, d [s] and tp [s] denote the network delay and the
perceived network delay. When the server lists the potential
inputs for future n̂ [frames] within each frame, the perceived
network delay tp is as follows:

tp =

{
0 if

(
n̂
f ≥ d

)
,

d − n̂
f else

(4)

The proposed method reduces the perceived network delay
by rendering a large number of future input patterns frame-
by-frame. However, as defined in Eq. (3), significant com-
putation power is required to mitigate the perceived network
delay as the value of n̂ increases.

3. Rate-Distortion Optimized Speculative Frame Cod-
ing

In this section, we introduce the notion of transition probabil-
ity P(Fk) to each frame at time t. Fk denotes the k-th frame
in the group of frames (Ft) to be speculatively processed at
time t. The frames the user requests are independent and
therefore

∑
k P(Fk) = 1. The transition probabilities to each

frame are assumed to be obtainable in advance. We can
determine transition probabilities using time series analysis
of user operation logs or machine learning-based analysis.
This idea draws influence from the discussion in [17] on
improving input prediction based on the assumption that the

input continues seamlessly from the immediately preceding
input. Note that, depending on the game genre and the input
method of the operations, determining the exact transition
probabilities might not always be practical. However, this
limitation does not restrict the generality of our approach,
as individuals can modify the probabilistic model without
affecting the proposed system.

When the input pattern per frame A is speculatively
processed for n̂ frames, Ft is shown as follow:

Ft = {Fk |k ≤ An̂} (5)

Here, we assume that the server has determined the transi-
tion probabilities P(Fk |Ft) for all possible transition frames.
Allocating more bits to frames more likely to be displayed
by the user improves the user experience.

The rate allocation algorithm is implemented to min-
imize the distortion expected at the decoder, according to
the transition probability P(Fk |Ft). Assuming r(k) bits are
assigned to k-th frames, the distortion is shown as follows:

D =
An̂∑
k=1

D(r(k))P(Fk |F) (6)

In the proposed method, the difference from the refer-
ence frame is determined for each tile of M×N and transmits
only those with a difference. τ represents the hash thresh-
old, r(i, j, k) indicates the bitrate of (i, j)-th tile in k-th frame,
and x(i, j, k) is a binary variable that determines whether the
tile is transmitted or not. Specifically, the proposed scheme
assigns x(i, j, k) = 0 when the Hamming distance of the
tile between the reference video frame and another video
frame is below the hash threshold τ and vice-versa. It means
that setting a lower hash threshold increases the number of
transmission tiles. In this case, the distortion is defined as:

D =
An̂∑
k=1

M∑
i=1

N∑
j=1

D(r(i, j, k))P(Fk |F)x(i, j, k)

s.t .
M∑
i=1

N∑
j=1

An̂∑
k=1

r(i, j, k)x(i, j, k) ≤ Rlimit

s.t . x(i, j, k) =
{

1 (if send)
0 (else)

(7)

Here, r(i, j, k)x(i, j, k) denotes the rate distribution limited
by the given rate Rlimit , D(r(i, j, k)) denotes the distortion
for each tile encoded with r(i, j, k) bits. Since P(Fk |F) does
not depend on r , the rate distribution optimisation problem
is solved with Lagrange multipliers λ > 0, the cost J is as
follow:

J = min
r,x

{ An̂∑
k=1

M∑
i=1

N∑
j=1

D(r(i, j, k))P(Fk |F)x(i, j, k)

+ λ | |rx| |1
} (8)

By solving the optimization problem, the proposed scheme

ISHIOKA et al.: TRAFFIC REDUCTION FOR SPECULATIVE VIDEO TRANSMISSION IN CLOUD GAMING SYSTEMS
413

can find the optimal hash threshold τ and bit assignment for
each tile r(i, j, k) to minimize the distortion under the given
rate Rlimit.

4. Evaluation

4.1 Traffic Reduction in Commercial Games

We measured the video traffic and the corresponding struc-
tural similarity (SSIM) index [18] of the speculative video
transmission with tile-wise delta detection. Table 2 presents
the environments of this evaluation. SSIM index is a bet-
ter objective metric for predicting the perceptual similarity
between original and processed video frames. Larger val-
ues of the SSIM index close to 1 indicate higher perceptual
similarity between these frames.

In this evaluation, we classify commercial games into
first-person, third-person, and omniscient. First-person
games are displayed from the viewpoint of the user-
controlled character. First-person shooting (FPS) is a typi-
cal first-person game. The video frame of an FPS game is
characterized by the display of the user interface (UI) and
weapons, such as guns and knives held by the characters at
certain coordinates. The objects contained within the view-
point change rapidly in response to the user’s inputs.

Third-person games are displayed from the rear view
of the user’s character. A typical third-person game is an
action game. The video frame of an action game has the
characteristic of displaying the user’s character at certain
coordinates. As in FPS games, the objects contained within
the viewpoint change rapidly in response to the user’s inputs.

Omniscient games are displayed so that the user over-
looks the controlling character. A typical omniscient game
is a fighting game. The video frame of a fighting game dis-
plays a fixed viewpoint such that the user’s character and
the entire field of play are contained. The user-controlled
character moves within a fixed viewpoint in response to the
user’s inputs.

We used the following commercial games for compari-
son: Valorant [19], Overwatch2 (OW2) [20], and Border-
lands3 [21] as first-person games; Genshin Impact [22],
Monster HunterWorld (MHW) [23], and ELDENRING [24]

Table 2 PC specs used for evaluation.

as third-person games; and Street Fighter V (SFV) [25],
Hearthstone [26], and Cuphead [27] as omniscient games.
To facilitate comparison, we replicated a game state for each
game and obtained video frames corresponding to various
inputs from that state. Specifically, we recorded 10 video
frame patterns for each game, from which one frame was
chosen randomly to serve as the reference frame. All frames,
also divided tiles, were processed without compression. Ac-
cordingly, in Eq. (8), P(Fk |F) remains constant regardless
of the values of k, and D(r(i, j, k)) equals zero.

Table 3 shows each commercial game’s SSIM index and
traffic reduction ratio on the proposed system. In this evalua-
tion, the proposedmethod divided each video frame into 3×3
tiles, and the Hamming distance threshold is τ = 0, i.e., only
tiles with perfect matches are not transmitted. The SSIM in-
dex was measured with reference to the original video frame.
As a result, all omniscient games had a reduction efficiency
of 40–50%with an SSIM index of approximately 0.98. Since
the region in which the user input effect tends to be limited,
the tiles with zero Hamming distances are more likely to ap-
pear. Therefore, high reduction efficiency can be achieved.
On the other hand, some first-person and third-person games
had video quality degradation and low reduction ratio com-
pared to omniscient games. In first-person and third-person
games, the entire video frame may change owing to user
input. Therefore, the reduction efficiency is reduced when
the Hamming distance threshold is set to τ = 0. Optimiz-
ing the Hamming distance threshold and the number of tile
divisions may improve reduction efficiency while limiting
quality degradation.

Figures 4(a) through 4(f) show the snapshots of the
games. We select Valorant, Genshin Impact, and SFV as
the first-person, third-person, and omniscient games. Fig-
ures 4(a) through 4(c) show the original video frames and
Figs. 4(d) through 4(f) show the proposed video frame. Here,
we divided each uncompressed frame into 3× 3 tiles and set
τ=0 for the first-person, third-person, and omniscient games,
respectively. From the snapshots, the proposed method can
reduce video traffic irrespective of the game types. In addi-
tion, quality degradation due to the tile-wise delta detection
does not significantly impact the visual quality.

Finally, Figs. 5(a) through 5(c) show the reduction ra-
tio for the SSIM index of the first-person, third-person, and
omniscient games, respectively. In this evaluation, the pro-
posed method divided each video frame into 2 × 2 to 5 × 5
tile divisions and varied the Hamming distance threshold τ
from 0 to 64. As the value of τ increases, the number of
tiles regarded as similar also increases, leading to higher
video quality and larger SSIM indexes. Here, no tile divi-
sion means that the similarity calculation is performed on

Table 3 The SSIM index and traffic reduction ratio in each commercial game. The proposed method
divided each video frame into 3 × 3 tiles and set τ=0 for tile-wise delta detection.

414
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 4 Snapshots of the games. (a) and (d) show the first-person game’s video frames. (b) and (e)
shows the third-person game’s video frames. (c) and (f) shows the omniscient game’s video frames.

Fig. 5 Traffics relative to SSIM index. To evaluate traffic based on the SSIM index, we measured the
traffic and average SSIM index for each tiling by varying the Hamming distance threshold τ value from
0 to 64 for the original video frame.

the whole frame without tiling it.
We can see the following results:

• Raising the threshold τ value enhances the traffic re-
duction ratio across all games by classifying more tiles
as similar. Nevertheless, this also leads to a significant
decrease in the SSIM index.

• Figures 5(a) to (c) show that performing similarity esti-
mation on each tile after division performs better com-
pared to the scenario where similarity estimation is
performed without division. All games produced the
highest quality video, especially when split into 3 × 3
tiles.

• Figure 5(c) indicates that optimizing the number of tiles
increases the reduction ratios. For instance, with an
SSIM index of 0.9628, the reduction ratio registers
62.55% for 3 × 3 tile division and 36.14% for 4 × 4
tile division.

• Figure 5(c) shows that tile-wise delta detection works

well in omniscient games. In such games, the back-
ground tiles are static, irrespective of the user’s inputs,
and this can lead to a large reduction in traffic.

• Figure 5(a) indicates the potential effectiveness in other
genres, depending on each game’s characteristics. In
other words, the proposed method works well when the
game field has minimal transitions for each input, such
as when the background is monotonous.

Considering the rate-distortion optimization discussed
in Sect. 3, the results from Figs. 5(a) to 5(c) suggest that
regardless of the number of tile divisions, setting a smaller
τ increases the number of transmitted tiles, i.e., there is
a higher proportion of instances where x = 1. In such
cases, it becomes necessary to reduce the quality of each
tile through rate-distortion optimization, thereby decreasing
the value of r . Conversely, setting larger τ decreases the
number of transmitted tiles, i.e., there is a higher proportion
of instances where x = 0. The value of r can be increased

ISHIOKA et al.: TRAFFIC REDUCTION FOR SPECULATIVE VIDEO TRANSMISSION IN CLOUD GAMING SYSTEMS
415

Fig. 6 The perceived network delay as a function of network delays with
the different number of potential input patterns in each frame.

through rate-distortion optimization.

4.2 Feasibility

In this section, we carry out experiments to discuss the
perceived network delay under the different computation
resources and the number of potential input patterns in
each frame. Table 2 shows the experimental setup. Intel
Core i9-10850K has ten unlocked cores and hyper-threading,
and each core can turbo up to an operating frequency of
5.2×109 Hz. Here, we consider the average number of game
execution process cycles per frame PG to be 2.5×106 cycles
based on the measurement during running SFV.

Figure 6 shows the perceived network delay as a func-
tion of network delays with the different number of potential
input patterns in each frame. We assume the same computa-
tion capability as the Intel Core i9-10850K CPU used in our
implementation. From the evaluation results, the cloud gam-
ing server can decrease the number of video frames needed
to be rendered in a short network delay environment and a
limited number of potential inputs. In this case, the cloud
gaming server can complete the required operations in ev-
ery frame, and the perceived network delay becomes zero.
In a long network delay and a large number of the user’s
potential inputs, the cloud gaming server does not com-
plete the required operations within one frame, and thus,
the perceived network delay becomes longer. However, the
proposed scheme can reduce the perceived network delay
because the cloud gaming server sends the rendered video
frames once the required operations are finished. A lower
perceived network delay, i.e., RTT, also contributes to the
improvement of the cloud gaming experience.

Figure 7 shows the perceived network delay as a func-
tion of the total clock speed, where the network delay is
assumed to be 25 ms [28]. When the number of potential in-
put patterns is three, the proposed scheme can eliminate the
network delay using an off-the-shelf CPU, e.g., Intel Core
i9-10850K. On the other hand, the proposed scheme needs
100 and 10000 times the computational capabilities of the
current experimental setup to achieve zero perceived net-

Fig. 7 The perceived network delay as a function of the total clock speed,
where the network delay is assumed to be 25ms.

work delay when the number of potential input patterns in
each frame is 10 and 100, respectively.

5. Related Works

This research is related to studies on speculative video trans-
mission, network delay reduction in cloud gaming, and dif-
ferential coding.

5.1 Network Delay Reduction in Cloud Gaming

In cloud gaming systems, the network delay will be a critical
issue since a long network delay damages the user’s experi-
ence depending on the characteristics of the target game [29].
Some studies aim to reduce network delay to enhance user
experience quality in cloud gaming systems. We can clas-
sify the existing methods into individual delay reduction and
zero-delay solutions. For individual delay reduction, Suzuje-
vic [30] proposed an adaptive video codingmethod to reduce
transmission and processing delays. Specifically, the cloud
gaming server degrades game video frames and their frame
rate to reduce the video traffic and corresponding transmis-
sion delay. In [31], they aim to reduce propagation delay
by decreasing the distance between the cloud gaming server
and the user terminal. Specifically, each user connects to a
physically nearby cloud gaming server and exchanges pack-
ets, thus achieving an experienced quality closer to a local
gaming system. Zhang [6] utilized edge networks to reduce
network delay and bandwidth consumption. They form edge
networks to a data center for cloud gaming and perform com-
putationally demanding operations, such as video rendering,
on the edge networks. Other studies [10], [11] adjust the
game system to reduce the effect of a long network delay on
the quality of experience.

For zero-delay solutions, speculative video transmis-
sion has been designed in recent years. Outatime [32] is
proposed to eliminate the network delay in cloud gaming sys-
tems by utilizing speculative execution. Outatime transmits
speculatively generated multiple video frames as early as the
network delay of the server-user network. Each user outputs

416
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

a game video frame from the received multiple video frames
by applying the appropriate image synthesis technique ac-
cording to the user’s input. In contrast, the user device
requires a high computation cost for running the sophisti-
cated image synthesis technique. CloudHide [12] is another
method for eliminating network delay in cloud gaming sys-
tems through speculative execution. CloudHide transmits
all speculatively generated video frames to the user in ad-
vance for network delay reduction, whereas it significantly
increases video traffic. In existing methods, while issues
related to video traffic are mentioned, specific solutions are
not provided.

Our study is one of the zero-delay solutions. We aim
to eliminate the network delay by transmitting all specula-
tively generated game video frames to the user in advance
while reducing traffic. To reduce video traffic without an ad-
ditional computation cost, we propose hash function-based
tile-wise delta detection. Specifically, it detects redundant
tiles between game video frames using a hash function, i.e.,
low computation cost, and skips encoding and transmission
of the redundant tiles for traffic reduction.

5.2 Differential Coding

Video coding techniques such as H.264/AVC and
H.265/HEVC are used to encode video frames in cloud gam-
ing. In H.264/AVC and H.265/HEVC, traffic reduction is
achieved by encoding and transmitting the difference be-
tween the current frames and the previously encoded frame.
For cloud gaming, traffic reduction methods based on users’
perspectives have been proposed to prevent the degradation
of the user’s perceptual quality. Sabat [33] determines the
video quality of the game video frames based on gazing
points at objects in the game. Hegazy et al. [34] improve
the perceptual quality by maximizing the video quality of
the regions of interest within each video frame. Illahi [35]
proposed a foveated video encoding (FVE) to determine the
quality within each game video frame based on the user’s
gaze information. FVE can reduce traffic by encoding the
periphery of the field of view at a lower resolution by taking
advantage of the property that the resolution becomes lower
as one moves outward from the field of view.

Other than cloud gaming, there have been stud-
ies on traffic reduction in immersive video applications.
In [36], they proposed adaptive tile-based virtual real-
ity (VR) video transmission. The tile-based video trans-
mission schemes [37]–[40] divide the entire video frame
into multiple tiles. There are two advantages of tile-based
schemes. The first advantage is to realize video coding par-
allelization to decrease coding delay. For example, in [38],
they realize parallel video coding in H.265/HEVC consider-
ing adaptive tile patterns and decrease the coding delay by ap-
proximately 20–40%. The second advantage is fine-grained
quality control. Given that many areas in VR video are out-
side the user’s viewport, the video quality can be improved
by transmitting only the viewport. Another study in [41]
aims for a traffic reduction for multi-view video. Multi-view

video coding requires efficient encoding to transmit multiple
viewpoint videos over band-limited networks. For this pur-
pose, they utilize disparity prediction and compensation to
remove the inter-view redundancy between the viewpoints.

The proposed tile-wise delta detection is designed for
coding multiple game video frames at the same time instant.
The tile-wise delta detection is a similar way to the disparity
prediction, whereas the computational complexity of the tile-
wise delta detection is low because of a hash function-based
similarity prediction. Although the similarity prediction is a
simple way, the proposed method can yield traffic reduction
in commercial games from evaluation results.

6. Conclusion

In this paper, we propose a traffic reduction method for spec-
ulative video transmission in cloud gaming systems to miti-
gate the network delay. The concept of the proposed method
can be applied to all genres of commercial games. Evalu-
ations on Valorant, Genshin Impact, and SFV showed that
the proposed method reduced the traffic by approximately
35%, 24%, and 53%, respectively, without video compres-
sion techniques when the average SSIM index was approxi-
mately 0.98. In addition, we discussed the feasibility of the
proposed method based on the experimental environment.
The proposed speculative execution for two frames may be
possible when there are three input patterns in each frame.

In the future, we will extend the proposed scheme to
accommodate multiple users. In this case, the cloud gaming
server lists future inputs for each user and renders the video
frames for each user. A key issue is reducing the traffic
increment with an increase in the number of users. A poten-
tial solution is to employ a tile-wise delta detection for the
video frames across the users to remove redundant informa-
tion. How to efficiently remove the redundant information
to accommodate multiple users is left as the future work.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers JP19H01101, JP22H03582, and NTT Access Network
Service Systems Laboratories, Japan.

References

[1] W. Cai, R. Shea, C.Y. Huang, K.T. Chen, J. Liu, V.C.M. Leung, and
C.H. Hsu, “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol.4, pp.7605–7620, Aug. 2016.

[2] C.Y. Huang, K.T. Chen, D. Chen, H.J. Hsu, and C. Hsu, “Gamin-
gAnywhere: The first open source cloud gaming system,” ACM
Trans. Multimedia Comput. Commun. Appl., vol.10, no.1s, pp.1–
25, Jan. 2014.

[3] Y.T. Lee, K.T. Chen, H.I. Su, and C.L. Lei, “Are all games equally
cloud-gaming-friendly? An electromyographic approach,” 2012
11th Annual Workshop on Network and Systems Support for Games
(NetGames), pp.1–6, Nov. 2012.

[4] S.F. Lindström, M. Wetterberg, and N. Carlsson, “Cloud gaming:
A QoE study of fast-paced single-player and multiplayer gaming,”
2020 IEEE/ACM13th International Conference on Utility and Cloud

ISHIOKA et al.: TRAFFIC REDUCTION FOR SPECULATIVE VIDEO TRANSMISSION IN CLOUD GAMING SYSTEMS
417

Computing (UCC), pp.34–45, Dec. 2020.
[5] S.S. Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Moller,

“Towards the impact of gamers strategy and user inputs on the delay
sensitivity of cloud games,” 2020 Twelfth International Conference
on Quality of Multimedia Experience (QoMEX), pp.1–3, May 2020.

[6] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D.O.Wu, “Improving cloud gaming experience through mobile edge
computing,” IEEE Wireless Commun., vol.26, no.4, pp.178–183,
April 2019.

[7] A. Alhilal, T. Braud, B. Han, and P. Hui, “Nebula: Reliable low-
latency video transmission for mobile cloud gaming,” Proc. ACM
Web Conference 2022, WWW’22, pp.3407–3417, April 2022.

[8] I. Slivar, L. Skorin-Kapov, and M. Suznjevic, “QoE-Aware resource
allocation for multiple cloud gaming users sharing a bottleneck link,”
2019 22nd Conference on Innovation in Clouds, Internet and Net-
works and Workshops (ICIN), pp.118–123, Feb. 2019.

[9] L. De Giovanni, D. Gadia, P. Giaccone, D. Maggiorini, C.E. Palazzi,
L.A. Ripamonti, and G. Sviridov, “Revamping cloud gaming with
distributed engines,” IEEE Internet Computing, vol.26, no.6, pp.88–
95, May 2022.

[10] S.S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz, and
S. Möller, “A latency compensation technique based on game char-
acteristics to mitigate the influence of delay on cloud gaming quality
of experience,” Proc. 11th ACM Multimedia Systems Conference,
pp.15–25, May 2020.

[11] R. Salay and M.L. Claypool, “A comparison of automatic versus
manual world alteration for network game latency compensation,”
Extended Abstracts of the 2020 Annual Symposium on Computer-
Human Interaction in Play, pp.355–359, Nov. 2020.

[12] B. Anand and P. Wenren, “CloudHide: Towards latency hiding tech-
niques for thin-client cloud gaming,” Proc. Thematic Workshops of
ACM Multimedia 2017, Thematic Workshops’17, pp.144–152, Oct.
2017.

[13] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A.K. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE Trans.
Circuits Syst. Video Technol., vol.13, no.7, pp.560–576, Aug. 2003.

[14] J.R. Ohm, G.J. Sullivan, H. Schwarz, T.K. Tan, and T. Wiegand,
“Comparison of the coding efficiency of video coding standards—
Including high efficiency video coding (HEVC),” IEEE Trans. Cir-
cuits Syst. Video Technol., vol.22, no.12, pp.1669–1684, Oct. 2012.

[15] C. Zauner, “Implementation and benchmarking of perceptual image
hash functions,” 2010.

[16] W. Hua, M. Hou, Y. Qiao, X. Zhao, S. Xu, and S. Li, “Similarity
index based approach for identifying similar grotto statues to support
virtual restoration,” Remote Sensing, vol.13, no.6, p.1201, 2021.

[17] A. Ehlert, “Improving input prediction in online fighting games,”
Master’s thesis, 2021.

[18] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol.13, no.4, pp.600–612, April 2004.

[19] “VALORANT official webcite,” URL: https://playvalorant.com/
[Accessed 28 June 2022].

[20] “Overwatch official webcite,” URL: https://playoverwatch.com/ [Ac-
cessed 28 June 2022].

[21] “Borderlands official webcite,” URL: https://borderlands.com/ [Ac-
cessed 28 June 2022].

[22] “GenshinImpact official webcite,” URL: https://genshin.hoyoverse.
com/ [Accessed 28 June 2022].

[23] “MONSTER HUNTER WORLD official webcite,” URL: https://
www.monsterhunterworld.com/ [Accessed 28 June 2022].

[24] “ELDENRING official webcite,” URL: https://www.eldenring.com/
[Accessed 28 June 2022].

[25] “STREET FIGHTER V CHAMPION EDITION official webcite,”
URL: https://www.capcom.co.jp/sfv/ [Accessed 28 June 2022].

[26] “Hearthstone official webcite.” URL: https://playhearthstone.com/
[Accessed 28 June 2022].

[27] “Cuphead official webcite,” URL: https://cupheadgame.com/ [Ac-

cessed 28 June 2022].
[28] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of google

stadia traffic,” Computer Communications, vol.188, pp.99–116,
March 2022.

[29] R. Shea, J. Liu, E.C.H. Ngai, and Y. Cui, “Cloud gaming: Archi-
tecture and performance,” IEEE Netw., vol.27, no.4, pp.16–21, Aug.
2013.

[30] M. Suznjevic, I. Slivar, and L. Skorin-Kapov, “Analysis and QoE
evaluation of cloud gaming service adaptation under different net-
work conditions: The case of NVIDIA geforce NOW,” 2016 Eighth
International Conference on Quality of Multimedia Experience
(QoMEX), pp.1–6, June 2016.

[31] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: Ameasurement study on cloud to end-user latency,”
2012 11th Annual Workshop on Network and Systems Support for
Games (NetGames), pp.1–6, Nov. 2012.

[32] K. Lee, D. Chu, E. Cuervo, J. Kopf, S. Grizan, A. Wolman, and
J. Flinn, “Outatime: Using speculation to enable low-latency con-
tinuous interaction for mobile cloud gaming,” MobiSys 2015 - Proc.
13th Annual International Conference on Mobile Systems, Applica-
tions, and Services, pp.151–165, June 2015.

[33] S.S. Sabet, M.R. Hashemi, S. Shirmohammadi, and M. Ghanbari,
“A novel objective quality assessment method for perceptually-coded
cloud gaming video,” 2018 IEEE Conference on Multimedia Infor-
mation Processing and Retrieval (MIPR), pp.75–79, April 2018.

[34] M. Hegazy, K.M. Diab, M. Saeedi, B. Ivanovic, I. Amer, Y. Liu,
G. Sines, and M. Hefeeda, “Content-aware video encoding for cloud
gaming,” Proc. 10th ACM Multimedia Systems Conference, MM-
Sys’19, pp.60–73, June 2019.

[35] G.K. Illahi, T.V.Gemert,M. Siekkinen, E.Masala, A.Oulasvirta, and
A. Ylä-Jääski, “Cloud gaming with foveated video encoding,” ACM
Trans. Multimedia Computing, Communications, and Applications,
vol.16, no.1, pp.1–24, Feb. 2020.

[36] J.V. der Hooft, M.T. Vega, S. Petrangeli, T. Wauters, and F. de Turck,
“Tile-based adaptive streaming for virtual reality video,” ACMTrans.
Multimedia Comput. Commun. Appl., vol.15, no.4, pp.1–24, Dec.
2019.

[37] C.C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pa-
teux, and T. Schierl, “Parallel scalability and efficiency of hevc par-
allelization approaches,” IEEE Trans. Circuits Syst. Video Technol.,
vol.22, no.12, pp.1827–1838, Dec. 2012.

[38] I. Storch, D. Palomino, B. Zatt, and L. Agostini, “Speedup evaluation
ofHEVCparallel video coding using tiles,” J. Real-Time Image Proc.,
vol.17, no.5, pp.1469–1486, Oct. 2020.

[39] T. Amestoy, W. Hamidouche, C. Bergeron, and D.Menard, “Quality-
driven dynamic VVC frame partitioning for efficient parallel pro-
cessing,” 2020 IEEE International Conference on Image Processing
(ICIP), pp.3129–3133, Oct. 2020.

[40] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Tile adapta-
tion for workload balancing of 3D-HEVC encoder in homogeneous
multicore systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.67,
no.5, pp.1704–1714, March 2020.

[41] T. Li, L. Yu, H. Wang, and Z. Kuang, “A bit allocation method based
on inter-view dependency and spatio-temporal correlation for multi-
view texture video coding,” IEEE Trans. Broadcast., vol.67, no.1,
pp.159–173, March 2021.

418
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Takumasa Ishioka received the B.E. and
M.E. degrees from Osaka University, Japan, in
2019 and 2021. He is currently an assistant
professor at the Faculty of Engineering, Kyoto
Tachibana University, Japan, since April 2023.
He is a member of IEEE and IPSJ. His research
interests include wireless networks.

Tatsuya Fukui received the B.E. and M.E.
degrees fromWaseda University, Faculty of Sci-
ence and Engineering, Japan in 2008 and 2010.
He is nowworking for NTTAccess Network Ser-
vice Systems Laboratories. His current research
interests include research and development of
carrier networks such as wide-area Ethernet sys-
tems.

Toshihito Fujiwara received the B.E., M.E.,
and Ph.D. degrees in engineering from the Uni-
versity of Tsukuba, Ibaraki, Japan, in 2002,
2004, and 2011, respectively. In 2004, he joined
theNTTAccess Network Service Systems Labo-
ratories, Japan, where he has been involved in the
research and development of optical video trans-
mission system, passive optical network system,
content delivery network system and ultralow la-
tency video system.

Satoshi Narikawa received the B.E., M.E.
and Ph.D. degrees from Tokyo Institute of Tech-
nology, Department of Electrical andElectronics
Engineering, Japan in 2001, 2003 and 2012, re-
spectively. He is now working for NTT Access
Network Service Systems Laboratories. His cur-
rent research interests include research and de-
velopment of optical access systems.

Takuya Fujihashi received the B.E. de-
gree in 2012 and the M.S. degree in 2013 from
ShizuokaUniversity, Japan. In 2016, he received
Ph.D. degree from the Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity, Japan. He is currently an assistant professor
at the Graduate School of Information Science
and Technology, Osaka University since April,
2019. He was research fellow (PD) of Japan So-
ciety for the Promotion of Science in 2016. From
2014 to 2016, he was research fellow (DC1) of

Japan Society for the Promotion of Science. From 2014 to 2015, he was
an intern at Mitsubishi Electric Research Labs. (MERL) working with the
Electronics and Communications group. His research interests are in the
area of video compression and communications, with a focus on immersive
video coding and streaming.

Shunsuke Saruwatari received the Dr. Sci.
degree from the University of Tokyo in 2007.
From 2007 to 2008, he was a visiting researcher
at the IllinoisGenetic Algorithm Laboratory,
University of Illinois at Urbana-Champaign.
From 2008 to 2012, he was a research associate
at the RCAST, the University of Tokyo. From
2012 to 2016, he was an assistant professor at
Shizuoka University. He has been an associate
professor at Osaka University Since 2016. His
research interests are in the areas of wireless net-

works, sensor networks, and system software.

Takashi Watanabe is a Professor of Grad-
uate School of Information Science and Tech-
nology, Osaka University, Japan. He received
his B.E., M.E. and Ph.D. degrees from Osaka
University, Japan, in 1982, 1984 and 1987, re-
spectively. He joined Faculty of Engineering,
Tokushima University as an assistant professor
in 1987 and moved to Faculty of Engineering,
Shizuoka University in 1990. He was a visit-
ing researcher at University of California, Irvine
from 1995 through 1996. He has served onmany

program committees for networking conferences, IEEE, ACM, IPSJ, IEICE
(The Institute of Electronics, Information and Communication Engineers,
Japan). His research interests include mobile networking, ad hoc networks,
sensornetworks, ubiquitous networks, intelligent transport systems, spe-
cially MAC and routing. He is a member of IEEE, IEEE Communications
Society, IEEE Computer Society as well as IPSJ and IEICE.

IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024
419

PAPER
Estimation of Drone Payloads Using Millimeter-Wave
Fast-Chirp-Modulation MIMO Radar

Kenshi OGAWA†a), Student Member, Masashi KUROSAKI†, Nonmember, and Ryohei NAKAMURA†b), Member

SUMMARY With the development of drone technology, concerns have
arisen about the possibility of drones being equipped with threat payloads
for terrorism and other crimes. A drone detection system that can detect
drones carrying payloads is needed. A drone’s propeller rotation frequency
increases with payload weight. Therefore, a method for estimating pro-
peller rotation frequency will effectively detect the presence or absence of
a payload and its weight. In this paper, we propose a method for classifying
the payload weight of a drone by estimating its propeller rotation frequency
from radar images obtained using a millimeter-wave fast-chirp-modulation
multiple-input and multiple-output (MIMO) radar. For each drone model,
the proposed method requires a pre-prepared reference dataset that estab-
lishes the relationships between the payload weight and propeller rotation
frequency. Two experimental measurement cases were conducted to inves-
tigate the effectiveness of our proposal. In case 1, we assessed four drones
(DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to
determine whether the propeller rotation frequency of any drone could be
correctly estimated. In case 2, experiments were conducted on a hovering
Phantom 3 drone with several payloads in a stable position for calculating
the accuracy of the payload weight classification. The experimental results
indicated that the proposed method could estimate the propeller rotation
frequency of any drone and classify payloads in a 250 g step with high
accuracy.
key words: millimeter-wave MIMO radar, fast chirp, radar imaging, drone
detection, payload weight estimation

1. Introduction

Drones have advanced rapidly and are widely used in vari-
ous fields, such as security, surveying, delivery, photography,
disaster response, and agriculture in recent years [1]. How-
ever, along with their growing use, concerns have arisen
about the possibility that drones can be equipped with pay-
loads of explosives, biological and chemical weapons, and
illicitmaterials for terrorism and other crimes [2], [3]. There-
fore, antidrone systems must be able to detect the presence
or absence of payloads and deal with these drones on a prior-
ity basis. Drone detection technologies, including cameras,
microphones, and radars, are being actively studied and de-
veloped. Radars are attracting significant attention as an
effective drone detection technology because they are not
affected by weather conditions, unlike cameras and micro-
phones [4].

Most studies on drone detection using radars rely on

Manuscript received June 21, 2023.
Manuscript revised October 1, 2023.
Manuscript publicized January 30, 2024.
†The authors are with National Defense Academy of Japan,

Yokosuka-shi, 239-8686 Japan.
a) E-mail: ed22007@nda.ac.jp
b) E-mail: r.nakamura@ieee.org
DOI: 10.23919/transcom.2023EBP3104

the micro-Doppler signatures generated by the rotation of
drone propellers [5]–[9]; in these cited studies, drone mod-
els were classified based on differences in their micro-
Doppler signatures. In addition, several studies have been
conducted recently on detection of drones carrying pay-
loads using micro-Doppler signatures [10]–[13]. In [10],
the micro-Doppler signatures of two types of drones with
different payloads were obtained using W-band, C-band,
andS-band frequency-modulated continuous-wave (FMCW)
radars. Different micro-Doppler signatures were observed
with an increase in payload weight, and a payload weight
classification algorithm based on micro-Doppler signatures
was proposed. In particular, the W-band was found to be
the preferred frequency band for payload classification using
the FMCW radar. In [11], the micro-Doppler signatures of
a drone with a payload were obtained using an S-band mul-
tistatic pulsed Doppler radar. In [12], a convolutional neural
network was applied to the data acquired in [11], and payload
weights were classified well. Of particular interest is a study
about drones equipped with heavy payloads and dynamic
payloads generating inertial forces, such as guns [13]. In this
study, the micro-Doppler signatures of two types of drones
were obtained using a K-band FMCW radar and a W-band
continuous-wave radar. The authors discussed the effects of
payloads on micro-Doppler signatures and showed that these
signatures were inconsistent and not unique to the drones car-
rying the target payloads. [12] used micro-Doppler signa-
tures for achieving a highly accurate payload classification,
similar to [10] and [11]. Furthermore, [13] reported that no
unique micro-Doppler signatures could clearly distinguish
between drones with and without a payload. Hence, the
robust discrimination between payload and no payload is
challenging. These results show that depending on the radar
specifications and measurement environments, the payload
estimation using micro-Doppler signatures may be difficult.
Therefore, methods for estimating payload weights that do
not rely on micro-Doppler signatures should be explored.
[13] and [14] revealed that the rotation frequency of a pro-
peller increases with the payload weight due to the need for
additional thrust. The increase trend of the propeller rotation
frequency depends on the drone model. Therefore, com-
bined with existing algorithms for classifying drone models,
such trends can be used as a reference dataset for estimating
payload weights.

In this paper, we propose a method for classifying the
payload weight of a drone by estimating its propeller rotation
frequency from radar images obtained using a millimeter-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

420
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

wave fast-chirp-modulation multiple-input and multiple-
output (mmW FCM MIMO) radar. The proposed method
requires a pre-prepared reference dataset that relates the pay-
loadweight to the propeller rotation frequency for each drone
model. To the best of our knowledge, the proposed method
is the first report of a payload estimation method that does
not rely on micro-Doppler signatures when investigating the
radar-based payload classification. We studied the radar
imaging of a drone using an mmW FCM MIMO radar in
[15]. The results showed that the propeller rotation pro-
duced periodic variations in the signal intensity of the pixels
corresponding to the propeller in radar images. The sam-
pling period of an mmW FCM MIMO radar is fast enough
for observing a drone’s propeller rotation. The use of the
millimeter-wave radar in W-band is the preferred choice for
the payload estimation, as revealed in [10], and the radar
is considered to reflect off small components, such as drone
propellers, due to itswavelength characteristics. The rotation
frequency of a propeller can be estimated by applying fast
Fourier transform (FFT) to the signal intensity variations.
To demonstrate the estimation of the rotation frequency of
propellers, we conducted measurement experiments on four
drones: DJIMatrice 600, DJI Phantom 3, DJIMavic Pro, and
DJIMavicMini. Additionally, we performed experiments on
a drone with several payloads in a stable position to investi-
gate the effectiveness of the proposed method for estimating
payload weights from estimated rotation frequencies.

The rest of this paper is organized as follows. Sec-
tion 2 is an explanation of the mmW FCM MIMO radar,
radar imaging, and the payload weight estimation method.
Section 3 shows our measurement results and a discussion
of the effectiveness of our proposal. Finally, we summarize
this paper in Sect. 4.

2. Payload Weight Estimation

2.1 mmW FCMMIMO Radar

Figure 1 shows a diagram of the mmW FCM MIMO radar.
The FCM radar transmits and receives a sinusoidal signal
called chirp, whose frequency is modulated over an ultraw-
ide bandwidth with time. The modulation and observation
times of a chirp are called fast and slow times, respectively.
A received chirp is mixed with a transmitted chirp to mea-
sure the intermediate-frequency (IF) signal. The IF signal is
sampled using an analog-to-digital converter for each receive
antenna and stored in memory as multiple-input, multiple-
output (MIMO) channel data. The MIMO channel data,
consisting of the IF signals of the radio channels between
the transmit and receive antennas, are reconstructed into
single-input, multiple-output channel data of a contiguous
virtual array (MIMO virtual array) [16]. The received ma-
trix R(n,m, l) obtained using the radar is a 3D data matrix
(MIMO virtual array × fast time × slow time) that includes
the propagation delay time, direction of arrival (DOA), and
Doppler frequency. Here N(n = 1,2, · · · ,N) is the number
of fast-time samples, M(m = 1,2, · · · ,M) is the number of

Fig. 1 mmW FCMMIMO radar.

Fig. 2 Flow of digital signal processing.

MIMO virtual array elements, and L(l = 1,2, · · · , L) is the
number of slow-time samples.

2.2 Radar Imaging Procedure

Figure 2 shows the signal processing flow for 2D radar image
generation. A 2D FFT process is performed on the received
matrix R(n,m, l) to generate a 2D radar image (range-angle
map). The distance from the radar to the object is estimated
by performing FFT (range FFT) on the IF signal obtained by
each element constituting the MIMO virtual array. The data
matrix Rrange(r,m, l) after range FFT is as follows:

Rrange(r,m, l) =
1
N

N∑
n=1

R(n,m, l)e−j2π fn
2r
c , (1)

where r and c are the range bin and the speed of light,
respectively. fn represents the frequency of the kernel of the
Fourier transform.

A drone has many scattering points from its compo-
nents, such as its body and propellers. The spatial reso-
lution must be improved to obtain clear radar images. As
shown in Fig. 2, we apply the Khatri-Rao (KR) product vir-
tual array processing to the MIMO virtual array elements in

OGAWA et al.: ESTIMATION OF DRONE PAYLOADS USING MILLIMETER-WAVE FAST-CHIRP-MODULATION MIMO RADAR
421

each range bin [17]–[19] to improve the angular resolution.
Here, assuming that K waves are observed using M uniform
linear array (ULA) elements, the MIMO virtual array data
Rrange(rb,m, l) in a certain range bin rb are as follows:

Rrange(rb,m, l) =
K∑
k=1

a(θk)sk(l) + n(l)

= As(l) + n(l) (2)
A = [a(θ1), a(θ2), · · · , a(θk)] (3)
s(l) = [s1(l), s2(l), · · · , sk(l)]T , (4)

where a(θk) ∈ C
M and sk(l) denote the mode vector

and complex amplitude of the k-th wave, respectively;
A ∈ CM×K is the mode matrix; and n(l) is the noise vector.
The correlation matrix RC of the MIMO virtual array data
Rrange(rb,m, l) is as follows:

RC = E[Rrange(rb,m, l)RH
range(rb,m, l)]

= ASAH + RN , (5)

where E[] and H denote ensemble averaging and the complex
conjugate transpose, respectively; S is the source correlation
matrix; and RN is the noise correlation matrix. We also
apply spatial smoothing processing (SSP) to this correlation
matrix before the KR product virtual array processing to sup-
press the signal coherence of incident waves [20] because the
correlation of incident waves leads to errors in virtual array
signals [21]. The vectorization y of the spatially smoothed
correlation matrix RC is as follows:

y = vec[RC]

= vec[AS̄AH] + vec[R̄N]

= (A∗ � A)s′ + vec[R̄N], (6)

where vec[] and ∗ are the vectorization operator and the
complex conjugate, respectively; � denotes the KR product
operator; s′ ∈ CK is the diagonal element of S̄; (A∗ � A) ∈

CM2×K is the KR product virtual array response matrix; and
the vector y contains repeated elements that do not help
increase the aperture length. The nonrepeating elements of
vector y are extracted to obtain the KR virtual array data of
2M−1 elements, so the aperture length is virtually increased.

The DOA of reflected signals is estimated by perform-
ing a second FFT (angle FFT) over the indexes of the KR
virtual array elements on all range bins of the data matrix
RKR(r,m′, l) after KR product virtual array processing. The
radar image at the l-th slow time Image(r,a, l) generated
after angle FFT is as follows:

Image(r,a, l) =
1

2M − 1

2M−1∑
m′=1

RKR(r,m′, l)e−j
2π(m′−1)

2M−1 a,

(7)

where a is the angle bin and m′(= 1,2, · · · ,2M − 1) is the
index of the virtual antennas after KR product virtual array
processing.

2.3 Proposed Method

We investigated the effect of payload weight on the propeller
rotation frequency of a drone (Sect. 2.3.1) and developed a
payload weight estimation method using the results of this
investigation (Sect. 2.3.2).

2.3.1 Reference Dataset for Payload Weight Estimation

The proposed method requires a reference dataset of the
relationship between payload weight and propeller rotation
frequency. Therefore, to show an example, we created a
reference dataset for a hovering Phantom 3.

Figure 3 shows the environment for measuring the rota-
tion frequency of the drone’s propeller. The hovering Phan-
tom 3 drone was suspended in the air using guide ropes and
connected to a spring scale. A payload weight was applied to
the drone because the tension between a drone and a spring
scale increases with the drone’s propeller rotation frequency.
Wemeasured the rotation frequency of the drone using a dig-
ital tachometer for 10 s when the spring scale showed values
of 0, 250, 500, 750, and 1000 g. In this study, we consider
that it is sufficient to detect a threatening payload by esti-
mating rough weight. Therefore, measurement data were
collected in a 250 g step.

Figure 4 shows the measured relationship between the
payload weight and rotation frequency of the Phantom 3.

Fig. 3 Measurement environment for generating reference dataset.

Fig. 4 Relationship between payload weight and rotation frequency of
Phantom 3.

422
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 5 Flowchart of payload weight estimation method.

The figure indicates an increase in the propeller rotation fre-
quency with the payload. When focused on each payload,
it is clear that the frequency is not constant and varies be-
tween 16 and 17Hz due to the drone’s attitude control. The
frequency variations do not overlap for payloads with 250 g
steps, indicating that the payload can be uniquely determined
if the rotation frequency is estimated using the radar. How-
ever, these frequency variations overlap for steps below 250 g
and may cause errors in the payload estimation. The mea-
surement results obtained with 250 g steps were defined as
the reference dataset for the payload weight estimation in this
study.

2.3.2 Signal Processing

Figure 5 shows a flowchart of our proposed payload weight
estimation method. The basis of this method is to find a pixel
in a drone’s radar image that corresponds to the propeller and
analyze the temporal variation of its signal intensity.

First, a 2D radar image of a drone is acquired by the
mmW FCM MIMO radar. As an example, the 2D radar im-
age of the Phantom 3 is shown in Fig. 6. The characteristic
shape of the drone could be imaged; specifically, the maxi-
mum peak at (0.1, 1.8m) was an echo from the drone’s body,
and the peaks at (−0.2, 1.7m) and (0.15, 1.6m) were the
echoes from the left and right propellers, respectively. Thus,
a drone’s propeller is the reflection point with the largest re-
flection intensity after that of the body. Therefore, the initial
sampling point (rp,ap) for the propeller is the pixel of the
peak of the second-largest reflection intensity in the radar
image. The second and subsequent sampling points were
obtained from the same coordinates. Since the reflection in-
tensity of the pixel corresponding to the propeller fluctuates
periodicallywith the propeller rotation, the propeller rotation

Fig. 6 Example of 2D radar image of Phantom 3.

frequency is estimated by performing FFT on the reflection
intensity fluctuation. With the propeller position coordinates
in the radar image denoted as (rp,ap), the propeller rotation
frequency F(rp,ap, f) is as follows:

F(rp,ap, f) =
1
L

L∑
l=1

Image(rp,ap, l)e−j
2π(l−1)

L f , (8)

where f is frequency. The propeller rotation frequency
should exceed a certain threshold for a drone to take off.
A frequency gate is set for the FFT-calculated frequency
spectrum to estimate the propeller rotation frequency. The
propeller rotation frequency at takeoff is different for differ-
ent drones due to differences in their specifications, such as
drone weight and motor power. Therefore, the frequency
gate depends on the drone model and should be adjusted
appropriately for each drone. For example, in the case of the
Phantom 3, the frequency gate was set to 150Hz or higher
because its takeoff requires a propeller rotation frequency of
150Hz or higher. In this gate, the dominant frequency is due
to propeller rotation and the peak frequency is sequentially
stored in memory as a provisional estimation result of the
propeller rotation frequency. Next, since the propeller rota-
tion frequency varies with time due to disturbance, these pro-
visional estimation results are evaluated using a histogram
of 300 samples, and the frequency with the mode is used as
the final estimation result of the drone’s propeller rotation
frequency. A small sample size is preferred for the histogram
since a large number of samples may affect the distribution
because of disturbances due to long observation time. There-
fore, the sample size was set to empirically derived value of
300. Finally, the payload weight is estimated by comparing
the estimated propeller rotation frequency with the reference
dataset.

3. Experimental Setup and Results

3.1 Experimental Setup

We measured propeller rotation frequencies in two exper-
imental measurement cases using an mmW FCM MIMO
radar module. Case 1 involved four drones (Matrice 600,
Phantom 3, Mavic Pro, and Mavic Mini) without payloads.
Case 2 involved a Phantom 3 with several payload weights.
Table 1 shows the specifications of the mmW FCM MIMO
radar module. The MIMO radar, which is composed of a

OGAWA et al.: ESTIMATION OF DRONE PAYLOADS USING MILLIMETER-WAVE FAST-CHIRP-MODULATION MIMO RADAR
423

3×4 ULA as shown in Fig. 7, presents a MIMO virtual ar-
ray of 12 elements. Subarrays of 10 elements (= M) were
selected from the MIMO virtual array and used for SSP to
suppress the coherence of the echoes from each target. The
application of KR product virtual array processing increased
the number of virtual elements to 19 elements (= 2M − 1),
so the angular resolution was 6.0 degrees. The frequency
bandwidth was 3.44GHz, resulting in a range resolution of
4.4 cm. The number of slow-time samples was 256 (0.25 s),
causing a frequency resolution of 4Hz. The pulse recep-
tion interval was set to 0.97ms, which was fast enough for
observing the propeller rotation.

In case 1, we assessed four drones with different shapes,
sizes, numbers of rotors, and propeller geometries, as shown
in Table 2, and investigated whether the propeller rotation
frequency of any drone could be estimated correctly. Each
target was placed on a low-density styrofoam cylinder with

Table 1 Specifications of mmW FCMMIMO radar module.

Fig. 7 MIMO radar.

its propeller rotating, as shown in Fig. 8(a). The antenna
height was set to the height of the drone body. The distance
between the radar and the target was adjusted for each drone
so that the entire drone, including its propellers, would be
covered by the antenna beam. Each drone was positioned so
that one propeller was the closest to the radar to observe the
echoes from the propeller in a manner that maximizes the
signal-to-noise ratio.

In case 2, we tested the Phantom 3 with several payload
weightsW (= 0, 250, 500, 750, 1000 g) using the spring scale
(Sect. 2.3.1) to investigate the effectiveness of the proposed
payload weight estimation approach. The hovering target
was suspended in the air using guide ropes to prevent it
from flying outside the antenna beam, as shown in Fig. 8(b).
The target was positioned so that the camera faced its front,
as seen in Fig. 3. Since drones were expected to enter the
radar coverage area at various flight altitudes, we evaluated
the accuracy of the payload weight estimation method at
different antenna elevation angles θ (=0◦, 10◦, 20◦, and 30◦).

Fig. 8 Measurement environments.

Table 2 Tested drones.

424
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 9 Phantom 3 measurement results.

3.2 Experimental Results and Discussion

3.2.1 Case 1

Figure 9 shows the Phantom 3 measurement results. Several
strong echoes are seen in Fig. 9(a). The strong peak at (0,
1.2m) is an echo from the body, and the peaks at (0, 1.0m),
(−0.30, 1.1m), and (0.25, 1.2m) are the echoes from the
propellers. Since the rear propeller was obscured by the
body, no echo from the rear propeller is observed. Fig. 9(b)
shows the waveform of the signal intensity fluctuation due to
a propeller. This waveform was generated through the time-
series sampling of the signal intensity of the (0, 1.0m) pixel,
which corresponds to a propeller in the 2D radar image. The
DC component of the waveform was removed. The wave-
form amplitude fluctuates due to changes in the radar cross
section during propeller rotation. The fluctuation period is
related to the propeller rotation speed, and similar periodic
fluctuations are observed in the other tested drones.

Figure 10 shows the frequency spectrum of the time
waveform of each drone. The frequency corresponding to
the maximum value in the frequency spectrum is denoted
as H in the figure, which is the estimated propeller rotation
frequency. The true value of the propeller rotation frequency
was measured using a digital tachometer. Figures 10(a), (c),
and (d) show strong peaks in the low-frequency component
(under 50 Hz). These peaks may have been caused by the
vibration of the drone arms due to propeller rotation; each

Fig. 10 Examples of propeller rotation frequency spectra.

drone was placed on the styrofoam cylinder, so the drone
body could not have caused vibration. Arm vibration is a
unique characteristic of drones that have separate bodies and
arms, such as the Matrice 600, Mavic Pro, and Mavic Mini.
These peaks can be removed through filter processing using
a high-pass filter or by setting a frequency gate. Figure 11

OGAWA et al.: ESTIMATION OF DRONE PAYLOADS USING MILLIMETER-WAVE FAST-CHIRP-MODULATION MIMO RADAR
425

Fig. 11 Estimation results of the propeller rotation frequency for each
drone.

shows the estimated and measured rotation frequencies for
each drone. Measurements were obtained for 556 slow-
time samples. Subsequently, a total of 300 estimates of the
propeller rotation frequency were obtained by performing
FFT on the measured data while shifting the FFT window
length of 256 samples by one sample at a time. From Fig. 11,
in Case 1, where there are almost no fluctuations other than
that caused by the propeller, the propeller rotation frequency
can be estimated with an error of less than a few hertz for
all tested drones. The main factor that causes the estimated
value to vary more than the true value is the estimation error
caused by the FFT.

3.2.2 Case 2

Measurements were obtained for 556 slow-time samples.
Further, a total of 300 propeller rotation frequency estimates
were obtained by applying FFT on the measured data while
shifting the FFT window length of 256 samples by one sam-
ple at a time. Figure 12 shows an example of the signal
intensity waveform in Case 2, in which an increase is ob-
served in the irregular fluctuation components compared to
that exhibited by the waveform of Case 1 shown in Fig. 9(b).
This irregularity is attributed to the shaking and vibration of
the drone’s body during hovering. The frequency spectrum
of the waveform in Fig. 12 is shown in Fig. 13, along with its
corresponding estimated propeller rotation frequency (H).
In addition to the peak representing the propeller rotation
frequency (Fig. 10(b)), the spectrum has a large peak in the
low-frequency region, attributed to the shaking and vibration
of the drone body. However, the propeller rotation frequency
can be estimated by performing a peak search after passing
the frequency spectrum through a frequency gate, similar to
Case 1. Figure 14 shows the provisional estimates of the
propeller rotation frequency at each payload weight. The
blue circles (◦) and red crosses (×) in the graphs denote the
correct and incorrect estimates, respectively, compared with
the reference dataset. Figure 14 indicates that the estimates
increase with the payload weight, as shown in Fig. 4. In

Fig. 12 An example of the signal intensity waveform in Case 2.

Fig. 13 An example for the estimation result of the propeller rotation
frequency in Case 2.

addition, the correct estimates (blue circles) at each payload
weight vary due to temporal changes in the propeller rotation
frequency caused by drone attitude control. The incorrect es-
timates (red crosses) are insufficient or excessive frequencies
for maintaining the drone’s hovering state. These misesti-
mates may have been caused by random disturbances, such
as body sway due to attitude control or body vibration due
to propeller rotation.

The histogram of provisional estimates was evaluated
to determine the final estimate of the propeller rotation fre-
quency, thus avoiding the abovementioned misestimates.
When the propeller rotates at a rotation frequency closer
to the frequency boundary in the reference dataset, the esti-
mation accuracy of the propeller rotation frequency would
be affected by the bin size of the histogram. In this study,
the bin size was set to 1 Hz to align with the measurement
resolution of the digital tachometer. For example, Fig. 15
shows the histogram of the provisional estimates at an ele-
vation angle θ = 20◦ and a payload weight W = 250 g. Most
of the provisional estimates are at approximately 197 Hz,
which is within the frequency range of the reference dataset
at W = 250 g. However, approximately 30% of the estimates
are outside the frequency range, leading to payload weight
misestimation. Therefore, 197 Hz, which has the highest
occurrence probability, is the propeller rotation frequency in
our experiment. Final estimates presented in Fig. 14 corre-
spond to the propeller rotation frequency determined using
the mode in their histograms.

Each payload weight is classified by comparing the pro-
peller rotation frequency determined from the histogram
with the corresponding value in the reference dataset in
Fig. 4. Table 3 shows the payloadweight classification results
at each antenna elevation angle. Each column (row) in the ta-
ble represents the instances of the estimated (actual) payload
weights. “Other” means that the payload weight could not be

426
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

Fig. 14 Provisional estimates of propeller rotation frequency vs. payload
weight.

estimated because the estimated propeller rotation frequency
was outside the range of the reference dataset. To evaluate
the accuracy of the payload classification, we performed 100
classification runs by taking a 54-second (55600 samples in

Fig. 15 Histogram of provisional estimates (θ = 20◦,W = 250 g).

Table 3 Payload weight classification results.

slow-time)measurement and dividing themeasured data into
100 segments (556 samples in slow-time per segment). Each
cell in the table represents the probability of 100 classifica-
tion runs corresponding to each measurement of the actual

OGAWA et al.: ESTIMATION OF DRONE PAYLOADS USING MILLIMETER-WAVE FAST-CHIRP-MODULATION MIMO RADAR
427

Fig. 16 Comparison of classification accuracy for different FFT window
lengths.

payload weight W . The blue cells in the table represent the
probability of correct classification, which is defined as the
classification accuracy. The average classification accuracy
of all blue cells, is more than 94.4% at each elevation angle.
The results show that the proposed method can accurately
classify most of the payload weights, and there is almost
no difference in the average classification accuracy between
elevation angles.

In Table 3(b), 22% are classified as “Other” at the ac-
tual payload weight W = 250 g. This is probably because
the case of W = 250 g caused more body shaking and vi-
bration than other cases, thereby affecting the original signal
intensity fluctuations of the propeller. Table 3(a), (c), and
(d) showmisclassifications where the payload is classified as
lighter or heavier than its actual weight. Misclassifications
occurred irregularly for anyweight at any elevation angle, in-
dicating the absence of a consistent error trend that depends
on the elevation angle. The main reasons of these misclas-
sifications are sudden random body shaking and frequency
estimation errors caused by the FFT. Further, we discuss the
FFT estimation error in detail.

We investigated the effect of the FFT window length
on estimation accuracy. Figure 16 shows the classification
accuracy for different FFT window lengths (LFT), where ◦,
×, and + indicate the classification accuracy for θ = 0◦ and
W = 1000 g, for θ = 20◦ and W = 0 g, and for θ = 30◦ and W
= 500 g, respectively. Figure 16 confirms that the classifica-
tion accuracy improves with longer window lengths because
the frequency resolution increases with the window length.
Figure 17 shows the average classification accuracies at all
elevation angles and payload weights. The figure indicates
that the average classification accuracy degrades in the case
of LFT = 512 despite the improved frequency resolution
compared with that of LFT = 256. With longer window
lengths, the effects of drone body shaking and vibration are
more likely to show in the signal intensity waveform, which
is used to estimate the propeller rotation frequency. Since the
frequency components due to these disturbances became the
mode in the histogram, the average classification accuracy

Fig. 17 Average classification accuracy for different FFT window
lengths.

declined. Therefore, a trade-off exists between the effect
of disturbances and the frequency resolution, and setting a
window length that considers the effect of disturbances is
important for the proposed method.

4. Conclusions

In this paper, we propose amethod for classifying the payload
weight of a drone by estimating the propeller rotation fre-
quency from radar images obtained using an mmW FCM
MIMO radar. The proposed method necessitates a pre-
prepared reference dataset that can relate the payload weight
to the propeller rotation frequency for each drone model.
Two experimental measurement cases were conducted to in-
vestigate the effectiveness of our proposal. In case 1, we
tested four drones to determine whether the propeller rota-
tion frequency of any drone could be correctly estimated.
The experimental results showed that the propeller rotation
frequencies of all drones could be estimated. In case 2, mea-
surement experiments were conducted on a hovering drone
with five different payloads in a stable position to evalu-
ate the accuracy of payload weight classification. Results
revealed that the proposed method could classify the pay-
loads in a 250 g step with an average accuracy of more than
94.4%. However, as the FFT window length for estimating
the propeller rotation frequency increased, the classification
accuracy decreased due to the increased influence of distur-
bances. Therefore, an appropriate window length should be
set for accurate classification.

We plan to investigate the possibility of classification
of payloads in moving drones at far range in the future.
Moreover, we aim to implement algorithms that are robust
to disturbances, such as body shaking and vibration.

Acknowledgments

This work was supported by JSPSKAKENHIGrant Number
21K04102.

428
IEICE TRANS. COMMUN., VOL.E107–B, NO.5 MAY 2024

References

[1] Research Briefs, 38 Ways Drones Will Impact Society: From Fight-
ingWar To ForecastingWeather, UAVs Change Everything, Retrieved
Dec. 17, 2019, from https://www.cbinsights.com/research/drone-
impact-society-uav/, accessed Feb. 15. 2023.

[2] J.P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security anal-
ysis of drones systems: Attacks, limitations, and recommendations,”
Internet of Things, vol.11, p.100218, Sept. 2020. DOI: 10.1016/
j.iot.2020.100218

[3] E. Vattapparamban, I. Guvenc, A.I. Yurekli, K. Akkaya, and S.
Uluagac, “Drones for smart cities: Issues in cybersecurity, privacy,
and public safety,” Proc. 2016 International Wireless Communica-
tions and Mobile Computing Conference, Paphos, Cyprus, pp.216–
221, Sept. 2016. DOI: 10.1109/IWCMC.2016.7577060

[4] A. Coluccia, G. Parisi, and A. Fascista, “Detection and classification
of multirotor drones in radar sensor networks: A review,” Sensors,
vol.20, no.15, p.4172, July 2020. DOI: 10.3390/s20154172

[5] J.J.M. de Wit, R.I.A. Harmanny, and G. Premel-Cabic, “Micro-
Doppler analysis of small UAVs,” Proc. 9th European Radar Confer-
ence (EuRAD), Amsterdam, Netherlands, pp.210–213, Oct. 2012.

[6] P. Molchanov, K. Egiazarian, J. Astola, R.I. Harmanny, and J.J.M. de
Wit, “Classification of small UAVs and birds by micro-Doppler sig-
natures,” Proc. 10th European Radar Conference (EuRAD), Nurem-
berg, Germany, vol.6, no.3-4, pp.172–175, Oct. 2013. DOI: 10.1017/
S1759078714000282

[7] S. Rahman and D.A. Robertson, “Millimeter-wave micro-Doppler
measurements of small UAVs,” Proc. SPIEDefense + Security, Radar
Sensor Technology XXI, Anaheim, CA, United States, vol.10188,
pp.307–315, May 2017. DOI: 10.1117/12.2261942

[8] S. Rahman and D.A. Robertson, “Multiple drone classification using
millimeter-wave CW radar micro-Doppler data,” Proc. SPIE Defense
+ Commercial Sensing, Radar Sensor Technology XXIV, vol.11408,
pp.50–57, April 2020. DOI: 10.1117/12.2558435

[9] M.Kurosaki, K. Ogawa, R. Nakamura, andH. Hadama, “Experimen-
tal study on multiple drone detection using a millimeter-wave fast
chirp MIMO radar,” Proc. 2023 IEEE Topical Conference on Wire-
less Sensors and Sensor Networks (WisNet), Las Vegas, NV, USA,
pp.16–19, Jan. 2023. DOI: 10.1109/WiSNeT56959.2023.10046220

[10] D.Dhulashia, N. Peters, C.Horne, P. Beasley, andM.Ritchie, “Multi-
frequency radar micro-Doppler based classification of micro-drone
payload weight,” Front. Signal Process., vol.1, p.781777, Dec. 2021.
DOI: 10.3389/frsip.2021.781777

[11] M. Ritchie, F. Fioranelli, H. Borrion, and H. Griffiths, “Multistatic
micro-Doppler radar feature extraction for classification of unloaded/
loaded micro-drones,” IET Radar, Sonar & Navigation, vol.11, no.1,
pp.116–124, Jan. 2017. DOI: 10.1049/iet-rsn.2016.0063

[12] J.S. Patel, C. Al-Ameri, F. Fioranelli, and D. Anderson, “Multi-time
frequency analysis and classification of a micro-drone carrying pay-
loads using multistatic radar,” The Journal of Engineering, vol.2019,
no.20, pp.7047–7051, Oct. 2019. DOI: 10.1049/joe.2019.0551

[13] S. Rahman, D.A. Robertson, and M.A. Govoni, “Radar signatures of
drones equipped with heavy payloads and dynamic payloads gener-
ating inertial forces,” IEEE Access, vol.8, pp.220542–220556, Dec.
2020. DOI: 10.1109/ACCESS.2020.3042798

[14] O.A. Ibrahim, S. Sciancalepore, andR.D. Pietro, “Noise2Weight: On
detecting payload weight from drones acoustic emissions,” Future
Generation Computer Systems, vol.134, pp.319–333, Sept. 2022.
DOI: 10.1016/j.future.2022.03.041

[15] K. Ogawa, M. Kurosaki, R. Nakamura, and H. Hadama, “2D imag-
ing of a drone using a millimeter-wave fast chirp MIMO radar
based on Khatri-Rao product virtual array processing,” Proc. 2023
IEEE Topical Conference on Wireless Sensors and Sensor Networks
(WisNet), Las Vegas, NV, USA, pp.1–4, Jan. 2023. DOI: 10.1109/
WiSNeT56959.2023.10046224

[16] J. Li and P. Stoica, MIMO Radar Signal Processing, Wiley-IEEE

Press, 2008.
[17] W.K. Ma, T.H. Hsieh, and C.Y. Chi, “DOA estimation of quasi-

stationary signals via Khatri-Rao subspace,” Proc. 2009 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing, Taipei, Taiwan, pp.2165–2168, April 2009. DOI: 10.1109/
ICASSP.2009.4960046

[18] W.K. Ma, T.H. Hsieh, and C.Y. Chi, “DOA estimation of quasi-
stationary signals with less sensors than sources and unknown spa-
tial noise covariance: A Khatri-Rao subspace approach,” IEEE
Trans. Signal Process., vol.58, no.4, pp.2168–2180, April 2010.DOI:
10.1109/TSP.2009.2034935

[19] H. Yamada, N. Ozawa, Y. Yamaguchi, K. Hirano, and H. Ito, “An-
gular resolution improvement of ocean surface current radar based
on the Khatri-Rao product array processing,” IEICE Trans. Com-
mun., vol.E96-B, no.10, pp.2469–2474, Oct. 2013. DOI: 10.1587/
transcom.E96.B.2469

[20] S.U. Pillai and B.H. Kwon, “Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Trans. Acoust.,
Speech, Signal Process., vol.37, no.1, pp.8–15, Jan. 1989. DOI:
10.1109/29.17496

[21] S. Shirai, H. Yamada, and Y. Yamaguchi, “A novel DOA estimation
error reduction preprocessing scheme of correlated waves for Khatri-
Rao product extended-array,” IEICE Trans. Commun., vol.E96-B,
no.10, pp.2475–2482, Oct. 2013. DOI: 10.1587/transcom.E96.B.
2475

Kenshi Ogawa received the B.E. and M.E.
degrees in Information Engineering from The
University of Kitakyushu, Japan, in 2016 and
2018, respectively. Since 2022, he has been
a student at the Graduate School of Science
and Engineering, National Defense Academy of
Japan. He is currently focusing on microwave/
millimeter radio propagation and radar systems,
and working for his D.E degree. He is a student
member of the IEICE and IEEE.

Masashi Kurosaki received the B.E.
and M.E. degrees from the Graduate School
of Science and Engineering, National Defense
Academy of Japan, in 2017 and 2023, respec-
tively. Until 2023, he was working on mi-
crowave/millimeter radio propagation and radar
systems.

Ryohei Nakamura received B.E., M.E.,
and D.E. degrees in information engineering
from The University of Kitakyushu, Japan, in
2009, 2011, and 2014, respectively. In 2014,
he was a research associate in the Department
of Communication Engineering, National De-
fense Academy of Japan, and has been an As-
sociate Professor in the same department since
2020. His major research interests include wire-
less communications, microwave/millimeter ra-
dio propagation, radar sensor systems, and net-

work systems. He is a member of the IEICE and IEEE.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

